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Abstract. In this paper we introduce the n-dimensional generalization of the
point 7→ circle mapping defined and studied by K. Rabl [13] and show that our
generalization can be used effectively to solve three-dimensional Apollonius-type
problems. To carry out the constructions in practice, we use on the one hand a
simple computer algorithm via Maple, on the other hand some tools of projective
and descriptive geometry, including Maurin’s projection of the four-space. In the
two-dimensional case we present a simple direct method of construction based on
elementary projective geometry.
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1. Introduction

1.1. Basic conventions

The scene of our considerations is the real projective space P
n(R), in particular P

3(R) and
P

2(R). We interpret P
n(R) as the augmented Euclidean affine space E

n, so we shall freely use
typical Euclidean concepts in our formulations. For calculations we assume once and for all
that an orthonormal affine frame (O; E1, . . . , En) of E

n is fixed, where O ∈ E
n is a so-called

origin, and the vectors
−−→
OE1, . . . ,

−−→
OEn form an orthonormal basis of the underlying Euclidean

vector space of E
n. If we write P (p1, . . . , pn), then it means that P is a point of E

n with

Cartesian coordinates p1, . . . , pn, i.e.,
−→
OP =

∑
n

i=1
pi

−−→
OEi.

Equations of figures will always be Cartesian equations with respect to (0; E1, . . . , En).

We endow E
n with the orientation represented by the basis (

−−→
OE1, . . . ,

−−→
OEn), and with the

metric d given by d(P, Q) := ‖
−→
PQ‖. Sometimes we interpret E

n−1 as a subspace of E
n via

the inclusion
P (p1, . . . , pn−1) 7→ P̃ (p1, . . . , pn−1, 0).
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We note finally that the usual differential calculus is available in E
n (see e.g. [1, 2.7.7]). The

i-th partial derivative of a function f : E
n → R, i.e., its derivative in the direction of

−→
0Ei will

be denoted by Dif (i ∈ {1, . . . , n}).

1.2. Preliminaries

A cyclographic mapping is a kind of nonlinear mapping that sends the points of E
3 to directed

circles of E
2 such that the centre of an image circle is the orthogonal projection of the given

point on the plane, the length of its radius is the distance of the point and the plane, and the
circle is positively (resp. negatively) oriented according to whether the point is in the positive
(resp. negative) half-space determined by E

2 in E
3 with respect to the fixed orientation. We

agree that the image of each point of the plane E
2 is itself. Obviously, the image of a proper

point of the space can be obtained as the intersection of the target plane with a rectangular
cone of revolution whose vertex is the given point and whose axis is perpendicular to the
plane. Such a cone is said to be a C-cone. It can easily be shown (see e.g. [12]) that the
image circle of a point lying on the surface of a C-cone and different to the vertex is tangent
to the image of the vertex.

A higher dimensional generalization of cyclographic mappings is due to L. Gyarmathi

[7]. To assign (n − 2)-spheres in E
n−1 to the points of E

n (n ≥ 3) he applied the so-called
Γ-cones which can be defined in the same way as the C-cones. He gained results analogous to
the classical ones, and, applying them, he presented a method to find an (n− 1)-dimensional
sphere tangent to n + 1 given spheres in E

n. It is remarkable that to carry out effectively the
construction in the three dimensional case he used Maurin’s projection of E

4 ([8, 11]).
An ingenious modification of classical cyclographic mapping was proposed by K. Rabl

[13]. Instead of using C-cones he applied paraboloids of revolution with axis perpendicular
to the image plane and containing the given point as vertex. Then the image of a point is a
circle again, but the radius of the circle is the square root of the distance between the point
and the image plane. The image of a linear range is a pencil of circles. It may be proved that
the envelope of this family of circles is a parabola. This observation is the key to solve the
problem: how to construct a parabola with double contact to given circles ?

Thus we arrive at the fascinating field of Apollonius-type problems. As a stimulat-
ing guide in this direction as well as for further generalizations of cyclography we refer to
T. Schwarcz’s paper [14].

2. Generalized Rabl mappings

Definition 2.1 By a generalized Rabl mapping we mean the mapping which assigns to each
point P (p1, . . . , pn) of E

n (n ≥ 3) the intersection of the paraboloid of revolution given by the
Cartesian equation

n−1∑

i=1

(xi − pi)
2 + xn − pn = 0

and the hyperplane of equation xn = 0.

Remarks: (i) Obviously, the image of a point P (p1, . . . , pn) under the generalized Rabl map-
ping is the (n− 2)-sphere in E

n−1 of equation

n−1∑

i=1

(xi − pi)
2 = pn.
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The paraboloid of revolution applied in the construction intersects the remaining coordinate
hyperplanes in (n− 1)-dimensional paraboloids of revolution.

(ii) For the sake of simplicity we shall frequently speak of ‘the cyclographic image of a point’
rather than ‘the image of a point under a generalized Rabl mapping’. This is an abuse of
language, but leads to no confusion in our context.

Proposition 2.2 Let l be a line in E
n given parametrically by

x1 = . . . = xn−2 = 0, xn−1 = t, xn = γt (γ 6= 0).

The envelope of the family of the (n − 2)-spheres formed by the cyclographic images of the
points of l is the paraboloid of revolution in E

n−1 described by the equations

n−2∑

i=1

x2

i
− γxn−1 −

γ2

4
= 0.

Proof: The paraboloids of revolution used in the construction form a family of surfaces given
by

n−2∑

i=1

x2

i
+ (xn−1 − t)2 + xn − γt = 0,

therefore the cyclographic images of the points of l satisfy the equation

n−2∑

i=1

x2

i
+ (xn−1 − t)2 − γt = 0.

Let

F (x1, . . . , xn−1, t) :=
n−2∑

i=1

x2

i
+ (xn−1 − t)2 − γt.

The envelope of the family of hypersurfaces in E
n−1 given by F (x1, . . . , xn−1, t) = 0 has to

satisfy the relation

DnF (x1, . . . , xn−1, t) = 0.

From this we obtain that

t = xn−1 +
γ

2
.

So our candidate for the envelope of the family is the paraboloid of revolution in E
n−1 whose

equation is
n−2∑

i=1

x2

i
− γxn−1 −

γ2

4
= 0.

Since Dn(DnF ) = 2 6= 0, it is indeed the desired envelope.

Remark: The basic facts concerning the envelope of a family of surfaces in E
3 can be found

e.g. in L.P. Eisenhart’s classical book [3]. The generalization to higher dimensional hyper-
surfaces is immediate.
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Proposition 2.3 Let P be a parabola in E
n given parametrically by

x1 = . . . = xn−2 = 0, xn−1 = t, xn = α + βt2,

where β /∈ {0, 1}. The envelope of the family of (n − 2)-spheres in E
n−1 formed by the

cyclographic images of the points of P is the quadratic surface of equation

n−1∑

i=1

(xi)
2 −

β

β − 1
x2

n−1
− α = 0.

Proof: Now the paraboloids of revolution used in the construction of the image (n−2)-spheres
satisfy the equation

n−2∑

i=1

(xi)
2 + (xn−1 − t)2 + xn − α− βt2 = 0,

so for the family of the cyclographic images we get the equation

n−2∑

i=1

x2

i
+ (xn−1 − t)2 − α− βt2 = 0.

Arguing as above, the vanishing of the n-th partial derivative of the function given by the
left-hand side yields t =

xn−1

1− β
. Substituting this expression of t into the first relation, we get

the equation of the desired envelope.

3. Applications to Apollonius-type problems

In our forthcoming considerations we shall systematically use the following technique: ‘to
solve a three-dimensional problem, transform it into a four-dimensional problem’. The key
observation is the following

Proposition 3.1 Let two non-concentric spheres S1 and S2 be given in E
3, and let P be a

paraboloid of revolution tangent to both S1 and S2. Interpret the spheres as the images of two
points of E

4 under the generalized Rabl mapping. If l is the line through these points then P

is the envelope of the family of spheres formed by the cyclographic images of the points of l.

Proof: Let the equations of S1 and S2 be

(x− a)2 + (y − b)2 + (z − c)2 = r2

1
and (x− d)2 + (y − e)2 + (z − f)2 = r2

2
,

respectively. By our assumption, (a, b, c) 6= (d, e, f). S1 is the cyclographic image of the point

P1(a, b, c, r2

1
), while S2 is the cyclographic image of P2(d, e, f, r2

2
); then l =

←−→
P1P2. Now we find

a parametric representation for l, and, as above, determine the desired envelope. Omitting
the straightforward calculation, we get a paraboloid of revolution given by the equation

(x− a− p(d− a))2 + (y − b− p(e− b))2 + (z − c− p(f − c))2 − r2

1
− p2(r2

2
− r2

1
) = 0,

where

p := −
1

2

2(x− a)(a− d) + 2(y − b)(b− e) + 2(z − c)(c− f) + r2

1
− r2

2

(a− d)2 + (b− c)2 + (c− f)2
.
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Practical methods for the construction of the envelope

(A) Using computer: Having the equation of the
envelope P , its axonometric representation can
easily be carried out using e.g. Maple: we get
a simple algorithm which provides the representa-
tion plotted against the centres and the radii of
the given spheres. Fig. 1 has been made in this
way.

Figure 1: The paraboloid P enveloping
the images of the points of a line l

(B) Using Maurin’s projection: We start with the representation of the given spheres S1, S2

in a Monge system. Next, by Maurin’s projection of E
4 [11] we determine the points A, B in

E
4 whose images under the generalized Rabl mapping are S1 and S2. It turns out from our

previous calculations (see also [13]) that the axis of the described paraboloid P is just the

orthogonal projection of
←→
AB in E

3, its focus is the trace of
←→
AB, and the parameter of P is

1

2
tanα, where α is the angle between

←→
AB and its orthogonal projection. Thus the data which

completely describe P can be represented by the Maurin projection, and it is also true that
the first and second projections of P are the same in the Maurin system as in the Monge
system.

Fig. 2 displays the construction when the line l :=
←−→
O1O2 through the centres of S1 and S2

is parallel to the planes of projections and S2 is a unit sphere. Reconstruction of points of E
4

was made by revolving the third plane of projection onto the second one. By Proposition 2.2,
the distance between a point to be found and the hyperplane determined by the first two planes
of projection is the square of the radius of the sphere obtained as the cyclographic image of
the point. Thus, with the help of the revolved image, the trace of the line l can be determined,
and, as it follows from our previous remark, it is the focus of the desired paraboloid. In this
way the first and second projections of the focus can be obtained. Since the above mentioned
angle α appears in the revolved image, we can also determine the parameter of P as well
as the first and second projection of its directrix plane. These data determine the desired
paraboloid uniquely.

Fig. 2 shows the contour of P . In its construction we used the fact that, due also to the
special arrangement, the directrix plane of P is a profile plane, and, furthermore, the contour
appears in its true magnitude. Thus the parameters of the contour parabolas are the same as
the parameter of P . P is tangent to S1 and S2 along parallel circles, both of them lying in
a projecting plane as a consequence of the special arrangement again. To find these circles,
we contructed both on the first and on the second plane of projection parabolas which have
double contact with two circles. It is known (see [13]) that if a circle has double contact with
a parabola, then the distance between the orthogonal projection of a tangency point on the
axis of the parabola and the centre of the circle is just the parameter of the parabola. This
observation makes immediate the construction of the desired points of double contact. Both
the first and the second projection of the parallel circles appear as segments connecting the
tangency points.
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Figure 2: Top and front view of the image of a line l in E
4 under the Rabl mapping

Proposition 3.2 Let S1, S2, S3 be spheres in E
3 with pairwise distinct centres. Suppose

S1, S2 and S3 are the cyclographic images of the point A, B and C in E
4, respectively. Let

P be the parabola passing through these points and with axis perpendicular to the line of
the centres of the spheres. The envelope of the cyclographic images of the points of P is a
quadratic surface which is tangent to the given spheres along circles.

Proof: We may assume without loss of generality that the centres of the spheres S1, S2, S3

are the points O1(0, 0, a), O2(0, 0, b), O3(0, 0, c), respectively. Then their equations take the
following simple forms:

S1 : x2 + y2 + (z − a)2 = r2

1
,

S2 : x2 + y2 + (z − b)2 = r2

2
,

S3 : x2 + y2 + (z − c)2 = r2

3
.

S1, S2 and S3 are the cyclographic images of the points

A(0, 0, a, r2

1
), B(0, 0, b, r2

2
), C(0, 0, c, r2

3
)

in E
4. Let the vector v in the underlying vector space of E

4 represent a direction parallel to
the plane passing through the points A, B, C and perpendicular to the line connecting the
centres of the spheres. Since a parabola is uniquely determined by three of its points, the
direction of its axis, and by the ideal line (as a tangent line) of its plane, there is a unique
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parabola P containing the points A, B, C and having v as a direction vector of its axis. P
can be parametrized as follows:

x1 = x2 = 0, x3 = t, x4 = k + lt + mt2.

Here the real numbers k, l, m have to satisfy the system of linear equations

k + al + a2m = r2

1
,

k + bl + b2m = r2

2
,

k + cl + c2m = r2

3
.

By Cramer’s rule this system has a unique solution since the determinant of its matrix is the
Vandermonde determinant V (a, b, c) generated by the pairwise distinct real numbers a, b, c.
Now Proposition 2.3 assures that the envelope of the family of the cyclographic images of the
points of P is indeed a quadratic surface which is obviously tangent to the given spheres S1,
S2 and S3.

Lemma 1 Let an ellipse of equation

x2

a
+

by2

a(b− 1)
= 1

be given in E
2. If a circle has double contact with the ellipse, then the distance between the

orthogonal projections of the tangency points on the major axis and the centre of the circle
is |k1(b− 1)|, where |k1| is the distance between the centre of the ellipse and the centre of the
circle.

Proof: Let E(x0, y0) be a tangency point. The tangent line at E to the ellipse is the polar
of E, and its equation is

x0

a
x +

by0

a(b− 1)
y = 1,

therefore the equation of the normal line through E is

by0

b− 1
x− x0y =

bx0y0

b− 1
− x0y0.

The normal line meets the x-axis at the centre K(k1, k2) of the circle having double contact
with the ellipse, so k1 has to satisfy the relation

by0k1 = bx0y0 − (b− 1)x0y0,

whence
k1 =

x0

b
.

Since the orthogonal projection of E on the major axis is the point E ′(x0, 0), the distance
between E ′ and K is

d(E ′, K) = |x0 − k1| = |k1(b− 1)|.

The geometric meaning of |k1| is obvious because the centre of the ellipse is the origin.
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Construction of tangent quadratic surface to three given spheres in E
3

As in our previous construction, there is a simple computer algorithm to find an axonometric
representation of the configuration.

Now we describe a more sophisticated and much more elegant method, based on techniques
of projective and descriptive geometry:
Keeping the notation of Proposition 3.2 and its proof as a starting step we represent the
given spheres in a Monge system. Our goal is to represent a quadratic surface tangent to
every sphere. For simplicity we assume that the centres O1, O2, O3 lie on the same line l, and
l is parallel to all of the planes of projection.

Carrying out effectively the construction, we chose the radii of the spheres in such a way
that the desired tangent quadratic surface became an ellipsoid of revolution; the other cases
can be handled similarly. The second projection of this ellipsoid is an ellipse. We are going
to explain how to construct it.

We need the points A, B, C in E
4 whose cyclographic images are the given spheres S1,

S2, S3, respectively. To represent them, we applied again Maurin’s projection. Using the
technique of revolving as in (B) above, we revolved the third plane of projection of the
Maurin system onto the second one. Fixing a unit segment, the distances between the points
A, B, C and the plane of projection are the squares of the radii of S1, S2, S3, resp., so the
revolved points (P1), (P2), (P3) can easily be constructed.

Now we are in a position to represent the (suitably oriented) parabola P described in
Proposition 3.2: (P1), (P2), (P3) are three points of the revolved parabola (P), and the
ordering lines give the direction of the axis of (P) . The intersection of the revolved parabola

Figure 3: Constructing the enveloping quadratic surface
of three given spheres with aligned centers
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and the second projection l′′ of l (the line of the centres of S1, S2 and S3) gives the trace
of the parabola P on the second plane of projection. As it was shown by Rabl, the points
so obtained are just the foci of the intersection of the desired ellipsoid of revolution and the
second plane of projection.

To find the intersection of the revolved parabola (P) and the line l′′ we used Steiner’s
construction. Projecting the points of (P) from the ideal point represented by the direction
of the axis of (P) and from the point (P1) we get two projectively related pencils. Under this
projectivity the ideal line, as the tangent line of (P) at a known point, corresponds to the
line passing through the centres of the projections. Thus, intersecting three corresponding
elements of the two pencils with the line l′′ we obtain two projectively related linear ranges
with common carrier line. The double points of this projectivity are the desired foci. The
perpendicular bisector of the segment of foci gives the straight line containing the minor axis
of the ellipse. The intersection of this line and (P) can be constructed using Pascal’s theorem,
so we get the vertex (K) of (P). The distance between K and the second projection of O2

(the centre of S2) is the length of the minor axis, so we have enough information to represent
the second projection of the desired ellipsoid. Due to the special arrangement chosen, this
ellipse is congruent to the first projection of the ellipsoid. Thus we achieved our goal: the
representation of the tangent quadratic surface in a Maurin system, and hence in a Monge
system as well.

Finally we sketch how to find the contact parallel circles. We construct both on the
first and on the second plane of projection ellipses with double contact to the desired circles.
This construction can be carried out easily using Lemma 1. The segments connecting the
corresponding tangency points represent the circles on both planes of projection.

4. An elementary method of construction in the plane

We shall utilize the following nice observation, which can be found in J.L.S. Hatton’s
classical text [9].

Proposition 4.1 Given three conics C1, C2, C3. Suppose C1 and C2 have double contact with
C3. Let A, B, C, D be the (proper or ideal) points of intersection of C1 and C2, P and P ′ the
tangency points of C1 and C3, Q and Q′ the tangency points of C2 and C3. Then the straight

lines
←→
AB,

←−→
CD ,

←→
PP ′ and

←−→
QQ′ are concurrent and form a harmonic quadruple.

Lemma 2 Suppose a conic C has double contact with the circles c1 and c2. Let the tangency
points of C and c1 be P and P ′, the tangency points of C and c2 be Q and Q′. Then the

straight lines
←→
PP ′ and

←−→
QQ′ are parallel, and the radical axis of c1 and c2 is their midparallel.

Proof: Let the points of intersection of c1 and c2 be A, B, C, D. Then two of these points, e.g.
A and B, are the absolute points (considered P

2(R) as a subspace of the complex projective
plane). The remaining (real or imaginary) points C and D lie on the radical axis of c1 and c2.

Thus
←→
AB is the ideal line of the plane, and the intersection of

←→
AB and

←→
CD is represented by

the pencil of all lines perpendicular to the line of the centres of c1 and c2. Now Proposition 4.1

implies that the point of intersection of
←→
PP ′ and

←−→
QQ′ is the ideal point of the radical axis of

c1 and c2, and the lines
←→
PP ′,

←→
CD,

←−→
QQ′, and

←→
AB form a harmonic quadruple. Since the ideal

line is a member of the quadruple we conclude the statement.
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Figure 4: The straight lines
←→
AB,

←→
CD,

←→
PP ′, and

←−→
QQ′

are concurrent and form a harmonic quadruple

Example 4.3: Given three circles c1, c2, c3 with pairwise distinct collinear centres. Construct
a conic C which has double contact with each of the three circles.

Construction: We use the following notation (see Fig. 5): l is the line passing through the
centres of c1, c2, c3;

P, P ′

Q, Q′

R, R′



 are the tangency points of





c1 and C,

c2 and C,

c3 and C;

U, Y, Z are the points of intersection
←→
PP ′ and l,

←−→
QQ′ and l,

←→
RR′ and l, resp., and H, I, J the

points of intersection of l and the axis of c1 and c2, c2 and c3, c3 and c1, respectively.
Then by Lemma 2 H, I and J are the midpoints of U and Y , Y and Z, Z and U , resp.

Thus with the arrangement displayed in Fig. 5 we have

d(U, H) = d(H, I) = d(H, J) = d(I, J).

Using this we can easily construct first the points U , Y , next the points P , P ′ and Q, Q′. The
construction of R and R′ is similar. Thus we obtain six points of the desired conic (ellipse in
Fig. 5).

Example 4.4: Given two circles c1 and c2 with centres O1 and O2, resp. Construct a parabola
P which has double contact with c1 and c2.

Construction: Let the tangency points of c1 and C be P and P ′, and let C be tangent to c2

at Q and Q′. Using the abbreviation l :=
←−→
O1O2, suppose that l intersects the radical axis of

c1 and c2 at H , the line
←→
PP ′ at U , and the line

←−→
QQ′ at Y .

By Lemma 2 segments HU and HY are congruent. The length of both O1U and O2Y is
equal to the parameter p of P, therefore we have

d(O1, H) = d(O2, H)

or
d(O1, H) = d(H, U) + p and d(O2, H) = d(H, U)− p.
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Figure 5: A conic enveloping three circles (Example 4.3)

Figure 6: A parabola enveloping three circles (Example 4.4)

In the first case c1 and c2 are congruent, and we have only degenerate solutions. In the second
case

d(H, U) = 1

2
(d(O1, H) + d(O2, H)) ,

so HX as well as the tangency points can be constructed immediately. It follows from
Proposition 4.1 that the line l represents the ideal point of P, so we have obtained five points
of the desired parabola. Using Pascal’s theorem, its vertex can also be easily constructed.
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Gauthier-Villars – Akadémiai Kiadó, Paris – Budapest 1966.
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[15] G. Weiss: (n, 2)-Axonometries and the Contour of Hyperspheres. J. Geometry Graphics
1, 157–167 (1997).

Received August 8, 2006; final form March 13, 2007


