Reducts of the Henson graphs with a constant

András Pongrácz ${ }^{1}$
Central European University,
Department of Mathematics and its Applications, 1051 Budapest, Hungary, Nádor street 9.

Abstract

Let $\left(H_{n}, E\right)$ denote the Henson graph, the unique countable homogeneous graph whose age consists of all finite K_{n}-free graphs. In this note the reducts of the Henson graphs with a constant are determined up to first-order interdefinability. It is shown that up to first-order interdefinability $\left(H_{3}, E, 0\right)$ has 13 reducts and $\left(H_{n}, E, 0\right)$ has 16 reducts for $n \geq 4$.

Keywords: first-order, reduct, Ramsey, homogeneous, automorphism
2010 MSC: 03C10, 03C35, 03C40, 03C50, 20B27, 20B35

1. Introduction

For $n \geq 3$ we denote by $\left(H_{n}, E\right)$ the unique countable homogeneous graph that embeds a finite graph A if and only if A is K_{n}-free, where K_{n} denotes the complete graph on n vertices. The graphs $\left(H_{n}, E\right)$ were first constructed by C.
${ }_{5}$ W. Henson in [1]. A. H. Lachlan and R. Woodrow [2] have shown that apart from trivial examples, the random graph (R, E), the Henson graphs $\left(H_{n}, E\right)$ and their complements are the only countably infinite homogeneous graphs. A countable structure Δ is homogeneous if every isomorphism between finite induced substructures extends to an automorphism of Δ. In particular, vertices of $\left(H_{n}, E\right)$ are indistinguishable: for all $u, v \in\left(H_{n}, E\right)$, there exists an automorphism $\alpha \in \operatorname{Aut}\left(H_{n}, E\right)$ such that $\alpha(u)=v$. Hence, there is no ambiguity

[^0]in the notation $\left(H_{n}, E, 0\right)$: it denotes the structure that we obtain by adding a constant symbol 0 to the signature of $\left(H_{n}, E\right)$ and interpret it as a vertex of $\left(H_{n}, E\right)$. In this paper, we classify the structures that are first-order definable (without parameters) in $\left(H_{n}, E, 0\right)$, i.e., the reducts of $\left(H_{n}, E, 0\right)$.

The first result of this form is due to P. J. Cameron [3], who has shown that the dense linear order $(\mathbb{Q},<)$ has five reducts up to first-order interdefinability. Two structures Γ and Δ are first-order interdefinable if Γ has a first-order definition (without parameters) in Δ and vice versa, i.e., if they are reducts of one another. S. Thomas [4] proved that the random graph (R, E) has five reducts up to first-order interdefinability, and determined the reducts of the random k-uniform hypergraph for all $k \geq 2$ in [5]. In [4] it was shown that the Henson graphs $\left(H_{n}, E\right)$ have no proper non-trivial reducts, i.e.,

Theorem 1.1. [Thomas] Every reduct of $\left(H_{n}, E\right)$ is first-order interdefinable
either with $\left(H_{n}, E\right)$ itself or with $\left(H_{n},=\right)$ for all $n \geq 3$.

In [4] Thomas posed the following conjecture.

Conjecture 1. Every countable homogeneous structure over a finite relational language has finitely many reducts up to first-order interdefinability.
J. H. Bennett has shown that the conjecture holds for the random tournament in 6]. Recently, M. Junker and M. Ziegler [7] proved that $(\mathbb{Q},<, 0)$ has 116 reducts up to first-order interdefinability.

The purpose of this paper is to verify Thomas' conjecture for $\left(H_{n}, E, 0\right)$ for all $n \geq 3$. Note that $\left(H_{n}, E, 0\right)$ is indeed first-order interdefinable with a structure that is homogeneous in a finite relational language (see Remark 2.1).
${ }_{35}$ There is an essential difference between the result for $n=3$ and for $n \geq 4$. Up to first-order interdefinability $\left(H_{3}, E, 0\right)$ has 13 reducts, and $\left(H_{n}, E, 0\right)$ has 16 reducts for $n \geq 4$ (see Theorem 2.3). This characterisation is based on the Nešetřil-Rödl theorem in [8] and a method introduced by M. Bodirsky and M. Pinsker applied in [9, 10, 11, 12. The current note is the first implementation
of the Bodirsky-Pinsker method to obtain a new first-order characterisation of the reducts of a homogeneous structure.

2. The main result

2.1. Closed groups

Let D be a countable set. A relational structure $\Gamma=\left(D,\left(Q_{j}\right)_{j \in J}\right)$ is a ${ }^{45}$ reduct of $\Delta=\left(D,\left(R_{i}\right)_{i \in I}\right)$ if Q_{j} is first-order definable from the set of relations $\left\{R_{i} \mid i \in I\right\}$ for all $j \in J$. If Γ is a reduct of Δ, then clearly $\operatorname{Aut}(\Delta) \subseteq \operatorname{Aut}(\Gamma)$. If Δ is ω-categorical, then the converse also holds by (a consequence of) RyllNardzewski's theorem (see in [13]). A countable structure is ω-categorical if it is the unique countable model of its first-order theory up to isomorphism. If Δ is a countable structure that is homogeneous in a finite relational language, then Δ is ω-categorical, thus Ryll-Nardzewski's theorem [13] establishes a Galois connection between reducts of Δ and subgroups of $\operatorname{Sym}(D)$ that contain $\operatorname{Aut}(\Delta)$. Throughout the paper, $\operatorname{Sym}(D)$ denotes the full symmetric group acting on D, i.e., the group of all permutations of D. This Galois connection is given by the operators Aut mapping reducts to their automorphism groups, and Inv mapping permutation groups $\operatorname{Aut}(\Delta) \subseteq G \subseteq \operatorname{Sym}(D)$ to the structure with all relations on D that are invariant under the action of G. Just like every Galois connection, this gives rise to a closure operator. In our case, a permutation group $\operatorname{Aut}(\Delta) \subseteq$ $G \subseteq \operatorname{Sym}(D)$ is closed if $G=\operatorname{Aut}(\Gamma)$ for some reduct Γ of Δ. Equivalently, G
${ }_{60} \quad$ is closed if whenever $\alpha \in \operatorname{Sym}(D)$ is such that for all finite $F \subseteq D$ there exists a $\gamma \in G$ with $\alpha \upharpoonright_{F}=\gamma \upharpoonright_{F}$, then $\alpha \in G$. Moreover, given two reducts Γ_{1} and Γ_{2} of Δ, Γ_{1} is a reduct of Γ_{2} if and only if $\operatorname{Aut}\left(\Gamma_{2}\right) \subseteq \operatorname{Aut}\left(\Gamma_{1}\right)$. In particular, Γ_{1} and Γ_{2} are first-order interdefinable if and only if $\operatorname{Aut}\left(\Gamma_{1}\right)=\operatorname{Aut}\left(\Gamma_{2}\right)$. Thus reducts of a countable, homogeneous structure Δ in a finite relational language up to first-order interdefinability can be understood via the characterisation of closed supergroups of $\operatorname{Aut}(\Delta)$ in $\operatorname{Sym}(D)$. By ordering reducts $\Gamma_{1} \preceq \Gamma_{2}$ if and only if Γ_{1} is a reduct of Γ_{2}, and factoring out by first-order interdefinability, we obtain a complete lattice on the equivalence classes. The strongest form of

Ryll-Nardzewski's theorem states that the lattice we obtain this way is anti-
70 inclusion. The anti-isomorphism is given by the operators Aut and Inv that are inverses of each other. In Subsection 2.2 , we show a picture of the lattice of closed supergroups of $\operatorname{Aut}\left(H_{n}, E, 0\right)$ (see Theorem 2.3). Hence, one can obtain the lattice of reducts of $\left(H_{n}, E, 0\right)$ up to first-order interdefinability by turning
75 that picture upside-down.

2.2. Reduct classification

To present the main result of the paper, we need the following definitions.

Definition 2.1. We denote by U_{1} and U_{2} the set of all neighbours and nonneighbours of 0 in $\left(H_{n}, E, 0\right)$, respectively. As an abuse of notation, we denote three formally different things by 0 : the constant symbol 0 , the vertex in $\left(H_{n}, E\right)$ that is the interpretation of 0 and the unary relation that is interpreted as $\{0\}$.

Using standard terminology, we say that a function $f: H_{n} \rightarrow H_{n}$ preserves a relation R on H_{n} if whenever a tuple is in R, its f-image is also in R. If f does not preserve R, then f violates R.

85
Definition 2.2. Let $X_{1}, X_{2} \subseteq H_{n}$ be disjoint sets, and let G_{1}, G_{2} be permutation groups acting on X_{1}, X_{2}, respectively. Then $G_{1} \times G_{2}$ denotes the group of all permutations $\alpha \in \operatorname{Sym}\left(H_{n}\right)$ such that $\alpha{ }_{X_{i}} \in G_{i}$ for $i \in\{1,2\}$, and α fixes $H_{n} \backslash\left(X_{1} \cup X_{2}\right)$ pointwise. The group $\left(\operatorname{Sym}\left(X_{1}\right) \times \operatorname{Sym}\left(X_{2}\right)\right) \rtimes Z_{2}$ consists of the permutations in $\operatorname{Sym}\left(H_{n}\right)$ that either preserve X_{1} and X_{2} or flip X_{1} and

90 $\quad X_{2}$, and fix $H_{n} \backslash\left(X_{1} \cup X_{2}\right)$ pointwise. We denote by $\operatorname{Sym}\left(H_{n} \backslash\{0\}\right)$ the group of all permutations in $\operatorname{Sym}\left(H_{n}\right)$ that fix 0 .

Theorem 2.3. The closed supergroups of $\operatorname{Aut}\left(H_{n}, E, 0\right)$ in $\operatorname{Sym}\left(H_{n}\right)$ are

1. $\operatorname{Aut}\left(H_{n}, E, 0\right)$
2. $\operatorname{Aut}\left(H_{n}, E\right)$
3. $\operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$
4. $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$
5. $\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Aut}\left(U_{2}, E\right)$

6. $\operatorname{Sym}\left(U_{1} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{2}\right)$
7. $\operatorname{Sym}\left(U_{2} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{1}\right)$
8. $\operatorname{Sym}\left(H_{n} \backslash\{0\}\right)$
9. $\left(\operatorname{Sym}\left(U_{1} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{2}\right)\right) \rtimes Z_{2}$
10. $\left(\operatorname{Sym}\left(U_{2} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{1}\right)\right) \rtimes Z_{2}$

Figure 1: The lattice of closed groups
16. $\operatorname{Sym}\left(H_{n}\right)$ first-order interdefinability. If $n=3$, then three pairs of groups in the list are identified by the equation $\operatorname{Aut}\left(U_{1}, E\right)=\operatorname{Sym}\left(U_{1}\right)$, and $\left(H_{3}, E, 0\right)$ has 13 reducts up to first-order interdefinability.

One can also provide a description of all reducts of $\left(H_{n}, E, 0\right)$ up to first-
If $n \geq 4$, then all these groups are different, and $\left(H_{n}, E, 0\right)$ has 16 reducts up to order interdefinability by using the other side of the Galois connection: relational structures. In other words, we can construct a representative in every equivalence class of first-order interdefinability, i.e., structures corresponding to each automorphism group in the above list. We provide two examples, the rest of the cases are left to the reader. Item (5) is the automorphism group of the structure $\left(H_{n}, 0, U_{1}, U_{2}, E \upharpoonright_{U_{2}}\right)$. In case of item (10), let E^{\prime} be a binary relation symbol. The interpretation of E^{\prime} is a complete bipartite graph on the set $U_{1} \cup U_{2}$ with bipartition $\left(U_{1}, U_{2}\right)$. Then E^{\prime} has a first-order definition in $\left(H_{n}, E, 0\right)$, and the
automorphism group of $\left(H_{n}, 0, E^{\prime}\right)$ is $\left(\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right)\right) \rtimes Z_{2}$.
It is easy to show that there is a representative in every equivalence class

Remark 2.1. $\left(H_{n}, E, 0\right)$ is first-order interdefinable with the relational structure $\left(H_{n}, E, 0, U_{1}, U_{2}\right)$, and the latter structure is homogeneous.

By Remark 2.1, Theorem 2.3 is a special case of Thomas' conjecture.

3. Preliminaries

3.1. Ramsey theory

In [8] the following Ramsey-type theorem is shown. Note that throughout the paper $A \leq \Delta$ means that A is a substructure of Δ.

Theorem 3.1 (Nešetřil, Rödl). Let $n \geq 3$ and $r \geq 2$. Then for all finite K_{n}-free graphs A there exists a finite K_{n}-free graph B such that if edges and 120 non-edges of B are coloured with r colours, then there exists a copy $A^{\prime} \leq B$ of A that is monochromatic, i.e., all edges have the same colour and all non-edges have the same colour.

The class of ordered K_{n}-free graphs has an even stronger property, namely that it is a Ramsey class [14. A class \mathfrak{C} of finite structures is called a Ramsey class if for all $A, B \in \mathfrak{C}$ and $r \in \mathbb{N}$ there is a $C \in \mathfrak{C}$ such that if the copies of A in C are coloured with r colours, then there is a copy $B^{\prime} \leq C$ isomorphic to B that is monochromatic. The class of finite structures that embed into a structure Δ is called the age of Δ, and it is denoted by $\operatorname{Age}(\Delta)$. A (homogeneous) structure Δ is a Ramsey structure if $\operatorname{Age}(\Delta)$ is a Ramsey class. If a class \mathfrak{C} of finite structures is the age of some countable homogeneous structure, then this structure is uniquely determined up to isomorphism, and it is denoted by $\operatorname{Flim}(\mathfrak{C})$ (see [13]). A structure Δ is ordered if there exists a total order that is first-order definable in Δ.

Theorem 3.2 (Nešetřil, Rödl). Let \mathfrak{C} be the class of all finite ordered K_{n} - free graphs. Then \mathfrak{C} is a Ramsey class for all $n \geq 3$. In particular, $\operatorname{Flim}(\mathfrak{C})$ is a homogeneous ordered Ramsey structure, i.e., given any $n \geq 3, r \geq 2$ and finite ordered K_{n}-free graphs A, B, there exists a finite ordered K_{n}-free graph C such that if the copies of A in C are coloured with r colours, then there is a monochromatic copy of B in C.

Given a $c \in \Delta$ we denote by (Δ, c) the structure obtained by adding a constant symbol to the language of Δ interpreted as the element c. In 12 the following is shown.

Proposition 3.3 (Bodirsky, Pinsker, Tsankov). Let Δ be a countable, homogeneous, ordered Ramsey structure, and let $c \in \Delta$. Then (Δ, c) is an ordered Ramsey structure.

We need to generalise Theorem 3.1 for structures that we obtain by adding finitely many constants to a Henson graph.

Definition 3.4. Let $k \in \mathbb{N}$. We call a class \mathfrak{C} of finite structures a k-Ramsey class if for all $A, B \in \mathfrak{C}$ with $|A| \leq k$ and for all $r \in \mathbb{N}$ there exists a $C \in \mathfrak{C}$ such that if the copies of A in C are coloured with r colours, then there is a copy $B^{\prime} \leq C$ isomorphic to B that is monochromatic. We call a (homogeneous) structure Δ a k-Ramsey structure if $\operatorname{Age}(\Delta)$ is a k-Ramsey class.

Proposition 3.5. Let $n \geq 3, t \geq 0$ and $c_{1}, \ldots, c_{t} \in H_{n}$. Then $\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$ is 2-Ramsey.

Proof. Let $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a set containing exactly one copy of each at most 2-element structure in $\operatorname{Age}\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$ up to isomorphism. We show that for any $r \geq 2, S \in\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ and $B \in \operatorname{Age}\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$ there exists a $C \in \operatorname{Age}\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$ such that if the copies of S in C are coloured with r colours, then there is a monochromatic copy of B in C.

According to Theorem 3.2 and Proposition 3.3 we can extend the language of $\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$ with a total order \prec so that it becomes an ordered Ramsey
structure. We claim that $B \leq\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$ has an ordered version $B^{\prec} \in$ Age $\left(H_{n}, E, \prec, c_{1}, \ldots, c_{t}\right)$ such that all ordered versions of the copies of S in B^{\prec} are isomorphic to some S^{\prec}. If $|S|=1$ or $|S|=2$ and both vertices of S have the same 1-type in $\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$, i.e., they satisfy the same firstorder formulas in $\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$, then S has only one ordered version in Age $\left(H_{n}, E, \prec, c_{1}, \ldots, c_{t}\right)$ up to isomorphism. Thus we may assume that $|S|=2$ and the two vertices of S have different 1-types t_{1} and t_{2} in $\left(H_{n}, E, c_{1}, \ldots, c_{t}\right)$. If all vertices of type t_{1} are smaller than all vertices of type t_{2} with respect to \prec, or vice versa, then the claim follows immediately. If this is not the case, then there exists an appropriate $B^{\prec} \leq \operatorname{Age}\left(H_{n}, E, \prec, c_{1}, \ldots, c_{t}\right)$ such that all vertices in B^{\prec} that have type t_{1} are smaller than those of type t_{2}. Hence, the claim follows. According to the Ramsey property of $\left(H_{n}, E, \prec, c_{1}, \ldots, c_{t}\right)$ there is a C^{\prec} in Age $\left(H_{n}, E, \prec, c_{1}, \ldots, c_{t}\right)$ such that if the copies of S^{\prec} in C^{\prec} are coloured with r colours, then there is a monochromatic copy of B^{\prec} in C^{\prec}. The structure that we obtain by omitting \prec from C^{\prec} is an appropriate choice for C.

3.2. Closed monoids and canonical functions

Similarly to closed subgroups of $\operatorname{Sym}(D)$, it is possible to define closed submonoids of the monoid of all unary operations on D, i.e., D^{D}. The topology is the topology of pointwise convergence on D^{D}, so a unary function f is in the closure of a set of unary operations $S \subseteq D^{D}$ if and only if f can be interpolated on any finite subset of D by some function in S. In this case, we also say that S generates f. Note that there is a slight ambiguity between the notions of a closed group and a closed monoid, namely, a closed group G normally generates a lot of functions that are not in G. In particular, the monoid closure of Aut $\left(H_{n}, E, 0\right)$ is the set of all self-embeddings of $\left(H_{n}, E, 0\right)$, that is, the set of all injective (but not necessarily surjective) unary operations on H_{n} that fix 0 and preserve the edge relation E and the non-edge relation N. The main idea of the general strategy introduced by M. Bodirsky and M. Pinsker in 9, 10, 11, 12, to investigate reducts of countable homogeneous structures Δ is to show that any function f together with the automorphism group $\operatorname{Aut}(\Delta)$ generates a so-called
canonical function (see Proposition 3.7 for the precise statement we need).

Definition 3.6. A function $g: \Delta \rightarrow \Gamma$ is canonical if whenever two tuples $\bar{x}, \bar{y} \in \Delta^{n}$ satisfy the same first-order formulas in Δ (that is, they have the same n-type), then the tuples $g(\bar{x})$ and $g(\bar{y})$ also have the same n-type in Γ. The behaviour of a canonical function g is the set of all type conditions satisfied by g, i.e., the collection of all pairs (s, t) where s and t are n-types of Δ and Γ, respectively, and whenever \bar{x} has type s we have that $g(\bar{x})$ has type t.

If Δ and Γ are arbitrary ω-categorical structures, then we might need all (or at least infinitely many) type conditions (s, t) in order to describe the behaviour of a canonical function $f: \Delta \rightarrow \Gamma$. This is not the case, however, if Δ and Γ are homogeneous in a finite relational language. The reason is that if Δ is homogeneous in a finite relational language with maximal arity m, then the type of a tuple is uniquely determined by the type of its m-element subtuples. In particular, as any structure that we obtain by adding finitely many constants to $\left(H_{n}, E\right)$ is homogeneous in a binary relational language, we have the following.

Remark 3.1. Let $s, t \geq 0$, and let $c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{t} \in H_{n}$. A function g : $\left(H_{n}, E, c_{1}, \ldots, c_{s}\right) \rightarrow\left(H_{n}, E, d_{1}, \ldots, d_{t}\right)$ is canonical if and only if the following two conditions hold.

- For any 1-element structure $S \in \operatorname{Age}\left(H_{n}, E, c_{1}, \ldots, c_{s}\right)$ there exists a 1element structure $S^{\prime} \in \operatorname{Age}\left(H_{n}, E, d_{1}, \ldots, d_{t}\right)$ such that the g-image of any copy of S is isomorphic to S^{\prime}.
- For any 2-element structure $S \in \operatorname{Age}\left(H_{n}, E, c_{1}, \ldots, c_{s}\right)$ we have that whenever $S_{1}, S_{2} \leq\left(H_{n}, E, c_{1}, \ldots, c_{s}\right)$ are copies of S, then $g\left(S_{1}\right) \in E \Leftrightarrow$ $g\left(S_{2}\right) \in E$.

Moreover, the behaviour of g is uniquely determined by the type conditions it satisfies for 1-element substructures and the set of isomorphism types of 2-element substructures that are mapped to edges by g.

In Remark 3.1 the structures $\left(H_{n}, E, c_{1}, \ldots, c_{s}\right)$ and $\left(H_{n}, E, d_{1}, \ldots, d_{t}\right)$ are to be understood as relational structures. The languages of these structures consist of all at most binary first-order definable relations. The main ideas of the following argument can be found in [9, Proposition 21]. As there are some subtle technical problems to work out in order to obtain what we need, we present the full proof.

Proposition 3.7. Let $s, t \geq 0$, and let $c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{t} \in H_{n}$. Let $\Delta=$ $\left(H_{n}, E, c_{1}, \ldots, c_{s}\right)$ and $\Gamma=\left(H_{n}, E, d_{1}, \ldots, d_{t}\right)$, and let $f: \Delta \rightarrow \Gamma$ be an injective function. Then there exists an injective function

$$
g \in \overline{\{\beta \circ f \circ \alpha \mid \alpha \in \operatorname{Aut}(\Delta), \beta \in \operatorname{Aut}(\Gamma)\}}
$$

such that g is canonical as a function from Δ to Γ, and $g\left(c_{i}\right)=f\left(c_{i}\right)$ for all $i \in\{1, \ldots, s\}$.

Proof. Let $A_{i} \leq \Delta$ for $i \in \mathbb{N}$ be such that $A_{1} \subsetneq A_{2} \subsetneq \cdots$ and $\bigcup A_{i}=$ Δ. Let S_{1}, \ldots, S_{q} be a set of representatives of the isomorphism types of at most 2-element substructures of Δ, and let $\left\{T_{1}, \ldots, T_{r}\right\}$ consist of the symbols E, N, and the isomorphism types of 1-element substructures of Γ. According to Proposition 3.5 for all A_{j} there exists a $B_{j} \in \operatorname{Age}(\Delta)$ such that if the at most 2-element substructures of B_{j} are coloured with r colours, then there is a monochromatic copy A_{j}^{\prime} of A_{j} in B_{j}. Let us choose an arbitrary ${ }^{2}$ copy of B_{j} in Δ and colour its at most 2-element substructures by the symbol T_{i} corresponding to their f-image. Then for any $1 \leq m \leq q$ we have that all copies of S_{m} in the monochromatic A_{j}^{\prime} have the same f-image up to isomorphism. This way we can assign a set of type conditions b_{j} to the at most 2-element substructures of A_{j}^{\prime} for all $j \in \mathbb{N}$. As there are only finitely many possible set of such type conditions, there is a behaviour b that occurs infinitely many times in the sequence $\left(b_{j}\right)_{j \in \mathbb{N}}$. By thinning out the sequence $\left(A_{j}\right)_{j \in \mathbb{N}}$, we may assume that $b_{j}=b$ for all $j \in \mathbb{N}$.

[^1]Let $\alpha_{j} \in \operatorname{Aut}(\Delta)$ be such that $\alpha_{j}\left(A_{j}\right)=A_{j}^{\prime}$. Then $f \circ \alpha_{j}$ modifies the at most $j<\ell$, then the mapping $\left(f \circ \alpha_{\ell} \circ\left(f \circ \alpha_{j}\right)^{-1}\right) \upharpoonright_{f \circ \alpha_{j}\left(A_{j}\right)}$ preserves unary relations, E and N in Γ, and thus by homogeneity of Γ it extends to an automorphism $\beta_{j, \ell} \in \operatorname{Aut}(\Gamma)$. The sequence $\beta_{1,2}^{-1} \circ \cdots \circ \beta_{j, j+1}^{-1} \circ f \circ \alpha_{j+1}$ is convergent in the closed monoid of all injective functions, and it tends to a canonical function $h: \Delta \rightarrow \Gamma$ 250 with behaviour b. The function $h \circ f^{-1} \upharpoonright_{\left\{c_{1}, \ldots, c_{s}\right\}}$ preserves unary relations, E and N in Γ, and consequently, it extends to an automorphism $\beta \in \operatorname{Aut}(\Gamma)$. Thus $g=\beta^{-1} \circ h$ is the limit of the sequence $\left(\beta^{-1} \circ \beta_{1,2}^{-1} \circ \cdots \circ \beta_{j, j+1}^{-1}\right) \circ f \circ \alpha_{j+1}$, g agrees with f on the constants $\left\{c_{1}, \ldots, c_{s}\right\}$, and g is canonical from Δ to Γ.

3.3. Canonical functions and closed groups

Definition 3.8. The U_{i}-part of a structure $A \leq\left(H_{n}, E, 0, U_{1}, U_{2}\right)$ is $U_{i} \cap A$ for $i \in\{1,2\}$. The 0-part of a structure $A \leq\left(H_{n}, E, 0, U_{1}, U_{2}\right)$ is $\{0\} \cap A$. The intermediate pairs in a structure $A \leq\left(H_{n}, E, 0, U_{1}, U_{2}\right)$ are the 2-element substructures of A with one point in U_{1} and one point in U_{2}. Intermediate edges and non-edges are the intermediate pairs constituting an edge and a non-edge, respectively.

Definition 3.9. Let $X, Y \subseteq H_{n}$ be disjoint sets. We say that a functions f eradicates edges (non-edges) on X if every pair of elements in X is mapped to a non-edge (edge) by f. Similarly, f eradicates edges (non-edges) between X and Y if every pair of elements in $X \times Y$ is mapped to a non-edge (edge) by $265 f$. If f eradicates edges (non-edges) between U_{1} and U_{2}, then we say that f eradicates intermediate edges (non-edges). If f eradicates intermediate edges or non-edges, then we say that f eradicates intermediate pairs.

The proof of Proposition 3.7 can be refined to show the following statement.

Lemma 3.10. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group. Assume that for any
$A \in \operatorname{Age}\left(H_{n}, E, 0\right)$ there exists a copy $A^{\prime} \leq\left(H_{n}, E, 0\right)$ of A and a permu- tation $\pi_{A} \in G$ that eradicates intermediate pairs of A^{\prime}. Then we have that
$\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right) \subseteq G$. In particular, if G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ that eradicates intermediate pairs, then G contains $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$. B_{j} in the proof of Proposition 3.7 can be chosen such that intermediate pairs of B_{j} are eradicated by some permutation in G. Thus after thinning out the sequence b_{j} in the proof of Proposition 3.7. the generated canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ eradicates intermediate pairs, and it is enough to prove the second part of the assertion.

To this end we have to show that any permutation $\alpha \in \operatorname{Aut}\left(U_{1}, E\right) \times$ Aut $\left(U_{2}, E\right)$ can be interpolated on any finite substructure of H_{n} by an element of G. Let $A \leq\left(H_{n}, E, 0\right)$ be finite and let $B=\alpha(A)$. Then A and B differ only in the intermediate pairs, i.e, $\alpha \upharpoonright_{A}$ is a partial isomorphism of $\left(H_{n}, E, 0\right)$ except that some intermediate edges might be mapped to non-edges and vice versa. There exist $\gamma_{A}, \gamma_{B} \in G$ such that $\gamma_{A} \upharpoonright_{A}=g \upharpoonright_{A}$ and $\gamma_{B} \upharpoonright_{B}=g \upharpoonright_{B}$. Thus $\left(\gamma_{B} \circ \alpha \circ \gamma_{A}^{-1}\right) \upharpoonright_{\gamma_{A}(A)}$ is a partial isomorphism of $\left(H_{n}, E, 0\right)$, and consequently, it extends to some $\beta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$. Hence, $\left(\gamma_{B}^{-1} \circ \beta \circ \gamma_{A}\right) \upharpoonright_{A}=\alpha \upharpoonright_{A}$.

Lemma 3.11. Let $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right) \subseteq G$ be a closed group. Assume that G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E\right)$ that eradicates edges on U_{ℓ} for some $\ell \in\{1,2\}$. Then G contains $\operatorname{Aut}\left(U_{m}, E\right) \times \operatorname{Sym}\left(U_{\ell}\right)$ with $\{\ell, m\}=\{1,2\}$.

Proof. Let $\alpha \in \operatorname{Aut}\left(U_{m}, E\right) \times \operatorname{Sym}\left(U_{\ell}\right)$, and let $A, B \leq\left(H_{n}, E, 0\right)$ be such that $\alpha(A)=B$. Then A and B have isomorphic U_{m}-parts and 0-parts, and they have the same number of vertices in U_{2}. By applying some permutations in $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$ we may assume that there are no intermediate edges in A and in B. Let $\gamma_{A}, \gamma_{B} \in G$ be such that γ_{A} and γ_{B} eradicate edges on the U_{ℓ}-part of A and B, respectively. Then $\left(\gamma_{B} \circ \alpha \circ \gamma_{A}^{-1}\right) \upharpoonright_{\gamma_{A}(A)}$ is a partial isomorphism of $\left(H_{n}, E, 0\right)$, and thus it extends to some $\beta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$.
Proof. By using the condition in the first part of the assertion, the copy of - Hence, $\gamma_{B}^{-1} \circ \beta \circ \gamma_{A} \in G$ agrees with α on A.

4. Closed supergroups of the automorphism group

4.1. Destroying structure on U_{1} or U_{2}

Definition 4.1. We denote by I_{n} the empty graph on n vertices.

Lemma 4.2. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group, and assume that G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E\right)$ that violates E or N on U_{2}. Then G contains $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Sym}\left(U_{2}\right)$.

Proof. Since I_{n} embeds into U_{2}, g cannot violate N on U_{2}, as otherwise the image of g would contain a copy of K_{n}. Thus g eradicates edges on U_{2}. We show that G contains $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$.

According to Lemma 3.10 it is enough to prove that for any finite $A \leq$ $\left(H_{n}, E, 0\right)$ there exists an element of G that maps all intermediate pairs of A to non-edges. Let us denote the vertices of A in U_{1} by $X=\left\{x_{1}, \ldots, x_{r}\right\}$ and in U_{2} by $Y=\left\{y_{1}, \ldots, y_{s}\right\}$. The intermediate edges of A are going to be deleted in r steps, i.e., with the composition of r permutations π_{1}, \ldots, π_{r} in G. The i-th step is as follows. Assume that the intermediate pairs containing x_{1}, \ldots, x_{i-1} are already mapped to non-edges by the permutation $\pi_{i-1} \circ \cdots \circ$ π_{1} such that $\pi_{i-1} \circ \cdots \circ \pi_{1}$ maps the elements of Y into U_{2}. Elements of X are not necessarily mapped into U_{1}. Let $v_{1}, v_{2}, \ldots, v_{i-1}$ be the images of $x_{1}, x_{2}, \ldots, x_{i-1}$, respectively. Let u_{i} be the image of x_{i}, and let z_{1}, \ldots, z_{s} be the images of y_{1}, \ldots, y_{s}, respectively. We need a permutation $\pi_{i} \in G$ such that $\pi_{i}\left(v_{j} z_{k}\right) \in N, \pi_{i}\left(u_{i} z_{k}\right) \in N$ and $\pi_{i}\left(z_{k}\right) \in U_{2}$ for all j, k. Let $\left(\pi_{i-1} \circ \cdots \circ \pi_{1}\right)(A)=$ A^{\prime}.

We construct a structure $B \leq\left(H_{n}, E, 0\right)$ by using A^{\prime}. The vertices z_{1}, \ldots, z_{s} are replaced by the elements $\left\{z_{p, q} \mid 1 \leq p \leq s, 1 \leq q \leq n-1\right\}$ in U_{2} such that $z_{p, 1}=z_{p}$ for all $1 \leq p \leq s$. The new vertices are chosen such that for every vertex $w \in A^{\prime}$ we have $w z_{p, q} \in E \Leftrightarrow w z_{p} \in E$ for all p, q, and similarly, $z_{p_{1}, q_{1}} z_{p_{2}, q_{2}} \in E \Leftrightarrow z_{p_{1}} z_{p_{2}} \in E$ for all $p_{1}, p_{2}, q_{1}, q_{2}$.

We need to verify that B is indeed in $\operatorname{Age}\left(H_{n}, E, 0\right)$. As $z_{p, q_{1}} z_{p, q_{2}} \in N$ for all p, q_{1}, q_{2}, a complete subgraph K of $B \cup\{0\}$ cannot contain two vertices of

Hence, $\left(\gamma_{C}^{-1} \circ \beta \circ \gamma_{D}\right) \upharpoonright_{D}=f \upharpoonright_{D}$, and $\delta=\gamma_{C}^{-1} \circ \beta \circ \gamma_{D} \in G$. For any $1 \leq p \leq s$ the vertex $\delta\left(u_{i}\right)$ cannot be connected to all vertices of the form $\delta\left(z_{p, q}\right)$, as the vertices $\delta\left(z_{p, q}\right), 1 \leq q \leq n-1$ induce a complete graph of size $n-1$. Thus for all $1 \leq p \leq s$ there exists a $1 \leq q(p) \leq n-1$ such that $\delta\left(u_{i}\right) \delta\left(z_{p, q(p)}\right) \in N$. Let ${ }_{345} \mu \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ be such that μ fixes every element of A^{\prime} that is not of the form z_{p}, and $\mu\left(z_{p}\right)=z_{p, q(p)}$. Then $\pi_{i}=\delta \circ \mu$ is an appropriate choice. Thus G indeed contains $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$ by Lemma 3.10, and the statement follows from Lemma 3.11 .

If we switch the roles of U_{1} and U_{2} in the proof of Lemma 4.2 then the proof analogue version of Lemma 4.2 is somewhat more complicated to prove, and it requires an auxiliary lemma.

Lemma 4.3. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group with $n \geq 4$. Assume that for any K_{n}-free graph S there exists a permutation $\pi_{S} \in G$ and a copy S^{\prime}
of S in U_{2} such that $\pi_{S}\left(S^{\prime}\right)$ is K_{3}-free. Then G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E\right)$ that violates E on U_{2}.

Proof. We slightly modify the argument in the proof of Proposition 3.7. The sequence B_{1}, B_{2}, \ldots can be chosen so that the image of the U_{2}-part of B_{j} under
some permutation in G is K_{3}-free for all $j \geq 1$. Then for large enough j the canonical behaviour assigned to A_{j}^{\prime} cannot preserve E on U_{2}. Thus after thinning out the sequence we obtain a canonical function that violates E on U_{2}.

Lemma 4.4. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group, and assume that G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E\right)$ that violates E or N on U_{1}. Then G contains $\operatorname{Aut}\left(U_{2}, E\right) \times \operatorname{Sym}\left(U_{1}\right)$.

Proof. Just as in the proof of Lemma 4.2 we have that g eradicates edges on U_{1}. For $n=3, U_{1}$ is an independent set, thus we may assume that $n \geq 4$. According to Lemma 3.11 it suffices to show that G contains $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$. According to Lemmas 4.3 and 4.2 we may assume that there is a K_{n}-free graph S such that the image of any copy of S in U_{2} under any permutation in G contains a triangle. Throughout the proof we fix such a graph S.

The method is similar to that of the proof of Lemma 4.2. Let $A \leq\left(H_{n}, E, 0\right)$ be finite. Let us denote the vertices of A in U_{1} by $X=\left\{x_{1}, \ldots, x_{r}\right\}$ and in U_{2} by $Y=\left\{y_{1}, \ldots, y_{s}\right\}$. According to Lemma 3.10 it is enough to show that there exists an element of G such that the intermediate edges of A are mapped to non-edges. This permutation will be constructed in s steps. In the i-th step we construct a permutation π_{i}. Assume that the intermediate pairs of A containing y_{1}, \ldots, y_{i-1} are mapped to non-edges by the permutation $\pi_{i-1} \circ \cdots \circ \pi_{1}$. Assume further that the permutation $\pi_{i-1} \circ \cdots \circ \pi_{1}$ maps X into U_{1}. Let us denote the images of the points $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{i-1}, y_{i}$ under the permutation $\pi_{i-1} \circ \cdots \circ \pi_{1}$ by $z_{1}, \ldots, z_{r}, v_{1}, \ldots, v_{i-1}, u_{i}$, respectively. We need to find a permutation π_{i} such that $\pi_{i}\left(v_{j} z_{k}\right) \in N, \pi_{i}\left(u_{i} z_{k}\right) \in N$ and $\pi_{i}\left(z_{k}\right) \in U_{1}$ for all j, k. Let $A^{\prime}=\left\{z_{1}, \ldots, z_{r}, v_{1}, \ldots, v_{i-1}, u_{i}\right\}$.

Let $B \leq\left(H_{n}, E, 0\right)$ be a finite structure whose U_{2}-part and 0 -part are equal to those of A^{\prime} such that there is a function $f_{1}: A^{\prime} \rightarrow B$ that is a partial isomorphism of $\left(H_{n}, E, 0\right)$ except that the U_{1}-part of B is an independent set, thus f_{1} might violate E on U_{1}. There exist $\gamma_{A^{\prime}}, \gamma_{B} \in G$ such that $\gamma_{A^{\prime}} \upharpoonright_{A^{\prime}}=g \upharpoonright_{A^{\prime}}$ and $\gamma_{B} \upharpoonright_{B}=g \upharpoonright_{B}$. Then there is a $\beta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that $\gamma_{B} \circ f_{1} \circ$ $\gamma_{A^{\prime}}^{-1} \upharpoonright_{\gamma_{A^{\prime}}\left(A^{\prime}\right)}=\beta \upharpoonright_{\gamma_{A^{\prime}}\left(A^{\prime}\right)}$. Hence, the function f_{1} extends to $\gamma_{B}^{-1} \circ \beta \circ \gamma_{A^{\prime}} \in G$,
and thus we may assume that the U_{1}-part of A^{\prime} is an independent set. In particular, the set $\left\{z_{1}, \ldots, z_{r}\right\}$ induces an empty graph. If $u_{i} \in U_{1}$ then we are done, so we may assume that $u_{i} \notin U_{1}$. We may assume that $u_{i} \neq 0$, as otherwise we can replace y_{i} by $\mu\left(y_{i}\right)$ where $\mu \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ fixes $A \backslash\left\{y_{i}\right\}$, and then $\pi_{i-1} \circ \cdots \circ \pi_{1} \circ \mu$ maps y_{i} to a non-zero element while all the properties we assumed so far hold. Thus $u_{i} \in U_{2}$. Let us denote by r_{E} and r_{N} the number of vertices in $\left\{z_{1}, \ldots, z_{r}\right\}$ that are connected and not connected to u_{i}, respectively. Let $C=\left\{v_{1}, \ldots, v_{i-1}, u_{i}\right\}$.

We construct a finite $D \leq\left(H_{n}, E, 0\right)$. Let $C_{1}, \ldots, C_{|S|} \leq\left(H_{n}, E, 0\right)$ be $|S|$ disjoint isomorphic copies of C. In the k-th copy the points are $v_{1}^{k}, \ldots, v_{i-1}^{k}$ and u_{i}^{k}. Between two copies C_{ℓ} and C_{m} there are no edges, except that the set $\left\{u_{j}^{k} \mid\right.$ $1 \leq k \leq|S|\}$ induces a graph in U_{2} isomorphic to S. From now on we identify this set with S. Let $\left\{z_{p, q}^{t} \mid 1 \leq p \leq n-2,1 \leq q \leq 6 r_{E}+2 r_{N}, 1 \leq t \leq\binom{|S|}{3}\right\}$ be an independent set in U_{1}. We have $z_{p, q}^{t} v_{m}^{k} \in N$ for all p, q, t, m, k. Let us enumerate the 3 -element subsets of S so that every 3 -element subset of S has an index between 1 and $\binom{|S|}{3}$. Each subset is ordered according to the parameter k of the u_{i}^{k}. The vertex $z_{p, q}^{t}$ is connected to u_{i}^{k} if and only if either

- $1 \leq q \leq 2 r_{E}$ and u_{i}^{k} is the second or third element in the 3 -element subset of index t, or
- $2 r_{E}+1 \leq q \leq 4 r_{E}$ and u_{i}^{k} is the third or first element in the 3-element subset of index t, or
- $4 r_{E}+1 \leq q \leq 6 r_{E}$ and u_{i}^{k} is the first or second element in the 3-element subset of index t.

Let $D=C_{1} \cup \cdots \cup C_{|S|} \cup\left\{z_{p, q}^{t} \mid 1 \leq p \leq n-2,1 \leq q \leq 6 r_{E}+2 r_{N}, 1 \leq t \leq\right.$ $\left.\binom{|S|}{3}\right\}$. We show that there exists such a D, i.e., the above construction does not produce a copy of K_{n} in D or a copy of K_{n-1} in the U_{1}-part of D. Note that the U_{1}-part of D is empty, so it is enough to check that any complete subgraph K of D has at most $n-1$ vertices. If K contains a vertex of the form $z_{p, q}^{t}$, then $|K| \leq 3<n$ as $z_{p, q}^{t}$ has degree 2 in D. Finally, if $K \subseteq C_{1} \cup \cdots \cup C_{|S|}$, then
$|K| \leq n-1$ as C and S are K_{n}-free. Let $D^{\prime}=\left\{v_{j}^{k}|1 \leq j \leq i-1,1 \leq k \leq|S|\}\right.$ and $D^{\prime \prime}=D \backslash S$.

Now we construct a finite $F \leq\left(H_{n}, E, 0\right)$. The underlying set of F is $D^{\prime} \cup$ $\left\{w_{p, q}^{t} \mid 1 \leq p \leq n-2,1 \leq q \leq 6 r_{E}+2 r_{N}, 1 \leq t \leq\binom{|S|}{3}\right\}$. We have $v_{j}^{k} w_{p, q}^{t} \in N$ for all j, k, p, q, t and $w_{p_{1}, q_{1}}^{t_{1}} w_{p_{2}, q_{2}}^{t_{2}} \in E \Leftrightarrow\left(q_{1}=q_{2}\right) \wedge\left(t_{1}=t_{2}\right) \wedge\left(p_{1} \neq p_{2}\right)$. It is clear that such an F exists. Let $f_{2}: D^{\prime \prime} \rightarrow F$ be the function fixing D^{\prime} pointwise and mapping $z_{p, q}^{t}$ to $w_{p, q}^{t}$ for all p, q, t.

Let $\gamma_{F}, \gamma_{D^{\prime \prime}} \in G$ be such that $\gamma_{F} \upharpoonright_{F}=g \upharpoonright_{F}$ and $\gamma_{D^{\prime \prime}} \upharpoonright_{D^{\prime \prime}}=g \upharpoonright_{D^{\prime \prime}}$. Then there is a $\delta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that $\gamma_{F} \circ f_{2} \circ \gamma_{D^{\prime \prime}}^{-1} \upharpoonright_{\gamma_{D^{\prime \prime}}\left(D^{\prime \prime}\right)}=\delta \upharpoonright_{\gamma_{D^{\prime \prime}}\left(D^{\prime \prime}\right)}$. Hence, the partial map f_{2} extends to $\rho=\gamma_{F}^{-1} \circ \delta \circ \gamma_{D^{\prime \prime}} \in G$.

According to the choice of S it has a 3 -element subset whose image under ρ is a triangle. Without loss of generality we may assume that it is $\left\{u_{i}^{1}, u_{i}^{2}, u_{i}^{3}\right\}$ which has index $t=1$. For a fixed $1 \leq q \leq 6 r_{E}+2 r_{N}$ the vertices $\rho\left(w_{p, q}^{1}\right)$ for $1 \leq p \leq n-2$ induce a copy of K_{n-2} in U_{1}. Hence, for all q there are at least two points in $\left\{\rho\left(u_{i}^{1}\right), \rho\left(u_{i}^{2}\right), \rho\left(u_{i}^{3}\right)\right\}$ that are not connected to at least one of these $(n-2)$ points. For all $1 \leq q \leq 6 r_{E}+2 r_{N}$ let us assign two such vertices from $\left\{\rho\left(u_{i}^{1}\right), \rho\left(u_{i}^{2}\right), \rho\left(u_{i}^{3}\right)\right\}$.

By a simple pigeonhole argument, there are at least two vertices in the set $\left\{\rho\left(u_{i}^{1}\right), \rho\left(u_{i}^{2}\right), \rho\left(u_{i}^{3}\right)\right\}$ that are assigned at least r_{N} times to numbers between $6 r_{E}+1$ and $6 r_{E}+2 r_{N}$. Without loss of generality we may assume that $\rho\left(u_{i}^{1}\right)$ and $\rho\left(u_{i}^{2}\right)$ are such. Again, by a simple pigeonhole argument, $\rho\left(u_{i}^{1}\right)$ or $\rho\left(u_{i}^{2}\right)$ is assigned to at least r_{E} times to some $4 r_{E}+1 \leq q \leq 6 r_{E}$. Without loss of generality we may assume that $\rho\left(u_{i}^{1}\right)$ is such. Thus there exist

- r_{E} numbers $q_{1}, \ldots, q_{r_{E}}$ such that $4 r_{E}+1 \leq q_{1}, \ldots, q_{r_{E}} \leq 6 r_{E}$ and for some $1 \leq p\left(q_{j}\right) \leq n-2$ depending on q_{j} we have that $\rho\left(w_{p\left(q_{j}\right), q_{j}}^{1}\right) \rho\left(u_{i}^{1}\right) \in N$ for all $1 \leq j \leq r_{E}$, and
- r_{N} numbers $q_{1}^{\prime}, \ldots, q_{r_{N}}^{\prime}$ such that $6 r_{E}+1 \leq q_{1}^{\prime}, \ldots, q_{r_{N}}^{\prime} \leq 6 r_{E}+2 r_{N}$ and for some $1 \leq p\left(q_{j}^{\prime}\right) \leq n-2$ depending on q_{j}^{\prime} we have that $\rho\left(z_{p\left(q_{j}^{\prime}\right), q_{j}^{\prime}}^{1}\right) \rho\left(u_{i}^{1}\right) \in N$ for all $1 \leq j \leq r_{N}$.

Let $A^{\prime \prime}=\left\{\rho\left(z_{p\left(q_{j}\right), q_{j}}^{1}\right) \mid 1 \leq j \leq r_{E}\right\} \cup\left\{\rho\left(z_{p\left(q_{j}^{\prime}\right), q_{j}^{\prime}}^{1}\right) \mid 1 \leq j \leq r_{N}\right\} \cup\left\{v_{j}^{1} \mid 1 \leq\right.$
$j \leq i-1\} \cup\left\{u_{i}^{1}\right\}$. The function $f_{3}: A^{\prime} \rightarrow A^{\prime \prime}$ with

- $f_{3}\left(v_{j}\right)=v_{j}^{1}$ for all $1 \leq j \leq i-1$,
- $f_{3}\left(u_{i}\right)=u_{i}^{1}$,
- f_{3} mapping the r_{E} vertices in A^{\prime} of the form z_{m} connected to u_{i} to the r_{E} vertices of the form $z_{p\left(q_{j}\right), q_{j}}^{1}$ with $4 r_{E}+1 \leq q_{j} \leq 6 r_{E}$ such that $\rho\left(z_{p\left(q_{j}\right), q_{j}}^{1}\right)$ is not connected to $\rho\left(u_{i}^{1}\right)$,
- f_{3} mapping the r_{N} vertices in A^{\prime} of the form z_{m} not connected to u_{i} to the r_{N} vertices of the form $z_{p\left(q_{j}^{\prime}\right), q_{j}^{\prime}}^{1}$ with $6 r_{E}+1 \leq q_{j}^{\prime} \leq 6 r_{E}+2 r_{N}$ such that $\rho\left(z_{p\left(q_{j}^{\prime}\right), q_{j}^{\prime}}^{1}\right)$ is not connected to $\rho\left(u_{i}^{1}\right)$
is a partial isomorphism of $\left(H_{n}, E, 0\right)$. Let $\nu \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ be an automorphism that extends f_{3}. Then $\pi_{i}=\rho \circ \nu$ is an appropriate choice.

In the upcoming proofs we use the following notations.
Definition 4.5. Let $c_{1}, \ldots, c_{k} \in H_{n} \backslash\{0\}$. We denote by $U_{i_{0} i_{1} \ldots i_{k}}$ with $i_{0} \in$ $\{1,2\}$ and $i_{j} \in\left\{c_{j}, k_{j}\right\}$ the subset of H_{n} that consists of the vertices w such that

- w is connected to 0 iff $i_{0}=1$,
- for $j=1, \ldots, k$ we have that w is connected to c_{j} iff $i_{j}=c_{j}$.
E.g., for a vertex $0 \neq u \in H_{n}, U_{1 \chi}$ is the set of elements in U_{1} that are not connected to u.

Lemma 4.6. Let $0 \neq u \in H_{n}$, and let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group. Let $g:\left(H_{n}, E, 0, u\right) \rightarrow\left(H_{n}, E\right)$ be a canonical function generated by G. Let $\{\ell, m\}=\{1,2\}$ and assume that $g\left(U_{\ell} \backslash\{u\}\right) \subseteq U_{\ell}$. Then either G contains $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$ or g preserves E and N on $U_{\ell} \backslash\{u\}$.

Proof. Every finite set $A \subseteq U_{\ell}$ can be mapped into $U_{\ell \nless}$ by an automorphism of $\operatorname{Aut}\left(H_{n}, E, 0\right)$. Thus by Lemma 4.2 or Lemma 4.4 we may assume that g
preserves E and N on $U_{\ell \psi}$. According to the axioms of H_{n}, g cannot map non-edges between $U_{\ell u}$ and $U_{\ell \psi}$ to edges. Indeed, there is a copy of $K_{n+\ell-3}$ in $U_{\ell \chi}$ and a vertex not connected to any of these $n+\ell-3$ vertices in $U_{\ell u}$, and the g-image of these points would induce a copy of $K_{n+\ell-2}$ in U_{ℓ}. Assume that g eradicates edges between $U_{\ell u}$ and $U_{\ell \ell}$. Let A be a finite subset of U_{ℓ}. Then there is an automorphism $\alpha \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ that maps a given element $x \in A$ into $U_{\ell u}$ and the rest of A into $U_{\ell \ell}$. Thus in $(g \circ \alpha)(A)$, the image of the given point x is isolated, and $g \circ \alpha$ preserves E and N on $A \backslash\{x\}$. By iterating such steps, A can be mapped to an independent set in U_{ℓ}, and the assertion follows from Lemma 4.2 or Lemma 4.4

Thus we may assume that g preserves edges and non-edges between $U_{\ell u}$ and $U_{\ell \psi}$. According to the defining axioms of $\left(H_{n}, E\right), g$ cannot map non-edges in $U_{\ell u}$ to edges. Thus g preserves N on $U_{\ell} \backslash\{u\}$. If g violates E on $U_{\ell u}$, then we can systematically delete all edges of a given finite $A \leq U_{\ell}$ by a composition of functions in $\{g\} \cup \operatorname{Aut}\left(H_{n}, E, 0\right)$, and we are done by Lemma 4.2 or Lemma 4.4

Lemma 4.7. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group, and assume that G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ that violates at least one of the relations $U_{1}, U_{2}, E \upharpoonright_{U_{1}}, E \upharpoonright_{U_{2}}, N \upharpoonright_{U_{1}}$ and $N \upharpoonright_{U_{2}}$. Then G contains $\operatorname{Aut}\left(H_{n}, E\right)$, or $\operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$, or $\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Aut}\left(U_{2}, E\right)$, or $\operatorname{Sym}\left(U_{2}\right) \times$ $\operatorname{Aut}\left(U_{1}, E\right)$.

Proof. By Lemmas 4.2 and 4.4 we may assume that g preserves E and N on U_{1} and on U_{2}. In particular, g preserves U_{2}, since a copy of K_{n-1} in U_{2} cannot be mapped into U_{1} by g. Thus $g\left(U_{1} \cup U_{2}\right) \subseteq U_{2}$, and in particular, U_{1} and U_{2} are in the same G-orbit, and every finite set in $H_{n} \backslash\{0\}$ can be mapped into U_{2} by an appropriate permutation in G.

Assume that g eradicates intermediate edges. Let $u \in U_{2}$ and $\gamma \in G$ be such that $\gamma(u) \in U_{1}$. Let $h:\left(H_{n}, E, 0, u\right) \rightarrow\left(H_{n}, E, 0\right)$ be an injective canonical function provided by Proposition 3.7 with $f=\gamma$. By Lemma 4.2 we may assume that h preserves E and N on $U_{2 \chi}$, and in particular, $h\left(U_{2 \chi}\right) \subseteq U_{2}$. If $h\left(U_{2 u}\right) \subseteq U_{1}$, then we are done by applying Lemma 4.6 to $g \circ h$. If $h\left(U_{2 u}\right) \subseteq U_{2}$,
then we may assume that h preserves E and N on $U_{2} \backslash\{u\}$ by Lemma 4.6 Then $g \circ h$ preserves U_{2}, and it preserves edges and non-edges on U_{2}, except that $g \circ h(u)$ is an isolated point in $g \circ h\left(U_{2}\right)$. Thus by iterating functions in the set $\{g \circ h\} \cup \operatorname{Aut}\left(H_{n}, E, 0\right)$ any finite subset of U_{2} can be mapped to an independent set.

As every finite subset of $H_{n} \backslash\{0\}$ can be mapped into U_{2} by some permutation in G, we have that every finite set $A \subseteq H_{n} \backslash\{0\}$ can be mapped to an independent set in U_{2} by G. If G preserves 0 , then this implies that $\operatorname{Sym}\left(H_{n} \backslash\{0\}\right) \subseteq G$. If G violates 0 , then every finite subset of H_{n} can be mapped to an independent set in U_{2} by G, and thus $G=\operatorname{Sym}\left(H_{n}\right)$.

Hence, we may assume that g preserves intermediate edges and non-edges. As g preserves E and N on U_{2}, g cannot map non-edges between 0 and U_{2} to edges, as it would contradict the defining axioms of H_{n}. Thus g preserves N between 0 and U_{2}.

Case 1. Assume that g maps edges between 0 and U_{1} to non-edges. Then every pair that contains 0 is mapped to a non-edge by g. We show that $\operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$ is contained in G. Let $\alpha \in \operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$ and let A be a finite subset of H_{n}. Let $\alpha(A)=B$. Let γ_{A} and γ_{B} be permutations in G such that $\gamma_{A} \upharpoonright_{A}=g \upharpoonright_{A}$ and $\gamma_{B} \upharpoonright_{B}=g \upharpoonright_{B}$. Then $\gamma_{B} \circ \alpha \circ \gamma_{A}^{-1} \upharpoonright_{\gamma_{A}(A)}$ is a partial isomorphism of $\left(H_{n}, E, 0\right)$ that extends to some automorphism $\beta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$. Thus $\gamma_{B}^{-1} \circ \beta \circ \gamma_{A} \in G$ interpolates α on A.

Case 2. Assume that g maps edges between 0 and U_{1} to edges. Then g preserves E and N. As $g\left(U_{1}\right) \subseteq U_{2}$, we have $g(0) \neq 0$. We prove that G contains $\operatorname{Aut}\left(H_{n}, E\right)$. Let $\alpha \in \operatorname{Aut}\left(H_{n}, E\right)$ and let A be a finite subset of H_{n}. Let $\alpha(A)=B$. Note that $g \circ g=g^{2}$ maps every finite subset of H_{n} into U_{2}. Let γ_{A} and γ_{B} be permutations in G such that $\gamma_{A} \upharpoonright_{A}=g^{2} \upharpoonright_{A}$ and $\gamma_{B} \upharpoonright_{B}=g^{2} \upharpoonright_{B}$. Then $\gamma_{B} \circ \alpha \circ \gamma_{A}^{-1} \upharpoonright_{\gamma_{A}(A)}$ is a partial isomorphism of $\left(H_{n}, E, 0\right)$ that extends to some automorphism $\beta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$. Thus $\gamma_{B}^{-1} \circ \beta \circ \gamma_{A} \in G$ interpolates α on A.

Lemma 4.8. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group, and assume that G gen-
erates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ that violates at least one of the relations $U_{1}, U_{2}, E \upharpoonright_{U_{1} \cup U_{2}}$ and $N \upharpoonright_{U_{1} \cup U_{2}}$. Then G contains $\operatorname{Aut}\left(H_{n}, E\right)$,

Proof. According to Lemma 4.7 we may assume that g preserves U_{1}, U_{2}, and edges and non-edges on U_{1} and on U_{2}. In particular, g cannot map intermediate non-edges to edges, as it would contradict the defining axioms of H_{n}. Thus g eradicates intermediate edges, and we are done by Lemma 3.10 .
${ }_{540}$ Lemma 4.9. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group, and assume that the sets U_{1} and U_{2} are contained in the same G-orbit. Then G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ such that $g\left(U_{1}\right) \subseteq U_{2}$ or $g\left(U_{2}\right) \subseteq U_{1}$.

Proof. Let $u \in U_{2}$ and $\gamma \in G$ be such that $\gamma(u) \in U_{1}$. Let $h:\left(H_{n}, E, 0, u\right) \rightarrow$ $\left(H_{n}, E, 0\right)$ be an injective canonical function provided by Proposition 3.7 with ${ }_{545} \quad f=\gamma$. In particular, $h(u) \in U_{1}$.

There exists a canonical function $h^{\prime}:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0, u\right)$ in the monoid generated by $\operatorname{Aut}\left(H_{n}, E, 0\right)$, and consequently by G, such that $h^{\prime}(0)=0$ and $h^{\prime}\left(U_{\ell}\right) \subseteq U_{\ell \ell}$ for all $\ell \in\{1,2\}$. Hence, if $h\left(U_{2 \chi}\right) \subseteq U_{1}$, then $g=$ $h \circ h^{\prime}:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ is canonical such that $g\left(U_{2}\right) \subseteq U_{1}$. Similarly, if $h\left(U_{1 \psi}\right) \subseteq U_{2}$, then we obtain that G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ such that $g\left(U_{1}\right) \subseteq U_{2}$. Thus we may assume that $h\left(U_{2 \chi}\right) \subseteq U_{2}$ and $h\left(U_{1 \chi}\right) \subseteq U_{1}$.

Assume that $h\left(U_{2 u}\right) \subseteq U_{1}$. Given any finite set $A \subseteq U_{2}$, there is an element of $\operatorname{Aut}\left(H_{n}, E, 0\right)$ that maps one element of A into $U_{2 u}$ and the rest of A into ${ }_{55} U_{2 \psi}$. By composing this automorphism with h, and another automorphism that maps the U_{1}-part of the image of A into $U_{1 \psi}$, and then iterating such steps, we can construct a function generated by G that maps A into U_{1}. By following the proof of Proposition 3.7 we have that G generates a canonical function $g:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ such that $g\left(U_{2}\right) \subseteq U_{1}$. Thus we may assume that $h\left(U_{2 u}\right) \subseteq U_{2}$. Similarly, we may assume that $h\left(U_{1 u}\right) \subseteq U_{1}$. Hence, $h\left(U_{1} \cup\{u\}\right) \subseteq U_{1}$ and $h\left(U_{2} \backslash\{u\}\right) \subseteq U_{2}$.

Given any finite set $A \subseteq U_{2}$, there is an element of $\operatorname{Aut}\left(H_{n}, E, 0\right)$ that maps one element of A to u and the rest of A into $U_{2 \psi}$. Hence, by composing functions in the set $\{h\} \cup \operatorname{Aut}\left(H_{n}, E, 0\right)$ any finite subset of U_{2} can be mapped into U_{1}. sume that G contains $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$ with $\{\ell, m\}=\{1,2\}$.

According to Lemma 4.10 there exists a permutation $\gamma \in G$ and two vertices $u, v \in U_{m}$ such that $\gamma(u), \gamma(v) \in U_{\ell}$. The transposition $t_{\gamma(u) \gamma(v)}$ switching $\gamma(u)$ ${ }_{585}$ and $\gamma(v)$ is in G. Thus $t_{u v}=\gamma^{-1} \circ t_{\gamma(u) \gamma(v)} \circ \gamma$, the transposition switching u and v, is in G. Note that the Henson graphs and the complements of the Henson graphs are connected, except for $\left(H_{2}, E\right)$, which is empty. Hence, by using a composition of elements in $\operatorname{Aut}\left(H_{n}, E, 0\right) \cup\left\{t_{u v}\right\}$, it is possible to switch a given pair of elements in U_{m} while fixing every other element in H_{n}. The
transpositions in U_{m} together with $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$ generate $\operatorname{Sym}\left(U_{1}\right) \times$ $\operatorname{Sym}\left(U_{2}\right)$.

4.2. Orbit systems and big groups

Lemma 4.12. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group such that $\{0\}$ and U_{ℓ} are in the same orbit for some $\ell \in\{1,2\}$. Then there exists an element $u \in U_{\ell}$ and a permutation $\gamma \in G$ such that γ switches 0 and u.

Proof. Let $\{m\}=\{1,2\} \backslash\{\ell\}$. Let $\rho \in G$ and $u \in U_{\ell}$ be such that $\rho(0)=u$. If the ρ-preimage v of 0 is also in U_{ℓ}, then there is a permutation $\alpha \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that $\alpha(u)=v$. Thus $\gamma=\rho \circ \alpha$ switches 0 and u. Thus assume that $v \in U_{m}$. Let $w \neq v$ be in U_{m}, and let $\rho(w)=z$. If $z \in U_{m}$ then there are $\beta, \delta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ with $\beta(v)=z$ and δ switching v and w. Hence, $\gamma=\rho \circ \beta^{-1} \circ \rho \circ \delta \circ \rho^{-1} \circ \beta \circ \rho^{-1}$ switches 0 and u. Finally, if $z \in U_{\ell}$ then there exist $\mu, \nu \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ with $\mu(v)=w$ and ν switching u and z. Thus $\gamma=\rho \circ \mu^{-1} \circ \rho^{-1} \circ \nu \circ \rho \circ \mu \circ \rho^{-1}$ switches 0 and u.

Lemma 4.13. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$ be a closed group, and assume that the orbits of G are precisely $U_{\ell} \cup\{0\}$ and U_{m} with $\{\ell, m\}=\{1,2\}$. Then G contains $\operatorname{Sym}\left(U_{\ell} \cup\{0\}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$.

Proof. First we show that G contains $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$. According to Lemma 4.12 there exists a $\gamma \in G$ and a $u \in U_{\ell}$ such that γ switches 0 and u. By applying Proposition 3.7 with $f=\gamma$ we obtain that G generates a canonical function $g:\left(H_{n}, E, 0, u\right) \rightarrow\left(H_{n}, E, 0\right)$ that switches 0 and u.

Clearly $g\left(U_{\ell} \backslash\{u\} \subseteq U_{\ell}\right)$ and $g\left(U_{m}\right) \subseteq U_{m}$. By Lemma 4.6 we may assume that g preserves E and N on $U_{\ell} \backslash\{u\}$. Let $h:\left(H_{n}, E, 0\right) \rightarrow\left(H_{n}, E, 0\right)$ be a function in the closed monoid generated by $\operatorname{Aut}\left(H_{n}, E, 0\right)$, and consequently by G, such that $h\left(U_{\ell}\right) \subseteq U_{\ell \psi}$. Then the function $g_{1}=g \circ h \circ g$ is generated by G, it maps $U_{\ell} \cup\{0\}$ into $U_{\ell}, g_{1}(u)$ is an isolated vertex in $g_{1}\left(U_{\ell} \cup\{0\}\right)$, and $g_{1} \upharpoonright_{U_{\ell} \cup\{0\}}$ preserves N. Thus the U_{ℓ}-part of any finite $A \leq\left(H_{n}, E, 0\right)$ can be mapped to an independent set by a composition of functions in $\left\{g_{1}\right\} \cup \operatorname{Aut}\left(H_{n}, E, 0\right)$. Hence, by one of Lemmas 4.2 and 4.4 we have that G contains $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$.

The set $\{g\} \cup\left(\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}, E\right)\right)$ generates a canonical function g^{\prime} :

4.3. Minimal groups above $\operatorname{Aut}\left(H_{n}, E, 0\right)$

Lemma 4.14. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subsetneq G$ be a closed group. Then G contains $\operatorname{Aut}\left(H_{n}, E\right)$, or $\operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$, or $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$.

Proof. By Lemmas 4.11 and 4.13 we may assume that the orbits of G are precisely $\{0\}, U_{1}$ and U_{2}. Then G does not violate any of the unary relations of $\left(H_{n}, E, 0\right)$, thus it violates E. As edges and non-edges containing 0 are preserved, an edge $u v$ in $H_{n} \backslash\{0\}$ is mapped to a non-edge by some $\gamma \in G$. Let $g:\left(H_{n}, E, 0, u, v\right) \rightarrow\left(H_{n}, E, 0\right)$ be an injective canonical function provided by Proposition 3.7 with $f=\gamma$. In particular, $g(u v) \in N$.

By Lemmas 4.2 and 4.4 we may assume that g preserves E and N on $U_{i \nsim \psi}$ for all $i \in\{1,2\}$. It is clear that g preserves N on all the $U_{i j k}$, as all these sets contain a copy of I_{n}.

Let $\ell \in\{1,2\}$ and X be one of the sets $\{u\},\{v\}, U_{i j k}$ with $i \in\{1,2\}, j \in$ $\{u, \mu u\}, k \in\{v, \nsim\}$ such that if $\ell=1$ then $X \subseteq U_{1}$. Then there is a copy K of $K_{n+\ell-3}$ in $U_{\ell \chi y}$ and a vertex w not connected to any point of K in X. Thus g preserves N between X and $U_{\ell \not(\psi}$, as otherwise $g(K \cup\{w\})$ is isomorphic to $K_{n+\ell-2}$, contradicting the defining axioms of $\left(H_{n}, E, 0\right)$. In particular, if $u \in U_{1}$, then N is preserved between u and $U_{1 \psi \psi}$. We deal with the case $u \in U_{2}$ later.

For all $\ell \in\{1,2\}, j \in\{u, \mu\}, k \in\{v, \nsim\}$ and $A \subseteq U_{\ell}$ finite there is an $\alpha \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that the α-image of A is in $U_{\ell \psi y}$ except for a given vertex which is mapped into $U_{\ell j k}$. Thus by Lemmas 4.2 and 4.4 we may assume
that g preserves E between $U_{\ell j k}$ and $U_{\ell \nmid \psi}$, as otherwise we can delete edges in the U_{ℓ}-part of A with a composition of functions in the set $\{g\} \cup \operatorname{Aut}\left(H_{n}, E, 0\right)$. Similarly, g preserves E on $U_{\ell j k}$, or we can eradicate edges by using automorphisms that map an edge of A into $U_{\ell j k}$ and all other vertices of A into $U_{\ell x y}$.

Let $\ell \in\{1,2\}, j_{1}, j_{2} \in\{u, \not u\}, k_{1}, k_{2} \in\{v, \nsim\}$ be such that $\{\not \mu, \nsim v\} \neq$ $\left\{j_{1}, k_{1}\right\} \neq\left\{j_{2}, k_{2}\right\} \neq\{\not \mu, \not \nu\}$, and assume that g violates N between $U_{\ell j_{1} k_{1}}$ and $U_{\ell j_{2} k_{2}}$. There exist $x \in U_{\ell j_{1} k_{1}}, y \in U_{\ell j_{2} k_{2}}$ and a copy K of $K_{n+\ell-4}$ in $g(K \cup\{x, y\})$ is isomorphic to K_{n}, a contradiction. Thus we may assume that g preserves N on $U_{\ell} \backslash\{u, v\}$ for all $\ell \in\{1,2\}$.

If g violates E on $U_{\ell} \backslash\{u, v\}$ for some $\ell \in\{1,2\}$, then we can systematically delete edges in the U_{ℓ}-part of any finite $A \leq\left(H_{n}, E, 0\right)$, and then we are done by Lemmas 4.2 and 4.4 . Thus we may assume that g preserves E and N on $U_{\ell} \backslash\{u, v\}$ for all $\ell \in\{1,2\}$.

For all finite $A \leq\left(H_{n}, E, 0\right)$ there is a $\beta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that the β image of the U_{1}-part of A is in $U_{1 \psi y}$ and the β-image of the U_{2}-part of A is in $U_{2 \psi \psi}$. Thus g preserves E between $U_{1 \psi \psi}$ and $U_{2 \psi \psi}$, as otherwise $g \circ \beta$ eradicates intermediate edges of A, and we are done by Lemma 3.10 .

Let $j \in\{u, \not u\}$ and $k \in\{v, \not p\}$ be such that $\{j, k\} \neq\{\not u, \not p\}$. There exists an intermediate non-edge with one endpoint in $U_{1 \psi \psi}$ and the other in $U_{2 j k}$, and $n-2$ additional points in $U_{2 \nsim y}$ such that any pair of vertices in these n points other than the intermediate non-edge is in E. Thus g preserves N between $U_{1 \nsim \psi}$ and $U_{2 j k}$, as otherwise the g-image of these n vertices would induce a copy of K_{n} in $\left(H_{n}, E\right)$.

Let $\{\ell, m\}=\{1,2\}, j \in\{u, \not u\}$ and $k \in\{v, \not 0\}$ be such that $\{j, k\} \neq\{\not \mu, \not 0\}$ and there is an edge between $U_{\ell j k}$ and $U_{m \psi \psi}$. Let $A \leq\left(H_{n}, E, 0\right)$ be finite. If A contains an intermediate edge, then there exists a $\delta \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that the δ-image of the U_{ℓ}-part of A is in $U_{\ell \nmid y}$ except for an endpoint of a given intermediate edge in A which is in $U_{\ell j k}$, and the δ-image of the U_{2}-part of A is in $U_{m \psi \psi}$. Thus if g violates E between $U_{\ell j k}$ and $U_{m \psi \psi}$, then $g \circ \delta$ deletes an intermediate edge in A and it preserves intermediate non-edges of A. Hence, we
may assume that g preserves E between $U_{\ell j k}$ and $U_{m \psi \psi}$, as otherwise we can systematically delete intermediate edges of A, and we are done by Lemma 3.10

Assume that g violates N between $U_{1} \backslash\{u, v\}$ and $U_{2} \backslash\{u, v\}$. Let $x y$ be an intermediate non-edge violated by g such that $x \in U_{1} \backslash\{u, v\}$ and $y \in U_{2} \backslash\{u, v\}$. Then there is a copy K of K_{n-2} in $U_{2 \not\langle y}$ such that x and y are connected to all points in K. Then $g(K \cup\{x, y\})$ is isomorphic to K_{n}, a contradiction. Thus g preserves N on $H_{n} \backslash\{0, u, v\}$.

If g violates E between $U_{1} \backslash\{u, v\}$ and $U_{2} \backslash\{u, v\}$, then we can systematically delete intermediate edges of any finite $A \leq\left(H_{n}, E, 0\right)$, and we are done by Lemma 3.10. Thus we may assume that g preserves E and N on $H_{n} \backslash\{0, u, v\}$.

We have already seen that if $u \in U_{1}$, then N is preserved between u and $U_{1 \psi \psi}$. Assume that $u \in U_{2}$. If g violates E between u and $U_{2 u \psi}$, then we can systematically isolate every point in a given finite $A \subseteq U_{2}$ by mapping a given point of A to u by an automorphism of $\left(H_{n}, E, 0\right)$ and all other vertices of A into $U_{2 u \psi} \cup U_{2 \nLeftarrow \psi}$, and then applying g. Thus we may assume that E is preserved by g between u and $U_{2 u \psi}$, as otherwise we are done by Lemma 4.2. Let $x \in U_{1 \psi \psi}$. There exist $n-2$ vertices in $U_{2 u y}$ such that $x u$ is the only non-edge in the graph induced by these $n-2$ vertices, x and u. Thus g cannot violate N between u and $U_{1 \psi \psi}$, as it would contradict the defining axioms of $\left(H_{n}, E\right)$. Hence, g preserves N between u and $U_{1 \psi \psi}$, and similarly, g preserves N between v and $U_{1 \psi \psi}$.

Let $\{\ell, m\}=\{1,2\}$. Assume that g violates E between u and $U_{\ell u \psi}$. If $u \in U_{\ell}$, then we proceed as in the previous paragraph. Hence, we may assume that $u \in U_{m}$. Then for all finite $A \leq\left(H_{n}, E, 0\right)$ there is a $\mu \in \operatorname{Aut}\left(H_{n}, E, 0\right)$ such that $\mu(A) \subseteq\{0\} \cup\left(U_{m} \backslash\{v\}\right) \cup U_{\ell u \psi} \cup U_{\ell \psi \psi}$, and if A contains an intermediate edge, then μ maps its endpoint in U_{m} to u. Then $g \circ \mu$ deletes an intermediate edge of A, and preserves its intermediate non-edges. Thus by iterating such steps, we can eradicate intermediate edges of A, and we are done by Lemma 3.10. Hence, we may assume that g preserves E between u and $U_{\ell u \psi}$ for all $\{\ell\} \in\{1,2\}$. Similarly, we may assume that g preserves E between v and $U_{\ell \nsim v}$ for all $\{\ell\} \in$ $\{1,2\}$.

Assume that g violates N between u and $U_{\ell \ell v}$ for some $\{\ell\} \in\{1,2\}$. There exists an $x \in U_{\ell \not / v}$ and a copy K of K_{n-2} in $U_{2 u \not y^{\prime}}$ such that x is connected to every vertex of K. Thus $g(K \cup\{u, x\})$ is isomorphic to K_{n}, a contradiction. Hence, g preserves N between u and $U_{\ell \not v v}$ for all $\{\ell\} \in\{1,2\}$. Similarly, g preserves N between v and $U_{\ell u \psi}$ for all $\{\ell\} \in\{1,2\}$.

Thus g preserves N. Let $A \leq\left(H_{n}, E, 0\right)$ be finite. If $u v$ is an intermediate edge, then we can systematically delete intermediate edges of A, and we are done by Lemma 3.10 . If $u v$ is in U_{ℓ} for some $\{\ell\} \in\{1,2\}$, then we can systematically delete edges in U_{ℓ}, and we are done by Lemmas 4.2 and 4.4.

Lemma 4.15. Let $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right) \subsetneq G$ be a closed group. Assume that the orbits of G are $\{0\}, U_{1}$ and U_{2}. Then $G=\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Sym}\left(U_{2}\right)$, or $G=\operatorname{Aut}\left(U_{2}, E\right) \times \operatorname{Sym}\left(U_{1}\right)$, or $G=\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right)$.

Proof. As G strictly contains $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Aut}\left(U_{2}, E\right)$, there is a $\gamma \in G$ that violates E on U_{m} for some $m \in\{1,2\}$. By Theorem 1.1. $\operatorname{Aut}\left(U_{m}, E\right)$ is a maximal closed subgroup in $\operatorname{Sym}\left(U_{m}\right)$, thus γ and $\operatorname{Aut}\left(U_{m}, E\right)$ generate every permutation of U_{m}. Hence, any finite subset of U_{m} can be mapped to an independent set in U_{m} by an element of G, and Lemmas 4.2 and 4.4 imply that G contains a group of the form $\operatorname{Aut}\left(U_{\ell}, E\right) \times \operatorname{Sym}\left(U_{m}\right)$ with $\{\ell, m\}=\{1,2\}$.

We may assume that the containment is strict, as otherwise we are done. Then the same argument as above yields that $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Aut}\left(U_{m}\right) \subseteq G$, and consequently, $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Sym}\left(U_{m}\right) \subseteq G$. As $\operatorname{Sym}\left(U_{\ell}\right) \times \operatorname{Sym}\left(U_{m}\right)$ is the biggest (closed) group with orbits $\{0\}, U_{1}$ and U_{2}, we have $G=\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right)$.

Lemma 4.16. Let $\operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right) \subsetneq G$ be a closed group. Then G contains $\operatorname{Sym}\left(H_{n} \backslash\{0\}\right)$.

Proof. If G stabilises 0 then the restriction of the action of G to $H_{n} \backslash\{0\}$ is a closed group on $H_{n} \backslash\{0\}$ containing $\operatorname{Aut}\left(H_{n} \backslash\{0\}, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$. Thus in this case we are done by Theorem 1.1 .

By Lemma 4.12 we may assume that there exists a $\gamma \in G$ and an element $u \in U_{2}$ such that γ switches 0 and u. Let $g:\left(H_{n}, E, 0, u\right) \rightarrow\left(H_{n}, E, 0, u\right)$ be a
canonical function provided by Proposition 3.7 with $f=\gamma$. We claim that every finite subset of H_{n} can be mapped to an independent set in U_{2} by some element of G. If g does not preserve E or N on $U_{2 \nsim}$, then $\operatorname{Aut}\left(U_{1}, E\right) \times \operatorname{Sym}\left(U_{2}\right) \subseteq G$ by Lemma 4.2, and the claim follows by using compositions of functions in $\{\gamma\} \cup \operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right) \cup \operatorname{Sym}\left(U_{2}\right)$. So we may assume that g preserves E and N on $U_{2 \psi}$, and consequently, $g\left(U_{2 \chi}\right) \subseteq U_{2 \psi} . \operatorname{Aut}\left(H_{n}, 0, E \upharpoonright_{H_{n} \backslash\{0\}}\right)$ generates a function h such that $h(0)=0$ and $h\left(H_{n} \backslash\{0\}\right) \subseteq U_{2 \psi}$. Let $g^{\prime}=$ $g \circ h \circ g$. Then $g^{\prime}(u)$ is an isolated vertex in $g^{\prime}\left(H_{n}\right)$. By iterating such steps, the claim follows. Hence, $G=\operatorname{Sym}\left(H_{n}\right)$.

4.4. Closed groups above $\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right)$

The structure $\left(H_{n}, U_{1}, U_{2}, c_{1}, \ldots, c_{s}\right)$ is homogeneous in a unary relational language for all $c_{1}, \ldots, c_{s} \in H_{n}$. A unary function g from $\left(H_{n}, U_{1}, U_{2}, c_{1}, \ldots, c_{s}\right)$ to ($H_{n}, U_{1}, U_{2}, d_{1}, \ldots, d_{t}$) is canonical if and only if for every 1-element structure $S \in \operatorname{Age}\left(H_{n}, U_{1}, U_{2}, c_{1}, \ldots, c_{s}\right)$ there exists a 1-element structure $S^{\prime} \in$ Age $\left(H_{n}, U_{1}, U_{2}, d_{1}, \ldots, d_{t}\right)$ such that the g-image of any copy of S is isomorphic to S^{\prime}. The behaviour of g is uniquely determined by the type conditions satisfied by such 1-element substructures. Moreover, we have the following analogue statement of Proposition 3.7 .

Proposition 4.17. Let $s, t \geq 0$, and let $c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{t} \in H_{n}$. Let $\Delta=$ $\left(H_{n}, U_{1}, U_{2}, c_{1}, \ldots, c_{s}\right)$ and $\Gamma=\left(H_{n}, U_{1}, U_{2}, d_{1}, \ldots, d_{t}\right)$, and let $f: \Delta \rightarrow \Gamma$ be an injective function. Then there exists an injective function

$$
g \in \overline{\{\beta \circ f \circ \alpha \mid \alpha \in \operatorname{Aut}(\Delta), \beta \in \operatorname{Aut}(\Gamma)\}}
$$

such that g is canonical as a function from Δ to Γ, and $g\left(c_{i}\right)=f\left(c_{i}\right)$ for all $i \in\{1, \ldots, s\}$.

Proposition 4.18. Let $X \cup Y$ be a partition of a countably infinite set D such that X and Y are infinite. Let $\operatorname{Sym}(X) \times \operatorname{Sym}(Y) \subsetneq G$ be a closed group acting on D. Then either $G=(\operatorname{Sym}(X) \times \operatorname{Sym}(Y)) \rtimes Z_{2}$ or $G=\operatorname{Sym}(D)$.

Proposition 4.20. Let $\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right) \subsetneq G$ be a closed group. Then G equals to one of the groups $\left(\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right)\right) \rtimes Z_{2}, \operatorname{Sym}\left(U_{1} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{2}\right)$, $\operatorname{Sym}\left(U_{2} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{1}\right), \operatorname{Sym}\left(H_{n} \backslash\{0\}\right),\left(\operatorname{Sym}\left(U_{1} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{2}\right)\right) \rtimes Z_{2}$, $\left(\operatorname{Sym}\left(U_{2} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{1}\right)\right) \rtimes Z_{2}, \operatorname{Sym}\left(H_{n}\right)$.
Proof. Note that the group $\operatorname{Sym}(X) \times \operatorname{Sym}(Y)$ is a maximal subgroup of $(\operatorname{Sym}(X) \times \operatorname{Sym}(Y)) \rtimes Z_{2}$. Hence, if $G \neq(\operatorname{Sym}(X) \times \operatorname{Sym}(Y)) \rtimes Z_{2}$, then there exists a $\gamma \in G \backslash(\operatorname{Sym}(X) \times \operatorname{Sym}(Y)) \rtimes Z_{2}$. We may assume that there are elements $u, v \in X$ such that $\gamma(u)=u$ and $\gamma(v) \in Y$. According to Proposition4.17. G generates a function g that is canonical as a function from (D, X, Y, u, v) to ($D, X, Y)$.

Case 1. Assume that $g(X \backslash\{u, v\}) \subseteq X$ and $g(Y) \subseteq Y$. Then any finite subset of D can be mapped into Y by some element of G, and thus $G=\operatorname{Sym}(D)$.

Case 2. Assume that $g(X \backslash\{u, v\}) \subseteq X$ and $g(Y) \subseteq X$. Then any finite subset of D can be mapped into X by some element of G, and $G=\operatorname{Sym}(D)$ follows.

Case 3. Assume that $g(X \backslash\{u, v\}) \subseteq Y$ and $g(Y) \subseteq Y$. Then any finite subset of D can be mapped into Y by some element of G, and thus $G=\operatorname{Sym}(D)$.

Case 4. Assume that $g(X \backslash\{u, v\}) \subseteq Y$ and $g(Y) \subseteq X$. Let α be the transposition that switches u and an element of X that is in the image of g. Then $g \circ \alpha \circ g$ preserves X and Y, except that it maps an element of Y into X. Then any finite subset of D can be mapped into X by some element of G, and thus $G=\operatorname{Sym}(D)$.

The following is well-known, the simple proof is left to the reader.

Proposition 4.19. Let D be an infinite set. Then $\operatorname{Sym}(D \backslash\{c\})$ is a maximal subgroup of $\operatorname{Sym}(D)$ for any $c \in D$.

Proof. First assume that 0 is a fixed point of G. Then $G \upharpoonright_{U_{1} \cup U_{2}}$ is a closed group acting on $U_{1} \cup U_{2}$ that strictly contains $\operatorname{Sym}\left(U_{1}\right) \times \operatorname{Sym}\left(U_{2}\right)$, and thus we are done by Proposition4.18. Hence, we may assume that 0 is not a fixed point of G. If G is not transitive, then we are done by Lemma 4.13 and Proposition 4.18

Thus we may assume that G is transitive. By Lemma 4.12 there exists a $\gamma \in G$ $\operatorname{Sym}\left(U_{2} \cup\{0\}\right)$, and thus G contains $\operatorname{Sym}\left(U_{2} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{1}\right)$. The assertion follows from Proposition 4.18 .

5. Characterisation of the reducts

We are ready to prove the main theorem of the paper.

15 Proof of Theorem 2.3. Let $\operatorname{Aut}\left(H_{n}, E, 0\right) \subseteq G$. If the orbits of G are $\{0\}$, U_{1} and U_{2}, then we are done by Lemmas 4.14 and 4.15 If U_{1} and U_{2} are contained in the same G-orbit, then the assertion follows from Lemmas 4.11 , 4.16. Theorem 1.1 and Propositions 4.20 and 4.19 . Thus we may assume that the orbits of G are precisely $U_{\ell} \cup\{0\}$ and U_{m} with $\{\ell, m\}=\{1,2\}$. Then $820 G$ contains $\operatorname{Sym}\left(U_{\ell} \cup\{0\}\right) \times \operatorname{Aut}\left(U_{m}, E\right)$ by Lemma 4.13 If the containment is strict, then some $\gamma \in G$ violates E on U_{m}. By Theorem 1.1 we have that any finite subset of U_{m} can be mapped to an independent set in U_{m}, and then
$G=\operatorname{Sym}\left(U_{\ell} \cup\{0\}\right) \times \operatorname{Sym}\left(U_{m}\right)$ by our assumption and one of Lemmas 4.2 and 4.4

6. Acknowledgements

The author is indebted to the anonymous referee for significantly improving the presentation of the paper, and to Csaba Szabó for his useful comments.

References

[1] C. W. Henson, A family of countable homogeneous graphs, Pacific Journal of Mathematics 38 (1971) 69-83.
[2] A. H. Lachlan, R. Woodrow, Countable ultrahomogeneous undirected graphs, Transactions of the American Mathematical Society 262 (1) (1980) 51-94.
[3] P. J. Cameron, Transitivity of permutation groups on unordered sets, Mathematische Zeitschrift 148 (1976) 127-139.
[4] S. Thomas, Reducts of the random graph, Journal of Symbolic Logic 56 (1) (1991) 176-181.
[5] S. Thomas, Reducts of random hypergraphs, Annals of Pure and Applied Logic 80 (2) (1996) 165-193.
[6] J. H. Bennett, The reducts of some infinite homogeneous graphs and tournaments, Ph.D. thesis, Rutgers university (1997).
[7] M. Junker, M. Ziegler, The 116 reducts of $(\mathbb{Q},<, a)$, Journal of Symbolic Logic 73 (3) (2008) 861-884.
[8] J. Nešetřil, V. Rödl, Partitions of finite relational and set systems, Journal of Combinatorial Theory, Series A 22 (3) (1977) 289-312.
[9] M. Bodirsky, M. Pinsker, Reducts of Ramsey structures, in: Model Theoretic Methods in Finite Combinatorics, Vol. 558 of Contemporary Mathematics, American Mathematical Society, 2011, pp. 489-519.
[10] M. Bodirsky, M. Pinsker, Schaefer's theorem for graphs, in: Proceedings of STOC'11, 2011, pp. 655-664.
[11] M. Bodirsky, M. Pinsker, Minimal functions on the random graph, Israel Journal of Mathematics 200 (1) (2014) 251-296.
[12] M. Bodirsky, M. Pinsker, T. Tsankov, Decidability of definability, Journal of Symbolic Logic 78 (4) (2013) 1036-1054.

855 [13] W. Hodges, A shorter model theory, Cambridge University Press, Cambridge, 1997.
[14] J. Nešetřil, V. Rödl, Ramsey classes of set systems, Journal of Combinatorial Theory, Series A 34 (2) (1983) 183-201.

[^0]: Email address: andras.pongracz@lix.polytechnique.fr (András Pongrácz)
 ${ }^{1}$ The author has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 257039).

[^1]: ${ }^{2}$ Later on, we will need some variants of this argument where we can make use of a less arbitrary choice of the copy of B_{j}.

