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Abstract

Let (Hn, E) denote the Henson graph, the unique countable homogeneous graph

whose age consists of all finite Kn-free graphs. In this note the reducts of the

Henson graphs with a constant are determined up to first-order interdefinability.

It is shown that up to first-order interdefinability (H3, E, 0) has 13 reducts and

(Hn, E, 0) has 16 reducts for n ≥ 4.
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1. Introduction

For n ≥ 3 we denote by (Hn, E) the unique countable homogeneous graph

that embeds a finite graph A if and only if A is Kn-free, where Kn denotes the

complete graph on n vertices. The graphs (Hn, E) were first constructed by C.

W. Henson in [1]. A. H. Lachlan and R. Woodrow [2] have shown that apart5

from trivial examples, the random graph (R,E), the Henson graphs (Hn, E)

and their complements are the only countably infinite homogeneous graphs. A

countable structure ∆ is homogeneous if every isomorphism between finite in-

duced substructures extends to an automorphism of ∆. In particular, vertices

of (Hn, E) are indistinguishable: for all u, v ∈ (Hn, E), there exists an auto-10

morphism α ∈ Aut(Hn, E) such that α(u) = v. Hence, there is no ambiguity
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in the notation (Hn, E, 0): it denotes the structure that we obtain by adding

a constant symbol 0 to the signature of (Hn, E) and interpret it as a vertex of

(Hn, E). In this paper, we classify the structures that are first-order definable

(without parameters) in (Hn, E, 0), i.e., the reducts of (Hn, E, 0).15

The first result of this form is due to P. J. Cameron [3], who has shown that

the dense linear order (Q, <) has five reducts up to first-order interdefinability.

Two structures Γ and ∆ are first-order interdefinable if Γ has a first-order defi-

nition (without parameters) in ∆ and vice versa, i.e., if they are reducts of one

another. S. Thomas [4] proved that the random graph (R,E) has five reducts20

up to first-order interdefinability, and determined the reducts of the random

k-uniform hypergraph for all k ≥ 2 in [5]. In [4] it was shown that the Henson

graphs (Hn, E) have no proper non-trivial reducts, i.e.,

Theorem 1.1. [Thomas] Every reduct of (Hn, E) is first-order interdefinable

either with (Hn, E) itself or with (Hn,=) for all n ≥ 3.25

In [4] Thomas posed the following conjecture.

Conjecture 1. Every countable homogeneous structure over a finite relational

language has finitely many reducts up to first-order interdefinability.

J. H. Bennett has shown that the conjecture holds for the random tourna-

ment in [6]. Recently, M. Junker and M. Ziegler [7] proved that (Q, <, 0) has30

116 reducts up to first-order interdefinability.

The purpose of this paper is to verify Thomas’ conjecture for (Hn, E, 0)

for all n ≥ 3. Note that (Hn, E, 0) is indeed first-order interdefinable with a

structure that is homogeneous in a finite relational language (see Remark 2.1).

There is an essential difference between the result for n = 3 and for n ≥ 4.35

Up to first-order interdefinability (H3, E, 0) has 13 reducts, and (Hn, E, 0) has

16 reducts for n ≥ 4 (see Theorem 2.3). This characterisation is based on the

Nešetřil-Rödl theorem in [8] and a method introduced by M. Bodirsky and M.

Pinsker applied in [9, 10, 11, 12]. The current note is the first implementation
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of the Bodirsky-Pinsker method to obtain a new first-order characterisation of40

the reducts of a homogeneous structure.

2. The main result

2.1. Closed groups

Let D be a countable set. A relational structure Γ = (D, (Qj)j∈J) is a

reduct of ∆ = (D, (Ri)i∈I) if Qj is first-order definable from the set of relations45

{Ri | i ∈ I} for all j ∈ J . If Γ is a reduct of ∆, then clearly Aut(∆) ⊆ Aut(Γ).

If ∆ is ω-categorical, then the converse also holds by (a consequence of) Ryll-

Nardzewski’s theorem (see in [13]). A countable structure is ω-categorical if it

is the unique countable model of its first-order theory up to isomorphism. If

∆ is a countable structure that is homogeneous in a finite relational language,50

then ∆ is ω-categorical, thus Ryll-Nardzewski’s theorem [13] establishes a Galois

connection between reducts of ∆ and subgroups of Sym(D) that contain Aut(∆).

Throughout the paper, Sym(D) denotes the full symmetric group acting on D,

i.e., the group of all permutations of D. This Galois connection is given by the

operators Aut mapping reducts to their automorphism groups, and Inv mapping55

permutation groups Aut(∆) ⊆ G ⊆ Sym(D) to the structure with all relations

on D that are invariant under the action of G. Just like every Galois connection,

this gives rise to a closure operator. In our case, a permutation group Aut(∆) ⊆

G ⊆ Sym(D) is closed if G = Aut(Γ) for some reduct Γ of ∆. Equivalently, G

is closed if whenever α ∈ Sym(D) is such that for all finite F ⊆ D there exists60

a γ ∈ G with α �F= γ �F , then α ∈ G. Moreover, given two reducts Γ1 and

Γ2 of ∆, Γ1 is a reduct of Γ2 if and only if Aut(Γ2) ⊆ Aut(Γ1). In particular,

Γ1 and Γ2 are first-order interdefinable if and only if Aut(Γ1) = Aut(Γ2). Thus

reducts of a countable, homogeneous structure ∆ in a finite relational language

up to first-order interdefinability can be understood via the characterisation of65

closed supergroups of Aut(∆) in Sym(D). By ordering reducts Γ1 � Γ2 if and

only if Γ1 is a reduct of Γ2, and factoring out by first-order interdefinability,

we obtain a complete lattice on the equivalence classes. The strongest form of
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Ryll-Nardzewski’s theorem states that the lattice we obtain this way is anti-

isomorphic to the lattice of closed groups Aut(∆) ⊆ G ⊆ Sym(D) ordered by70

inclusion. The anti-isomorphism is given by the operators Aut and Inv that are

inverses of each other. In Subsection 2.2, we show a picture of the lattice of

closed supergroups of Aut(Hn, E, 0) (see Theorem 2.3). Hence, one can obtain

the lattice of reducts of (Hn, E, 0) up to first-order interdefinability by turning

that picture upside-down.75

2.2. Reduct classification

To present the main result of the paper, we need the following definitions.

Definition 2.1. We denote by U1 and U2 the set of all neighbours and non-

neighbours of 0 in (Hn, E, 0), respectively. As an abuse of notation, we denote

three formally different things by 0: the constant symbol 0, the vertex in (Hn, E)80

that is the interpretation of 0 and the unary relation that is interpreted as {0}.

Using standard terminology, we say that a function f : Hn → Hn preserves

a relation R on Hn if whenever a tuple is in R, its f -image is also in R. If f

does not preserve R, then f violates R.

Definition 2.2. Let X1, X2 ⊆ Hn be disjoint sets, and let G1, G2 be permuta-85

tion groups acting on X1, X2, respectively. Then G1 ×G2 denotes the group of

all permutations α ∈ Sym(Hn) such that α �Xi
∈ Gi for i ∈ {1, 2}, and α fixes

Hn \ (X1 ∪ X2) pointwise. The group (Sym(X1) × Sym(X2)) o Z2 consists of

the permutations in Sym(Hn) that either preserve X1 and X2 or flip X1 and

X2, and fix Hn \ (X1 ∪X2) pointwise. We denote by Sym(Hn \ {0}) the group90

of all permutations in Sym(Hn) that fix 0.

Theorem 2.3. The closed supergroups of Aut(Hn, E, 0) in Sym(Hn) are
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1. Aut(Hn, E, 0)

2. Aut(Hn, E)

3. Aut(Hn, 0, E �Hn\{0})

4. Aut(U1, E)×Aut(U2, E)

5. Sym(U1)×Aut(U2, E)

6. Sym(U2)×Aut(U1, E)

7. Sym(U1)× Sym(U2)

8. Sym(U1 ∪ {0})×Aut(U2, E)

9. Sym(U2 ∪ {0})×Aut(U1, E)

10. (Sym(U1)× Sym(U2)) o Z2

11. Sym(U1 ∪ {0})× Sym(U2)

12. Sym(U2 ∪ {0})× Sym(U1)

13. Sym(Hn \ {0})

14. (Sym(U1 ∪ {0})× Sym(U2)) o Z2

15. (Sym(U2 ∪ {0})× Sym(U1)) o Z2

16. Sym(Hn)

(1)

(2) (3)

(4)

(5) (6)

(7)(8) (9)

(10)(11) (12)

(13)(14) (15)

(16)

Figure 1: The lat-

tice of closed groups

If n ≥ 4, then all these groups are different, and (Hn, E, 0) has 16 reducts up to95

first-order interdefinability. If n = 3, then three pairs of groups in the list are

identified by the equation Aut(U1, E) = Sym(U1), and (H3, E, 0) has 13 reducts

up to first-order interdefinability.

One can also provide a description of all reducts of (Hn, E, 0) up to first-

order interdefinability by using the other side of the Galois connection: relational100

structures. In other words, we can construct a representative in every equiva-

lence class of first-order interdefinability, i.e., structures corresponding to each

automorphism group in the above list. We provide two examples, the rest of the

cases are left to the reader. Item (5) is the automorphism group of the structure

(Hn, 0, U1, U2, E �U2
). In case of item (10), let E′ be a binary relation symbol.105

The interpretation of E′ is a complete bipartite graph on the set U1 ∪ U2 with

bipartition (U1, U2). Then E′ has a first-order definition in (Hn, E, 0), and the
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automorphism group of (Hn, 0, E
′) is (Sym(U1)× Sym(U2)) o Z2.

It is easy to show that there is a representative in every equivalence class

that is homogeneous in an at most binary relational language.110

Remark 2.1. (Hn, E, 0) is first-order interdefinable with the relational struc-

ture (Hn, E, 0, U1, U2), and the latter structure is homogeneous.

By Remark 2.1, Theorem 2.3 is a special case of Thomas’ conjecture.

3. Preliminaries

3.1. Ramsey theory115

In [8] the following Ramsey-type theorem is shown. Note that throughout

the paper A ≤ ∆ means that A is a substructure of ∆.

Theorem 3.1 (Nešetřil, Rödl). Let n ≥ 3 and r ≥ 2. Then for all finite

Kn-free graphs A there exists a finite Kn-free graph B such that if edges and

non-edges of B are coloured with r colours, then there exists a copy A′ ≤ B of120

A that is monochromatic, i.e., all edges have the same colour and all non-edges

have the same colour.

The class of ordered Kn-free graphs has an even stronger property, namely

that it is a Ramsey class [14]. A class C of finite structures is called a Ramsey

class if for all A,B ∈ C and r ∈ N there is a C ∈ C such that if the copies of A in125

C are coloured with r colours, then there is a copy B′ ≤ C isomorphic to B that

is monochromatic. The class of finite structures that embed into a structure

∆ is called the age of ∆, and it is denoted by Age(∆). A (homogeneous)

structure ∆ is a Ramsey structure if Age(∆) is a Ramsey class. If a class C

of finite structures is the age of some countable homogeneous structure, then130

this structure is uniquely determined up to isomorphism, and it is denoted by

Flim(C) (see [13]). A structure ∆ is ordered if there exists a total order that is

first-order definable in ∆.
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Theorem 3.2 (Nešetřil, Rödl). Let C be the class of all finite ordered Kn-

free graphs. Then C is a Ramsey class for all n ≥ 3. In particular, Flim(C)135

is a homogeneous ordered Ramsey structure, i.e., given any n ≥ 3, r ≥ 2 and

finite ordered Kn-free graphs A,B, there exists a finite ordered Kn-free graph

C such that if the copies of A in C are coloured with r colours, then there is a

monochromatic copy of B in C.

Given a c ∈ ∆ we denote by (∆, c) the structure obtained by adding a140

constant symbol to the language of ∆ interpreted as the element c. In [12] the

following is shown.

Proposition 3.3 (Bodirsky, Pinsker, Tsankov). Let ∆ be a countable, ho-

mogeneous, ordered Ramsey structure, and let c ∈ ∆. Then (∆, c) is an ordered

Ramsey structure.145

We need to generalise Theorem 3.1 for structures that we obtain by adding

finitely many constants to a Henson graph.

Definition 3.4. Let k ∈ N. We call a class C of finite structures a k-Ramsey

class if for all A,B ∈ C with |A| ≤ k and for all r ∈ N there exists a C ∈ C

such that if the copies of A in C are coloured with r colours, then there is a150

copy B′ ≤ C isomorphic to B that is monochromatic. We call a (homogeneous)

structure ∆ a k-Ramsey structure if Age(∆) is a k-Ramsey class.

Proposition 3.5. Let n ≥ 3, t ≥ 0 and c1, . . . , ct ∈ Hn. Then (Hn, E, c1, . . . , ct)

is 2-Ramsey.

Proof. Let {S1, S2, . . . , Sk} be a set containing exactly one copy of each at155

most 2-element structure in Age(Hn, E, c1, . . . , ct) up to isomorphism. We show

that for any r ≥ 2, S ∈ {S1, S2, . . . , Sk} and B ∈ Age(Hn, E, c1, . . . , ct) there

exists a C ∈ Age(Hn, E, c1, . . . , ct) such that if the copies of S in C are coloured

with r colours, then there is a monochromatic copy of B in C.

According to Theorem 3.2 and Proposition 3.3 we can extend the language160

of (Hn, E, c1, . . . , ct) with a total order ≺ so that it becomes an ordered Ramsey
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structure. We claim that B ≤ (Hn, E, c1, . . . , ct) has an ordered version B≺ ∈

Age(Hn, E,≺, c1, . . . , ct) such that all ordered versions of the copies of S in

B≺ are isomorphic to some S≺. If |S| = 1 or |S| = 2 and both vertices of

S have the same 1-type in (Hn, E, c1, . . . , ct), i.e., they satisfy the same first-165

order formulas in (Hn, E, c1, . . . , ct), then S has only one ordered version in

Age(Hn, E,≺, c1, . . . , ct) up to isomorphism. Thus we may assume that |S| = 2

and the two vertices of S have different 1-types t1 and t2 in (Hn, E, c1, . . . , ct).

If all vertices of type t1 are smaller than all vertices of type t2 with respect to

≺, or vice versa, then the claim follows immediately. If this is not the case, then170

there exists an appropriate B≺ ≤ Age(Hn, E,≺, c1, . . . , ct) such that all vertices

in B≺ that have type t1 are smaller than those of type t2. Hence, the claim

follows. According to the Ramsey property of (Hn, E,≺, c1, . . . , ct) there is a

C≺ in Age(Hn, E,≺, c1, . . . , ct) such that if the copies of S≺ in C≺ are coloured

with r colours, then there is a monochromatic copy of B≺ in C≺. The structure175

that we obtain by omitting ≺ from C≺ is an appropriate choice for C.

3.2. Closed monoids and canonical functions

Similarly to closed subgroups of Sym(D), it is possible to define closed sub-

monoids of the monoid of all unary operations on D, i.e., DD. The topology is

the topology of pointwise convergence on DD, so a unary function f is in the180

closure of a set of unary operations S ⊆ DD if and only if f can be interpolated

on any finite subset of D by some function in S. In this case, we also say that

S generates f . Note that there is a slight ambiguity between the notions of a

closed group and a closed monoid, namely, a closed group G normally gener-

ates a lot of functions that are not in G. In particular, the monoid closure of185

Aut(Hn, E, 0) is the set of all self-embeddings of (Hn, E, 0), that is, the set of all

injective (but not necessarily surjective) unary operations on Hn that fix 0 and

preserve the edge relation E and the non-edge relation N . The main idea of the

general strategy introduced by M. Bodirsky and M. Pinsker in [9, 10, 11, 12] to

investigate reducts of countable homogeneous structures ∆ is to show that any190

function f together with the automorphism group Aut(∆) generates a so-called
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canonical function (see Proposition 3.7 for the precise statement we need).

Definition 3.6. A function g : ∆ → Γ is canonical if whenever two tuples

x̄, ȳ ∈ ∆n satisfy the same first-order formulas in ∆ (that is, they have the

same n-type), then the tuples g(x̄) and g(ȳ) also have the same n-type in Γ.195

The behaviour of a canonical function g is the set of all type conditions satisfied

by g, i.e., the collection of all pairs (s, t) where s and t are n-types of ∆ and Γ,

respectively, and whenever x̄ has type s we have that g(x̄) has type t.

If ∆ and Γ are arbitrary ω-categorical structures, then we might need all (or

at least infinitely many) type conditions (s, t) in order to describe the behaviour200

of a canonical function f : ∆ → Γ. This is not the case, however, if ∆ and

Γ are homogeneous in a finite relational language. The reason is that if ∆ is

homogeneous in a finite relational language with maximal arity m, then the type

of a tuple is uniquely determined by the type of its m-element subtuples. In

particular, as any structure that we obtain by adding finitely many constants to205

(Hn, E) is homogeneous in a binary relational language, we have the following.

Remark 3.1. Let s, t ≥ 0, and let c1, . . . , cs, d1, . . . , dt ∈ Hn. A function g :

(Hn, E, c1, . . . , cs)→ (Hn, E, d1, . . . , dt) is canonical if and only if the following

two conditions hold.

• For any 1-element structure S ∈ Age(Hn, E, c1, . . . , cs) there exists a 1-210

element structure S′ ∈ Age(Hn, E, d1, . . . , dt) such that the g-image of any

copy of S is isomorphic to S′.

• For any 2-element structure S ∈ Age(Hn, E, c1, . . . , cs) we have that when-

ever S1, S2 ≤ (Hn, E, c1, . . . , cs) are copies of S, then g(S1) ∈ E ⇔

g(S2) ∈ E.215

Moreover, the behaviour of g is uniquely determined by the type conditions it sat-

isfies for 1-element substructures and the set of isomorphism types of 2-element

substructures that are mapped to edges by g.
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In Remark 3.1 the structures (Hn, E, c1, . . . , cs) and (Hn, E, d1, . . . , dt) are

to be understood as relational structures. The languages of these structures220

consist of all at most binary first-order definable relations. The main ideas of

the following argument can be found in [9, Proposition 21]. As there are some

subtle technical problems to work out in order to obtain what we need, we

present the full proof.

Proposition 3.7. Let s, t ≥ 0, and let c1, . . . , cs, d1, . . . , dt ∈ Hn. Let ∆ =225

(Hn, E, c1, . . . , cs) and Γ = (Hn, E, d1, . . . , dt), and let f : ∆→ Γ be an injective

function. Then there exists an injective function

g ∈ {β ◦ f ◦ α | α ∈ Aut(∆), β ∈ Aut(Γ)}

such that g is canonical as a function from ∆ to Γ, and g(ci) = f(ci) for all

i ∈ {1, . . . , s}.

Proof. Let Ai ≤ ∆ for i ∈ N be such that A1 ( A2 ( · · · and
⋃
Ai =230

∆. Let S1, . . . , Sq be a set of representatives of the isomorphism types of at

most 2-element substructures of ∆, and let {T1, . . . , Tr} consist of the symbols

E,N , and the isomorphism types of 1-element substructures of Γ. According

to Proposition 3.5 for all Aj there exists a Bj ∈ Age(∆) such that if the at

most 2-element substructures of Bj are coloured with r colours, then there is a235

monochromatic copy A′j of Aj in Bj . Let us choose an arbitrary2 copy of Bj in ∆

and colour its at most 2-element substructures by the symbol Ti corresponding

to their f -image. Then for any 1 ≤ m ≤ q we have that all copies of Sm in the

monochromatic A′j have the same f -image up to isomorphism. This way we can

assign a set of type conditions bj to the at most 2-element substructures of A′j for240

all j ∈ N. As there are only finitely many possible set of such type conditions,

there is a behaviour b that occurs infinitely many times in the sequence (bj)j∈N.

By thinning out the sequence (Aj)j∈N, we may assume that bj = b for all j ∈ N.

2Later on, we will need some variants of this argument where we can make use of a less

arbitrary choice of the copy of Bj .
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Let αj ∈ Aut(∆) be such that αj(Aj) = A′j . Then f ◦ αj modifies the at most

2-element substructures of Aj according to the type conditions in b. Hence, if245

j < `, then the mapping (f ◦α` ◦ (f ◦αj)−1) �f◦αj(Aj) preserves unary relations,

E and N in Γ, and thus by homogeneity of Γ it extends to an automorphism

βj,` ∈ Aut(Γ). The sequence β−11,2◦· · ·◦β
−1
j,j+1◦f ◦αj+1 is convergent in the closed

monoid of all injective functions, and it tends to a canonical function h : ∆→ Γ

with behaviour b. The function h ◦ f−1 �{c1,...,cs} preserves unary relations,250

E and N in Γ, and consequently, it extends to an automorphism β ∈ Aut(Γ).

Thus g = β−1 ◦h is the limit of the sequence (β−1 ◦β−11,2 ◦ · · · ◦β
−1
j,j+1) ◦ f ◦αj+1,

g agrees with f on the constants {c1, . . . , cs}, and g is canonical from ∆ to Γ.

3.3. Canonical functions and closed groups

Definition 3.8. The Ui-part of a structure A ≤ (Hn, E, 0, U1, U2) is Ui ∩ A255

for i ∈ {1, 2}. The 0-part of a structure A ≤ (Hn, E, 0, U1, U2) is {0} ∩ A.

The intermediate pairs in a structure A ≤ (Hn, E, 0, U1, U2) are the 2-element

substructures of A with one point in U1 and one point in U2. Intermediate edges

and non-edges are the intermediate pairs constituting an edge and a non-edge,

respectively.260

Definition 3.9. Let X,Y ⊆ Hn be disjoint sets. We say that a functions f

eradicates edges (non-edges) on X if every pair of elements in X is mapped to

a non-edge (edge) by f . Similarly, f eradicates edges (non-edges) between X

and Y if every pair of elements in X × Y is mapped to a non-edge (edge) by

f . If f eradicates edges (non-edges) between U1 and U2, then we say that f265

eradicates intermediate edges (non-edges). If f eradicates intermediate edges or

non-edges, then we say that f eradicates intermediate pairs.

The proof of Proposition 3.7 can be refined to show the following statement.

Lemma 3.10. Let Aut(Hn, E, 0) ⊆ G be a closed group. Assume that for any

A ∈ Age(Hn, E, 0) there exists a copy A′ ≤ (Hn, E, 0) of A and a permu-270

tation πA ∈ G that eradicates intermediate pairs of A′. Then we have that

11



Aut(U1, E)×Aut(U2, E) ⊆ G. In particular, if G generates a canonical function

g : (Hn, E, 0) → (Hn, E, 0) that eradicates intermediate pairs, then G contains

Aut(U1, E)×Aut(U2, E).

Proof. By using the condition in the first part of the assertion, the copy of275

Bj in the proof of Proposition 3.7 can be chosen such that intermediate pairs

of Bj are eradicated by some permutation in G. Thus after thinning out the

sequence bj in the proof of Proposition 3.7, the generated canonical function

g : (Hn, E, 0) → (Hn, E, 0) eradicates intermediate pairs, and it is enough to

prove the second part of the assertion.280

To this end we have to show that any permutation α ∈ Aut(U1, E) ×

Aut(U2, E) can be interpolated on any finite substructure of Hn by an ele-

ment of G. Let A ≤ (Hn, E, 0) be finite and let B = α(A). Then A and B differ

only in the intermediate pairs, i.e, α �A is a partial isomorphism of (Hn, E, 0)

except that some intermediate edges might be mapped to non-edges and vice285

versa. There exist γA, γB ∈ G such that γA �A= g �A and γB �B= g �B . Thus

(γB ◦ α ◦ γ−1A ) �γA(A) is a partial isomorphism of (Hn, E, 0), and consequently,

it extends to some β ∈ Aut(Hn, E, 0). Hence, (γ−1B ◦ β ◦ γA) �A= α �A.

Lemma 3.11. Let Aut(U1, E) × Aut(U2, E) ⊆ G be a closed group. Assume

that G generates a canonical function g : (Hn, E, 0) → (Hn, E) that eradicates290

edges on U` for some ` ∈ {1, 2}. Then G contains Aut(Um, E)× Sym(U`) with

{`,m} = {1, 2}.

Proof. Let α ∈ Aut(Um, E)×Sym(U`), and let A,B ≤ (Hn, E, 0) be such that

α(A) = B. Then A and B have isomorphic Um-parts and 0-parts, and they

have the same number of vertices in U2. By applying some permutations in295

Aut(U1, E) × Aut(U2, E) we may assume that there are no intermediate edges

in A and in B. Let γA, γB ∈ G be such that γA and γB eradicate edges on

the U`-part of A and B, respectively. Then (γB ◦ α ◦ γ−1A ) �γA(A) is a partial

isomorphism of (Hn, E, 0), and thus it extends to some β ∈ Aut(Hn, E, 0).

Hence, γ−1B ◦ β ◦ γA ∈ G agrees with α on A.300
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4. Closed supergroups of the automorphism group

4.1. Destroying structure on U1 or U2

Definition 4.1. We denote by In the empty graph on n vertices.

Lemma 4.2. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that G

generates a canonical function g : (Hn, E, 0) → (Hn, E) that violates E or N305

on U2. Then G contains Aut(U1, E)× Sym(U2).

Proof. Since In embeds into U2, g cannot violate N on U2, as otherwise the

image of g would contain a copy of Kn. Thus g eradicates edges on U2. We

show that G contains Aut(U1, E)×Aut(U2, E).

According to Lemma 3.10 it is enough to prove that for any finite A ≤310

(Hn, E, 0) there exists an element of G that maps all intermediate pairs of

A to non-edges. Let us denote the vertices of A in U1 by X = {x1, . . . , xr}

and in U2 by Y = {y1, . . . , ys}. The intermediate edges of A are going to be

deleted in r steps, i.e., with the composition of r permutations π1, . . . , πr in

G. The i-th step is as follows. Assume that the intermediate pairs containing315

x1, . . . , xi−1 are already mapped to non-edges by the permutation πi−1 ◦ · · · ◦

π1 such that πi−1 ◦ · · · ◦ π1 maps the elements of Y into U2. Elements of

X are not necessarily mapped into U1. Let v1, v2, . . . , vi−1 be the images of

x1, x2, . . . , xi−1, respectively. Let ui be the image of xi, and let z1, . . . , zs be

the images of y1, . . . , ys, respectively. We need a permutation πi ∈ G such that320

πi(vjzk) ∈ N , πi(uizk) ∈ N and πi(zk) ∈ U2 for all j, k. Let (πi−1◦· · ·◦π1)(A) =

A′.

We construct a structure B ≤ (Hn, E, 0) by using A′. The vertices z1, . . . , zs

are replaced by the elements {zp,q | 1 ≤ p ≤ s, 1 ≤ q ≤ n − 1} in U2 such

that zp,1 = zp for all 1 ≤ p ≤ s. The new vertices are chosen such that for325

every vertex w ∈ A′ we have wzp,q ∈ E ⇔ wzp ∈ E for all p, q, and similarly,

zp1,q1zp2,q2 ∈ E ⇔ zp1zp2 ∈ E for all p1, p2, q1, q2.

We need to verify that B is indeed in Age(Hn, E, 0). As zp,q1zp,q2 ∈ N for

all p, q1, q2, a complete subgraph K of B ∪ {0} cannot contain two vertices of
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the form {zp,q1 , zp,q2}. Thus all the vertices of the form zp,q in K have different330

first indices. The function that is identical on K ∩ (A′ ∪ {0}) and maps zp,q to

zp for all vertices of the form zp,q ∈ K is an embedding into A′ ∪ {0}, thus K

has at most n− 1 elements.

Let C = {v1, v2, . . . , vi−1, z′1,1, z′1,2, . . . , z′s,n−1} ≤ (Hn, E, 0) be such that

vjz
′
p,q ∈ N for all j, p, q, z′p1,q1z

′
p2,q2 ∈ E ⇔ (p1 = p2) ∧ (q1 6= q2) for all335

p1, p2, q1, q2 and z′p,q ∈ U2 for all p, q.

Let D = {v1, v2, . . . , vi−1, z1,1, z1,2, . . . , zs,n−1} and let f : D → C be the

function that fixes v1, . . . , vi−1 and maps every element of the form zp,q to z′p,q.

There are permutations γD, γC ∈ G such that γD �D= g �D and γC �C= g �C .

There exists a β ∈ Aut(Hn, E, 0) such that (γC ◦ f ◦ γ−1D ) �γD(D)= β �γD(D).340

Hence, (γ−1C ◦ β ◦ γD) �D= f �D, and δ = γ−1C ◦ β ◦ γD ∈ G. For any 1 ≤ p ≤ s

the vertex δ(ui) cannot be connected to all vertices of the form δ(zp,q), as the

vertices δ(zp,q), 1 ≤ q ≤ n− 1 induce a complete graph of size n− 1. Thus for

all 1 ≤ p ≤ s there exists a 1 ≤ q(p) ≤ n− 1 such that δ(ui)δ(zp,q(p)) ∈ N . Let

µ ∈ Aut(Hn, E, 0) be such that µ fixes every element of A′ that is not of the345

form zp, and µ(zp) = zp,q(p). Then πi = δ ◦ µ is an appropriate choice. Thus

G indeed contains Aut(U1, E)×Aut(U2, E) by Lemma 3.10, and the statement

follows from Lemma 3.11.

If we switch the roles of U1 and U2 in the proof of Lemma 4.2, then the proof

fails when we construct C, as Kn−1 cannot be embedded into U1. Hence, the350

analogue version of Lemma 4.2 is somewhat more complicated to prove, and it

requires an auxiliary lemma.

Lemma 4.3. Let Aut(Hn, E, 0) ⊆ G be a closed group with n ≥ 4. Assume

that for any Kn-free graph S there exists a permutation πS ∈ G and a copy S′

of S in U2 such that πS(S′) is K3-free. Then G generates a canonical function355

g : (Hn, E, 0)→ (Hn, E) that violates E on U2.

Proof. We slightly modify the argument in the proof of Proposition 3.7. The

sequence B1, B2, . . . can be chosen so that the image of the U2-part of Bj under
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some permutation in G is K3-free for all j ≥ 1. Then for large enough j

the canonical behaviour assigned to A′j cannot preserve E on U2. Thus after360

thinning out the sequence we obtain a canonical function that violates E on U2.

Lemma 4.4. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that G

generates a canonical function g : (Hn, E, 0) → (Hn, E) that violates E or N

on U1. Then G contains Aut(U2, E)× Sym(U1).

Proof. Just as in the proof of Lemma 4.2 we have that g eradicates edges on U1.365

For n = 3, U1 is an independent set, thus we may assume that n ≥ 4. According

to Lemma 3.11 it suffices to show that G contains Aut(U1, E) × Aut(U2, E).

According to Lemmas 4.3 and 4.2 we may assume that there is a Kn-free graph

S such that the image of any copy of S in U2 under any permutation in G

contains a triangle. Throughout the proof we fix such a graph S.370

The method is similar to that of the proof of Lemma 4.2. Let A ≤ (Hn, E, 0)

be finite. Let us denote the vertices of A in U1 by X = {x1, . . . , xr} and

in U2 by Y = {y1, . . . , ys}. According to Lemma 3.10 it is enough to show

that there exists an element of G such that the intermediate edges of A are

mapped to non-edges. This permutation will be constructed in s steps. In375

the i-th step we construct a permutation πi. Assume that the intermediate

pairs of A containing y1, . . . , yi−1 are mapped to non-edges by the permutation

πi−1 ◦ · · · ◦π1. Assume further that the permutation πi−1 ◦ · · · ◦π1 maps X into

U1. Let us denote the images of the points x1, . . . , xr, y1, . . . , yi−1, yi under the

permutation πi−1 ◦ · · · ◦ π1 by z1, . . . , zr, v1, . . . , vi−1, ui, respectively. We need380

to find a permutation πi such that πi(vjzk) ∈ N , πi(uizk) ∈ N and πi(zk) ∈ U1

for all j, k. Let A′ = {z1, . . . , zr, v1, . . . , vi−1, ui}.

Let B ≤ (Hn, E, 0) be a finite structure whose U2-part and 0-part are equal

to those of A′ such that there is a function f1 : A′ → B that is a partial

isomorphism of (Hn, E, 0) except that the U1-part of B is an independent set,385

thus f1 might violate E on U1. There exist γA′ , γB ∈ G such that γA′ �A′= g �A′

and γB �B= g �B . Then there is a β ∈ Aut(Hn, E, 0) such that γB ◦ f1 ◦

γ−1A′ �γA′ (A′)= β �γA′ (A′). Hence, the function f1 extends to γ−1B ◦ β ◦ γA′ ∈ G,
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and thus we may assume that the U1-part of A′ is an independent set. In

particular, the set {z1, . . . , zr} induces an empty graph. If ui ∈ U1 then we390

are done, so we may assume that ui 6∈ U1. We may assume that ui 6= 0, as

otherwise we can replace yi by µ(yi) where µ ∈ Aut(Hn, E, 0) fixes A\{yi}, and

then πi−1 ◦ · · · ◦π1 ◦µ maps yi to a non-zero element while all the properties we

assumed so far hold. Thus ui ∈ U2. Let us denote by rE and rN the number of

vertices in {z1, . . . , zr} that are connected and not connected to ui, respectively.395

Let C = {v1, . . . , vi−1, ui}.

We construct a finite D ≤ (Hn, E, 0). Let C1, . . . , C|S| ≤ (Hn, E, 0) be |S|

disjoint isomorphic copies of C. In the k-th copy the points are vk1 , . . . , v
k
i−1 and

uki . Between two copies C` and Cm there are no edges, except that the set {ukj |

1 ≤ k ≤ |S|} induces a graph in U2 isomorphic to S. From now on we identify400

this set with S. Let {ztp,q | 1 ≤ p ≤ n − 2, 1 ≤ q ≤ 6rE + 2rN , 1 ≤ t ≤
(|S|

3

)
}

be an independent set in U1. We have ztp,qv
k
m ∈ N for all p, q, t,m, k. Let us

enumerate the 3-element subsets of S so that every 3-element subset of S has an

index between 1 and
(|S|

3

)
. Each subset is ordered according to the parameter

k of the uki . The vertex ztp,q is connected to uki if and only if either405

• 1 ≤ q ≤ 2rE and uki is the second or third element in the 3-element subset

of index t, or

• 2rE + 1 ≤ q ≤ 4rE and uki is the third or first element in the 3-element

subset of index t, or

• 4rE + 1 ≤ q ≤ 6rE and uki is the first or second element in the 3-element410

subset of index t.

Let D = C1 ∪ · · · ∪ C|S| ∪ {ztp,q | 1 ≤ p ≤ n− 2, 1 ≤ q ≤ 6rE + 2rN , 1 ≤ t ≤(|S|
3

)
}. We show that there exists such a D, i.e., the above construction does not

produce a copy of Kn in D or a copy of Kn−1 in the U1-part of D. Note that

the U1-part of D is empty, so it is enough to check that any complete subgraph415

K of D has at most n− 1 vertices. If K contains a vertex of the form ztp,q, then

|K| ≤ 3 < n as ztp,q has degree 2 in D. Finally, if K ⊆ C1 ∪ · · · ∪ C|S|, then
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|K| ≤ n− 1 as C and S are Kn-free. Let D′ = {vkj | 1 ≤ j ≤ i− 1, 1 ≤ k ≤ |S|}

and D′′ = D \ S.

Now we construct a finite F ≤ (Hn, E, 0). The underlying set of F is D′ ∪420

{wtp,q | 1 ≤ p ≤ n − 2, 1 ≤ q ≤ 6rE + 2rN , 1 ≤ t ≤
(|S|

3

)
}. We have vkjw

t
p,q ∈ N

for all j, k, p, q, t and wt1p1,q1w
t2
p2,q2 ∈ E ⇔ (q1 = q2) ∧ (t1 = t2) ∧ (p1 6= p2).

It is clear that such an F exists. Let f2 : D′′ → F be the function fixing D′

pointwise and mapping ztp,q to wtp,q for all p, q, t.

Let γF , γD′′ ∈ G be such that γF �F= g �F and γD′′ �D′′= g �D′′ . Then425

there is a δ ∈ Aut(Hn, E, 0) such that γF ◦ f2 ◦ γ−1D′′ �γD′′ (D′′)= δ �γD′′ (D′′).

Hence, the partial map f2 extends to ρ = γ−1F ◦ δ ◦ γD′′ ∈ G.

According to the choice of S it has a 3-element subset whose image under ρ

is a triangle. Without loss of generality we may assume that it is {u1i , u2i , u3i }

which has index t = 1. For a fixed 1 ≤ q ≤ 6rE + 2rN the vertices ρ(w1
p,q)430

for 1 ≤ p ≤ n − 2 induce a copy of Kn−2 in U1. Hence, for all q there are at

least two points in {ρ(u1i ), ρ(u2i ), ρ(u3i )} that are not connected to at least one

of these (n−2) points. For all 1 ≤ q ≤ 6rE +2rN let us assign two such vertices

from {ρ(u1i ), ρ(u2i ), ρ(u3i )}.

By a simple pigeonhole argument, there are at least two vertices in the set435

{ρ(u1i ), ρ(u2i ), ρ(u3i )} that are assigned at least rN times to numbers between

6rE + 1 and 6rE + 2rN . Without loss of generality we may assume that ρ(u1i )

and ρ(u2i ) are such. Again, by a simple pigeonhole argument, ρ(u1i ) or ρ(u2i )

is assigned to at least rE times to some 4rE + 1 ≤ q ≤ 6rE . Without loss of

generality we may assume that ρ(u1i ) is such. Thus there exist440

• rE numbers q1, . . . , qrE such that 4rE+1 ≤ q1, . . . , qrE ≤ 6rE and for some

1 ≤ p(qj) ≤ n− 2 depending on qj we have that ρ(w1
p(qj),qj

)ρ(u1i ) ∈ N for

all 1 ≤ j ≤ rE , and

• rN numbers q′1, . . . , q
′
rN such that 6rE+1 ≤ q′1, . . . , q′rN ≤ 6rE+2rN and for

some 1 ≤ p(q′j) ≤ n−2 depending on q′j we have that ρ(z1p(q′j),q′j
)ρ(u1i ) ∈ N445

for all 1 ≤ j ≤ rN .

Let A′′ = {ρ(z1p(qj),qj ) | 1 ≤ j ≤ rE} ∪ {ρ(z1p(q′j),q′j
) | 1 ≤ j ≤ rN} ∪ {v1j | 1 ≤
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j ≤ i− 1} ∪ {u1i }. The function f3 : A′ → A′′ with

• f3(vj) = v1j for all 1 ≤ j ≤ i− 1,

• f3(ui) = u1i ,450

• f3 mapping the rE vertices in A′ of the form zm connected to ui to the rE

vertices of the form z1p(qj),qj with 4rE +1 ≤ qj ≤ 6rE such that ρ(z1p(qj),qj )

is not connected to ρ(u1i ),

• f3 mapping the rN vertices in A′ of the form zm not connected to ui to

the rN vertices of the form z1p(q′j),q′j
with 6rE + 1 ≤ q′j ≤ 6rE + 2rN such455

that ρ(z1p(q′j),q′j
) is not connected to ρ(u1i )

is a partial isomorphism of (Hn, E, 0). Let ν ∈ Aut(Hn, E, 0) be an automor-

phism that extends f3. Then πi = ρ ◦ ν is an appropriate choice.

In the upcoming proofs we use the following notations.

Definition 4.5. Let c1, . . . , ck ∈ Hn \ {0}. We denote by Ui0i1...ik with i0 ∈460

{1, 2} and ij ∈ {cj , 6 cj} the subset of Hn that consists of the vertices w such

that

• w is connected to 0 iff i0 = 1,

• for j = 1, . . . , k we have that w is connected to cj iff ij = cj.

E.g., for a vertex 0 6= u ∈ Hn, U1 6u is the set of elements in U1 that are not465

connected to u.

Lemma 4.6. Let 0 6= u ∈ Hn, and let Aut(Hn, E, 0) ⊆ G be a closed group.

Let g : (Hn, E, 0, u) → (Hn, E) be a canonical function generated by G. Let

{`,m} = {1, 2} and assume that g(U` \ {u}) ⊆ U`. Then either G contains

Sym(U`)×Aut(Um, E) or g preserves E and N on U` \ {u}.470

Proof. Every finite set A ⊆ U` can be mapped into U` 6u by an automorphism

of Aut(Hn, E, 0). Thus by Lemma 4.2 or Lemma 4.4 we may assume that g
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preserves E and N on U 6̀u. According to the axioms of Hn, g cannot map

non-edges between U`u and U` 6u to edges. Indeed, there is a copy of Kn+`−3 in

U 6̀u and a vertex not connected to any of these n + ` − 3 vertices in U`u, and475

the g-image of these points would induce a copy of Kn+`−2 in U`. Assume that

g eradicates edges between U`u and U` 6u. Let A be a finite subset of U`. Then

there is an automorphism α ∈ Aut(Hn, E, 0) that maps a given element x ∈ A

into U`u and the rest of A into U` 6u. Thus in (g ◦ α)(A), the image of the given

point x is isolated, and g ◦ α preserves E and N on A \ {x}. By iterating such480

steps, A can be mapped to an independent set in U`, and the assertion follows

from Lemma 4.2 or Lemma 4.4.

Thus we may assume that g preserves edges and non-edges between U`u and

U` 6u. According to the defining axioms of (Hn, E), g cannot map non-edges in

U`u to edges. Thus g preserves N on U` \ {u}. If g violates E on U`u, then we485

can systematically delete all edges of a given finite A ≤ U` by a composition of

functions in {g}∪Aut(Hn, E, 0), and we are done by Lemma 4.2 or Lemma 4.4.

Lemma 4.7. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that G

generates a canonical function g : (Hn, E, 0) → (Hn, E, 0) that violates at least

one of the relations U1, U2, E �U1 , E �U2 , N �U1 and N �U2 . Then G contains490

Aut(Hn, E), or Aut(Hn, 0, E �Hn\{0}), or Sym(U1)×Aut(U2, E), or Sym(U2)×

Aut(U1, E).

Proof. By Lemmas 4.2 and 4.4 we may assume that g preserves E and N on

U1 and on U2. In particular, g preserves U2, since a copy of Kn−1 in U2 cannot

be mapped into U1 by g. Thus g(U1 ∪ U2) ⊆ U2, and in particular, U1 and U2495

are in the same G-orbit, and every finite set in Hn \ {0} can be mapped into U2

by an appropriate permutation in G.

Assume that g eradicates intermediate edges. Let u ∈ U2 and γ ∈ G be such

that γ(u) ∈ U1. Let h : (Hn, E, 0, u) → (Hn, E, 0) be an injective canonical

function provided by Proposition 3.7 with f = γ. By Lemma 4.2 we may500

assume that h preserves E and N on U26u, and in particular, h(U26u) ⊆ U2. If

h(U2u) ⊆ U1, then we are done by applying Lemma 4.6 to g ◦h. If h(U2u) ⊆ U2,
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then we may assume that h preserves E and N on U2 \ {u} by Lemma 4.6.

Then g ◦ h preserves U2, and it preserves edges and non-edges on U2, except

that g ◦ h(u) is an isolated point in g ◦ h(U2). Thus by iterating functions in505

the set {g ◦ h} ∪ Aut(Hn, E, 0) any finite subset of U2 can be mapped to an

independent set.

As every finite subset ofHn\{0} can be mapped into U2 by some permutation

inG, we have that every finite setA ⊆ Hn\{0} can be mapped to an independent

set in U2 by G. If G preserves 0, then this implies that Sym(Hn \ {0}) ⊆ G. If510

G violates 0, then every finite subset of Hn can be mapped to an independent

set in U2 by G, and thus G = Sym(Hn).

Hence, we may assume that g preserves intermediate edges and non-edges.

As g preserves E and N on U2, g cannot map non-edges between 0 and U2 to

edges, as it would contradict the defining axioms of Hn. Thus g preserves N515

between 0 and U2.

Case 1. Assume that g maps edges between 0 and U1 to non-edges. Then

every pair that contains 0 is mapped to a non-edge by g. We show that

Aut(Hn, 0, E �Hn\{0}) is contained in G. Let α ∈ Aut(Hn, 0, E �Hn\{0}) and let

A be a finite subset of Hn. Let α(A) = B. Let γA and γB be permutations in G520

such that γA �A= g �A and γB �B= g �B . Then γB◦α◦γ−1A �γA(A) is a partial iso-

morphism of (Hn, E, 0) that extends to some automorphism β ∈ Aut(Hn, E, 0).

Thus γ−1B ◦ β ◦ γA ∈ G interpolates α on A.

Case 2. Assume that g maps edges between 0 and U1 to edges. Then g

preserves E and N . As g(U1) ⊆ U2, we have g(0) 6= 0. We prove that G525

contains Aut(Hn, E). Let α ∈ Aut(Hn, E) and let A be a finite subset of Hn.

Let α(A) = B. Note that g ◦ g = g2 maps every finite subset of Hn into U2. Let

γA and γB be permutations in G such that γA �A= g2 �A and γB �B= g2 �B .

Then γB ◦ α ◦ γ−1A �γA(A) is a partial isomorphism of (Hn, E, 0) that extends to

some automorphism β ∈ Aut(Hn, E, 0). Thus γ−1B ◦ β ◦ γA ∈ G interpolates α530

on A.

Lemma 4.8. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that G gen-
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erates a canonical function g : (Hn, E, 0)→ (Hn, E, 0) that violates at least one

of the relations U1, U2, E �U1∪U2
and N �U1∪U2

. Then G contains Aut(Hn, E),

or Aut(Hn, 0, E �Hn\{0}), or Aut(U1, E)×Aut(U2, E).535

Proof. According to Lemma 4.7 we may assume that g preserves U1, U2, and

edges and non-edges on U1 and on U2. In particular, g cannot map intermediate

non-edges to edges, as it would contradict the defining axioms of Hn. Thus g

eradicates intermediate edges, and we are done by Lemma 3.10.

Lemma 4.9. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that the sets540

U1 and U2 are contained in the same G-orbit. Then G generates a canonical

function g : (Hn, E, 0)→ (Hn, E, 0) such that g(U1) ⊆ U2 or g(U2) ⊆ U1.

Proof. Let u ∈ U2 and γ ∈ G be such that γ(u) ∈ U1. Let h : (Hn, E, 0, u)→

(Hn, E, 0) be an injective canonical function provided by Proposition 3.7 with

f = γ. In particular, h(u) ∈ U1.545

There exists a canonical function h′ : (Hn, E, 0) → (Hn, E, 0, u) in the

monoid generated by Aut(Hn, E, 0), and consequently by G, such that h′(0) = 0

and h′(U`) ⊆ U` 6u for all ` ∈ {1, 2}. Hence, if h(U26u) ⊆ U1, then g =

h ◦ h′ : (Hn, E, 0) → (Hn, E, 0) is canonical such that g(U2) ⊆ U1. Simi-

larly, if h(U1 6u) ⊆ U2, then we obtain that G generates a canonical function550

g : (Hn, E, 0) → (Hn, E, 0) such that g(U1) ⊆ U2. Thus we may assume that

h(U26u) ⊆ U2 and h(U1 6u) ⊆ U1.

Assume that h(U2u) ⊆ U1. Given any finite set A ⊆ U2, there is an element

of Aut(Hn, E, 0) that maps one element of A into U2u and the rest of A into

U2 6u. By composing this automorphism with h, and another automorphism555

that maps the U1-part of the image of A into U16u, and then iterating such

steps, we can construct a function generated by G that maps A into U1. By

following the proof of Proposition 3.7 we have that G generates a canonical

function g : (Hn, E, 0) → (Hn, E, 0) such that g(U2) ⊆ U1. Thus we may

assume that h(U2u) ⊆ U2. Similarly, we may assume that h(U1u) ⊆ U1. Hence,560

h(U1 ∪ {u}) ⊆ U1 and h(U2 \ {u}) ⊆ U2.
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Given any finite set A ⊆ U2, there is an element of Aut(Hn, E, 0) that maps

one element of A to u and the rest of A into U26u. Hence, by composing functions

in the set {h} ∪ Aut(Hn, E, 0) any finite subset of U2 can be mapped into U1.

Thus we can conclude that G generates a canonical function g : (Hn, E, 0) →565

(Hn, E, 0) such that g(U2) ⊆ U1 as in the previous case.

Lemma 4.10. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that the

sets U1 and U2 are contained in the same G-orbit. Let {`,m} = {1, 2}. Then

there exists a permutation γ ∈ G and two vertices in U` such that γ maps both

of these vertices into Um.570

Proof. As U1 ∪U2 is contained in a G-orbit, there exists a permutation ρ ∈ G

and an element x1 ∈ U1 such that ρ(x1) ∈ U2. We may assume that no vertex

in U1 other than x1 is mapped into U2 by ρ, and at most one vertex in U2 is

mapped into U1 by ρ, or else ρ or ρ−1 is a good choice for γ. Let x2 ∈ U1 and

α ∈ Aut(Hn, E, 0) be such that ρ−1(x2) ∈ U1, α(x2) = x1 and ρ(α(ρ(x1))) ∈ U2.575

Then γ = ρ ◦ α ◦ ρ ∈ G maps x1 and ρ−1(x2) into U2.

Lemma 4.11. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that the

sets U1 and U2 are contained in the same G-orbit. Then G contains Aut(Hn, E),

or Aut(Hn, 0, E �Hn\{0}), or Sym(U1)× Sym(U2).

Proof. By Lemmas 4.9 and 4.7 we have that G contains Aut(Hn, E), or580

Aut(Hn, 0, E �Hn\{0}), or Sym(U1)×Aut(U2, E) or Sym(U2)×Aut(U1, E). As-

sume that G contains Sym(U`)×Aut(Um, E) with {`,m} = {1, 2}.

According to Lemma 4.10 there exists a permutation γ ∈ G and two vertices

u, v ∈ Um such that γ(u), γ(v) ∈ U`. The transposition tγ(u)γ(v) switching γ(u)

and γ(v) is in G. Thus tuv = γ−1 ◦ tγ(u)γ(v) ◦ γ, the transposition switching585

u and v, is in G. Note that the Henson graphs and the complements of the

Henson graphs are connected, except for (H2, E), which is empty. Hence, by

using a composition of elements in Aut(Hn, E, 0)∪{tuv}, it is possible to switch

a given pair of elements in Um while fixing every other element in Hn. The
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transpositions in Um together with Sym(U`)×Aut(Um, E) generate Sym(U1)×590

Sym(U2).

4.2. Orbit systems and big groups

Lemma 4.12. Let Aut(Hn, E, 0) ⊆ G be a closed group such that {0} and U`

are in the same orbit for some ` ∈ {1, 2}. Then there exists an element u ∈ U`
and a permutation γ ∈ G such that γ switches 0 and u.595

Proof. Let {m} = {1, 2}\{`}. Let ρ ∈ G and u ∈ U` be such that ρ(0) = u. If

the ρ-preimage v of 0 is also in U`, then there is a permutation α ∈ Aut(Hn, E, 0)

such that α(u) = v. Thus γ = ρ ◦ α switches 0 and u. Thus assume that

v ∈ Um. Let w 6= v be in Um, and let ρ(w) = z. If z ∈ Um then there

are β, δ ∈ Aut(Hn, E, 0) with β(v) = z and δ switching v and w. Hence,600

γ = ρ ◦ β−1 ◦ ρ ◦ δ ◦ ρ−1 ◦ β ◦ ρ−1 switches 0 and u. Finally, if z ∈ U` then

there exist µ, ν ∈ Aut(Hn, E, 0) with µ(v) = w and ν switching u and z. Thus

γ = ρ ◦ µ−1 ◦ ρ−1 ◦ ν ◦ ρ ◦ µ ◦ ρ−1 switches 0 and u.

Lemma 4.13. Let Aut(Hn, E, 0) ⊆ G be a closed group, and assume that the

orbits of G are precisely U`∪{0} and Um with {`,m} = {1, 2}. Then G contains605

Sym(U` ∪ {0})×Aut(Um, E).

Proof. First we show that G contains Sym(U`) × Aut(Um, E). According to

Lemma 4.12 there exists a γ ∈ G and a u ∈ U` such that γ switches 0 and u.

By applying Proposition 3.7 with f = γ we obtain that G generates a canonical

function g : (Hn, E, 0, u)→ (Hn, E, 0) that switches 0 and u.610

Clearly g(U` \ {u} ⊆ U`) and g(Um) ⊆ Um. By Lemma 4.6 we may assume

that g preserves E and N on U` \ {u}. Let h : (Hn, E, 0) → (Hn, E, 0) be a

function in the closed monoid generated by Aut(Hn, E, 0), and consequently by

G, such that h(U`) ⊆ U 6̀u. Then the function g1 = g ◦h◦ g is generated by G, it

maps U`∪{0} into U`, g1(u) is an isolated vertex in g1(U`∪{0}), and g1 �U`∪{0}615

preserves N . Thus the U`-part of any finite A ≤ (Hn, E, 0) can be mapped to an

independent set by a composition of functions in {g1} ∪ Aut(Hn, E, 0). Hence,

by one of Lemmas 4.2 and 4.4 we have that G contains Sym(U`)×Aut(Um, E).

23



The set {g} ∪ (Sym(U`) × Aut(Um, E)) generates a canonical function g′ :

(Hn, E, 0)→ (Hn, E, 0) such that g′(U`∪{0}) ⊆ U` is an independent set with no620

intermediate edges. Let α ∈ Sym(U`∪{0})×Aut(Um, E), and let A,B ⊆ Hn be

finite sets such that α(A) = B. There exist γA, γB ∈ G such that γA �A= g′ �A

and γB �B= g′ �B . Thus (γB ◦ α ◦ γ−1A ) �γA(A) is a partial isomorphism of

(Hn, E, 0), and consequently, it extends to some β ∈ Aut(Hn, E, 0). Hence,

γ−1B ◦ β ◦ γA interpolates α on A.625

4.3. Minimal groups above Aut(Hn, E, 0)

Lemma 4.14. Let Aut(Hn, E, 0) ( G be a closed group. Then G contains

Aut(Hn, E), or Aut(Hn, 0, E �Hn\{0}), or Aut(U1, E)×Aut(U2, E).

Proof. By Lemmas 4.11 and 4.13 we may assume that the orbits of G are

precisely {0}, U1 and U2. Then G does not violate any of the unary relations630

of (Hn, E, 0), thus it violates E. As edges and non-edges containing 0 are

preserved, an edge uv in Hn \ {0} is mapped to a non-edge by some γ ∈ G. Let

g : (Hn, E, 0, u, v) → (Hn, E, 0) be an injective canonical function provided by

Proposition 3.7 with f = γ. In particular, g(uv) ∈ N .

By Lemmas 4.2 and 4.4 we may assume that g preserves E and N on Ui6u 6v635

for all i ∈ {1, 2}. It is clear that g preserves N on all the Uijk, as all these sets

contain a copy of In.

Let ` ∈ {1, 2} and X be one of the sets {u}, {v}, Uijk with i ∈ {1, 2}, j ∈

{u, 6 u}, k ∈ {v, 6 v} such that if ` = 1 then X ⊆ U1. Then there is a copy K of

Kn+`−3 in U` 6u6v and a vertex w not connected to any point of K in X. Thus640

g preserves N between X and U` 6u6v, as otherwise g(K ∪ {w}) is isomorphic

to Kn+`−2, contradicting the defining axioms of (Hn, E, 0). In particular, if

u ∈ U1, then N is preserved between u and U16u 6v. We deal with the case u ∈ U2

later.

For all ` ∈ {1, 2}, j ∈ {u, 6 u}, k ∈ {v, 6 v} and A ⊆ U` finite there is an645

α ∈ Aut(Hn, E, 0) such that the α-image of A is in U` 6u6v except for a given

vertex which is mapped into U`jk. Thus by Lemmas 4.2 and 4.4 we may assume
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that g preserves E between U`jk and U` 6u6v, as otherwise we can delete edges in

the U`-part of A with a composition of functions in the set {g}∪Aut(Hn, E, 0).

Similarly, g preserves E on U`jk, or we can eradicate edges by using automor-650

phisms that map an edge of A into U`jk and all other vertices of A into U` 6u6v.

Let ` ∈ {1, 2}, j1, j2 ∈ {u, 6 u}, k1, k2 ∈ {v, 6 v} be such that {6 u, 6 v} 6=

{j1, k1} 6= {j2, k2} 6= {6 u, 6 v}, and assume that g violates N between U`j1k1

and U`j2k2 . There exist x ∈ U`j1k1 , y ∈ U`j2k2 and a copy K of Kn+`−4 in

U 6̀u 6v such that xy ∈ N and all other pairs in K ∪ {x, y} are edges. Hence,655

g(K ∪ {x, y}) is isomorphic to Kn, a contradiction. Thus we may assume that

g preserves N on U` \ {u, v} for all ` ∈ {1, 2}.

If g violates E on U` \ {u, v} for some ` ∈ {1, 2}, then we can systematically

delete edges in the U`-part of any finite A ≤ (Hn, E, 0), and then we are done

by Lemmas 4.2 and 4.4. Thus we may assume that g preserves E and N on660

U` \ {u, v} for all ` ∈ {1, 2}.

For all finite A ≤ (Hn, E, 0) there is a β ∈ Aut(Hn, E, 0) such that the β-

image of the U1-part of A is in U16u6v and the β-image of the U2-part of A is in

U26u6v. Thus g preserves E between U1 6u6v and U26u6v, as otherwise g ◦ β eradicates

intermediate edges of A, and we are done by Lemma 3.10.665

Let j ∈ {u, 6 u} and k ∈ {v, 6 v} be such that {j, k} 6= {6 u, 6 v}. There exists

an intermediate non-edge with one endpoint in U16u6v and the other in U2jk, and

n− 2 additional points in U26u6v such that any pair of vertices in these n points

other than the intermediate non-edge is in E. Thus g preserves N between U16u6v

and U2jk, as otherwise the g-image of these n vertices would induce a copy of670

Kn in (Hn, E).

Let {`,m} = {1, 2}, j ∈ {u, 6 u} and k ∈ {v, 6 v} be such that {j, k} 6= {6 u, 6 v}

and there is an edge between U`jk and Um6u 6v. Let A ≤ (Hn, E, 0) be finite. If A

contains an intermediate edge, then there exists a δ ∈ Aut(Hn, E, 0) such that

the δ-image of the U`-part of A is in U` 6u6v except for an endpoint of a given675

intermediate edge in A which is in U`jk, and the δ-image of the U2-part of A

is in Um 6u6v. Thus if g violates E between U`jk and Um6u 6v, then g ◦ δ deletes an

intermediate edge in A and it preserves intermediate non-edges of A. Hence, we
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may assume that g preserves E between U`jk and Um 6u6v, as otherwise we can

systematically delete intermediate edges of A, and we are done by Lemma 3.10.680

Assume that g violates N between U1 \ {u, v} and U2 \ {u, v}. Let xy be an

intermediate non-edge violated by g such that x ∈ U1\{u, v} and y ∈ U2\{u, v}.

Then there is a copy K of Kn−2 in U26u6v such that x and y are connected to all

points in K. Then g(K ∪ {x, y}) is isomorphic to Kn, a contradiction. Thus g

preserves N on Hn \ {0, u, v}.685

If g violates E between U1\{u, v} and U2\{u, v}, then we can systematically

delete intermediate edges of any finite A ≤ (Hn, E, 0), and we are done by

Lemma 3.10. Thus we may assume that g preserves E and N on Hn \ {0, u, v}.

We have already seen that if u ∈ U1, then N is preserved between u and

U16u6v. Assume that u ∈ U2. If g violates E between u and U2u6v, then we can690

systematically isolate every point in a given finite A ⊆ U2 by mapping a given

point of A to u by an automorphism of (Hn, E, 0) and all other vertices of A into

U2u6v ∪U26u6v, and then applying g. Thus we may assume that E is preserved by

g between u and U2u 6v, as otherwise we are done by Lemma 4.2. Let x ∈ U16u6v.

There exist n−2 vertices in U2u 6v such that xu is the only non-edge in the graph695

induced by these n − 2 vertices, x and u. Thus g cannot violate N between

u and U16u6v, as it would contradict the defining axioms of (Hn, E). Hence, g

preserves N between u and U16u6v, and similarly, g preserves N between v and

U16u 6v.

Let {`,m} = {1, 2}. Assume that g violates E between u and U`u 6v. If700

u ∈ U`, then we proceed as in the previous paragraph. Hence, we may assume

that u ∈ Um. Then for all finite A ≤ (Hn, E, 0) there is a µ ∈ Aut(Hn, E, 0) such

that µ(A) ⊆ {0}∪(Um\{v})∪U`u 6v∪U` 6u6v, and if A contains an intermediate edge,

then µ maps its endpoint in Um to u. Then g ◦µ deletes an intermediate edge of

A, and preserves its intermediate non-edges. Thus by iterating such steps, we705

can eradicate intermediate edges of A, and we are done by Lemma 3.10. Hence,

we may assume that g preserves E between u and U`u 6v for all {`} ∈ {1, 2}.

Similarly, we may assume that g preserves E between v and U 6̀uv for all {`} ∈

{1, 2}.
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Assume that g violates N between u and U` 6uv for some {`} ∈ {1, 2}. There710

exists an x ∈ U` 6uv and a copy K of Kn−2 in U2u 6v such that x is connected to

every vertex of K. Thus g(K ∪ {u, x}) is isomorphic to Kn, a contradiction.

Hence, g preserves N between u and U` 6uv for all {`} ∈ {1, 2}. Similarly, g

preserves N between v and U`u 6v for all {`} ∈ {1, 2}.

Thus g preserves N . Let A ≤ (Hn, E, 0) be finite. If uv is an intermediate715

edge, then we can systematically delete intermediate edges of A, and we are done

by Lemma 3.10. If uv is in U` for some {`} ∈ {1, 2}, then we can systematically

delete edges in U`, and we are done by Lemmas 4.2 and 4.4.

Lemma 4.15. Let Aut(U1, E) × Aut(U2, E) ( G be a closed group. Assume

that the orbits of G are {0}, U1 and U2. Then G = Aut(U1, E)× Sym(U2), or720

G = Aut(U2, E)× Sym(U1), or G = Sym(U1)× Sym(U2).

Proof. As G strictly contains Aut(U1, E) × Aut(U2, E), there is a γ ∈ G

that violates E on Um for some m ∈ {1, 2}. By Theorem 1.1, Aut(Um, E)

is a maximal closed subgroup in Sym(Um), thus γ and Aut(Um, E) generate

every permutation of Um. Hence, any finite subset of Um can be mapped to an725

independent set in Um by an element of G, and Lemmas 4.2 and 4.4 imply that

G contains a group of the form Aut(U`, E)× Sym(Um) with {`,m} = {1, 2}.

We may assume that the containment is strict, as otherwise we are done.

Then the same argument as above yields that Sym(U`) × Aut(Um) ⊆ G, and

consequently, Sym(U`)× Sym(Um) ⊆ G. As Sym(U`)× Sym(Um) is the biggest730

(closed) group with orbits {0}, U1 and U2, we have G = Sym(U1)× Sym(U2).

Lemma 4.16. Let Aut(Hn, 0, E �Hn\{0}) ( G be a closed group. Then G con-

tains Sym(Hn \ {0}).

Proof. If G stabilises 0 then the restriction of the action of G to Hn \ {0} is

a closed group on Hn \ {0} containing Aut(Hn \ {0}, E �Hn\{0}). Thus in this735

case we are done by Theorem 1.1.

By Lemma 4.12 we may assume that there exists a γ ∈ G and an element

u ∈ U2 such that γ switches 0 and u. Let g : (Hn, E, 0, u) → (Hn, E, 0, u) be a
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canonical function provided by Proposition 3.7 with f = γ. We claim that every

finite subset of Hn can be mapped to an independent set in U2 by some element740

of G. If g does not preserve E or N on U26u, then Aut(U1, E) × Sym(U2) ⊆ G

by Lemma 4.2, and the claim follows by using compositions of functions in

{γ} ∪ Aut(Hn, 0, E �Hn\{0}) ∪ Sym(U2). So we may assume that g preserves

E and N on U2 6u, and consequently, g(U2 6u) ⊆ U26u. Aut(Hn, 0, E �Hn\{0})

generates a function h such that h(0) = 0 and h(Hn \ {0}) ⊆ U26u. Let g′ =745

g ◦ h ◦ g. Then g′(u) is an isolated vertex in g′(Hn). By iterating such steps,

the claim follows. Hence, G = Sym(Hn).

4.4. Closed groups above Sym(U1)× Sym(U2)

The structure (Hn, U1, U2, c1, . . . , cs) is homogeneous in a unary relational

language for all c1, . . . , cs ∈ Hn. A unary function g from (Hn, U1, U2, c1, . . . , cs)750

to (Hn, U1, U2, d1, . . . , dt) is canonical if and only if for every 1-element struc-

ture S ∈ Age(Hn, U1, U2, c1, . . . , cs) there exists a 1-element structure S′ ∈

Age(Hn, U1, U2, d1, . . . , dt) such that the g-image of any copy of S is isomorphic

to S′. The behaviour of g is uniquely determined by the type conditions satis-

fied by such 1-element substructures. Moreover, we have the following analogue755

statement of Proposition 3.7.

Proposition 4.17. Let s, t ≥ 0, and let c1, . . . , cs, d1, . . . , dt ∈ Hn. Let ∆ =

(Hn, U1, U2, c1, . . . , cs) and Γ = (Hn, U1, U2, d1, . . . , dt), and let f : ∆ → Γ be

an injective function. Then there exists an injective function

g ∈ {β ◦ f ◦ α | α ∈ Aut(∆), β ∈ Aut(Γ)}

such that g is canonical as a function from ∆ to Γ, and g(ci) = f(ci) for all760

i ∈ {1, . . . , s}.

Proposition 4.18. Let X ∪ Y be a partition of a countably infinite set D such

that X and Y are infinite. Let Sym(X)× Sym(Y ) ( G be a closed group acting

on D. Then either G = (Sym(X)× Sym(Y )) o Z2 or G = Sym(D).
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Proof. Note that the group Sym(X) × Sym(Y ) is a maximal subgroup of765

(Sym(X)× Sym(Y ))oZ2. Hence, if G 6= (Sym(X)× Sym(Y ))oZ2, then there

exists a γ ∈ G \ (Sym(X)× Sym(Y )) o Z2. We may assume that there are ele-

ments u, v ∈ X such that γ(u) = u and γ(v) ∈ Y . According to Proposition 4.17,

G generates a function g that is canonical as a function from (D,X, Y, u, v) to

(D,X, Y ).770

Case 1. Assume that g(X \ {u, v}) ⊆ X and g(Y ) ⊆ Y . Then any finite

subset of D can be mapped into Y by some element of G, and thus G = Sym(D).

Case 2. Assume that g(X \ {u, v}) ⊆ X and g(Y ) ⊆ X. Then any finite

subset of D can be mapped into X by some element of G, and G = Sym(D)

follows.775

Case 3. Assume that g(X \ {u, v}) ⊆ Y and g(Y ) ⊆ Y . Then any finite

subset of D can be mapped into Y by some element of G, and thus G = Sym(D).

Case 4. Assume that g(X \ {u, v}) ⊆ Y and g(Y ) ⊆ X. Let α be the

transposition that switches u and an element of X that is in the image of g.

Then g ◦α ◦ g preserves X and Y , except that it maps an element of Y into X.780

Then any finite subset of D can be mapped into X by some element of G, and

thus G = Sym(D).

The following is well-known, the simple proof is left to the reader.

Proposition 4.19. Let D be an infinite set. Then Sym(D \ {c}) is a maximal

subgroup of Sym(D) for any c ∈ D.785

Proposition 4.20. Let Sym(U1) × Sym(U2) ( G be a closed group. Then G

equals to one of the groups (Sym(U1)×Sym(U2))oZ2, Sym(U1∪{0})×Sym(U2),

Sym(U2 ∪ {0}) × Sym(U1), Sym(Hn \ {0}), (Sym(U1 ∪ {0}) × Sym(U2)) o Z2,

(Sym(U2 ∪ {0})× Sym(U1)) o Z2, Sym(Hn).

Proof. First assume that 0 is a fixed point of G. Then G �U1∪U2
is a closed790

group acting on U1∪U2 that strictly contains Sym(U1)×Sym(U2), and thus we

are done by Proposition 4.18. Hence, we may assume that 0 is not a fixed point of

G. If G is not transitive, then we are done by Lemma 4.13 and Proposition 4.18.
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Thus we may assume that G is transitive. By Lemma 4.12 there exists a γ ∈ G

and an element u ∈ U1 such that γ switches 0 and u. Let g : (Hn, 0, u, U1, U2)→795

(Hn, 0, U1, U2) be a canonical function provided by Proposition 4.17 with f = γ.

Case 1. Assume that g(U1 \ {u}) ⊆ U1 and g(U2) ⊆ U2. Then we proceed

as in the proof of Lemma 4.13 and obtain that Sym(U1 ∪ {0})× Sym(U2) ⊆ G.

The assertion follows from Proposition 4.18.

Case 2. Assume that g(U1 \ {u}) ⊆ U1 and g(U2) ⊆ U1. Then any finite800

subset of Hn can be mapped into U1 by some element of G, and G = Sym(Hn)

follows.

Case 3. Assume that g(U1 \ {u}) ⊆ U2 and g(U2) ⊆ U2. Then any finite

subset of Hn can be mapped into U2 by some element of G, and G = Sym(Hn)

follows.805

Case 4. Assume that g(U1 \ {u}) ⊆ U2 and g(U2) ⊆ U1. Then there exists

a permutation π ∈ G such that π switches 0 and u, π(U1 \ {u}) = U2 and

π(U2) = U1 \ {u}. Let tuv be the transposition that switches u and v for some

u 6= v ∈ U1. Then ρ = π ◦ tuv ◦ π is a transposition that switches 0 with an

element in U2. It is obvious that ρ and Sym(U2) generate every permutation in810

Sym(U2 ∪ {0}), and thus G contains Sym(U2 ∪ {0})× Sym(U1). The assertion

follows from Proposition 4.18.

5. Characterisation of the reducts

We are ready to prove the main theorem of the paper.

Proof of Theorem 2.3. Let Aut(Hn, E, 0) ⊆ G. If the orbits of G are {0},815

U1 and U2, then we are done by Lemmas 4.14 and 4.15. If U1 and U2 are

contained in the same G-orbit, then the assertion follows from Lemmas 4.11,

4.16, Theorem 1.1 and Propositions 4.20 and 4.19. Thus we may assume that

the orbits of G are precisely U` ∪ {0} and Um with {`,m} = {1, 2}. Then

G contains Sym(U` ∪ {0}) × Aut(Um, E) by Lemma 4.13. If the containment820

is strict, then some γ ∈ G violates E on Um. By Theorem 1.1 we have that

any finite subset of Um can be mapped to an independent set in Um, and then
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G = Sym(U` ∪ {0})× Sym(Um) by our assumption and one of Lemmas 4.2 and

4.4.
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