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Abstract We determine the multiplicative loops of locally compact connected
4-dimensional quasifields @) having the field of complex numbers as their ker-
nel. In particular, we turn our attention to multiplicative loops which have
either a normal subloop of dimension one or which contain a subgroup iso-
morphic to Sping(R). Although the 4-dimensional semifields @ are known,
their multiplicative loops have interesting Lie groups generated by left or
right translations. We determine explicitly the quasifields ¢ which coordi-
natize locally compact translation planes of dimension 8 admitting an at least
16-dimensional Lie group as automorphism group.

Keywords Multiplicative loops of locally compact quasifields - semifields -
sections in Lie groups - translation planes - automorphism groups

1 Introduction

Since the seventies of the last century the locally compact connected topologi-
cal non-desarguesian translation planes became a popular subject of geometri-
cal research ([2]-[7], [8], [12]-[14], [17], [21], [24]). These planes are coordinatized

In accordance with Karl’s will, we cordially dedicate this paper to the 75th birthday of our
common friend Heinrich Wefelscheid

G. Falcone
Dipartimento di Matematica e Informatica, via Archirafi 34, 90123 Palermo, Italy
E-mail: giovanni.falcone@unipa.it

A. Figula

University of Debrecen, Institute of Mathematics, P.O.Box 400, H-4002, Debrecen, Hungary
Tel.: +36-52-512900-22721

Fax: E-mail: figula@science.unideb.hu

K. Strambach

Universitat Erlangen-Niirnberg, Department Mathematik, Cauerstrasse 11, D-91058 Erlan-
gen, Germany

E-mail: stramba@math.fau.de

*


http://www.editorialmanager.com/rima/download.aspx?id=15983&guid=42179d24-ef6e-4cb3-9328-ed9e86998f17&scheme=1
http://www.editorialmanager.com/rima/download.aspx?id=15983&guid=42179d24-ef6e-4cb3-9328-ed9e86998f17&scheme=1

2 Giovanni Falcone et al.

by locally compact quasifields () having either the field R of real numbers or
the field C of complex numbers as their kernel (cf. [11], IX.5.5 Theorem, p.
323). The classification of topological translation planes A was accomplished
by reconstructing the spreads corresponding to A. In this way D. Betten deter-
mined all 4-dimensional planes having an at least 7-dimensional automorphism
group ([2]-[7], [21]) and H. H&hl classified the 8-dimensional topological trans-
lation planes admitting an at least 16-dimensional automorphism group and
coordinatizing by quasifields having the field C as their kernels ([8], [12]-[14]).
Using another tool N. Knarr determined the 8-dimensional planes coordina-
tizing by semifields having the field C as their kernel (cf. [17], Section 6).

However only few results are known on the loop theoretical characteriza-
tions of the multiplicative structure of locally compact quasifields. As the first
step in this direction the algebraic structure of the multiplicative loops of topo-
logical quasifields having dimension 2 over their kernel R was described in [9].
After this the question naturally arises: How we can determine the algebraic
structure of the multiplicative loop Q* of a quasifield Q having dimension 2
over its kernel C? This paper is devoted to answer this question. In that case
the topological dimension of Q) is 4.

Before our investigation P. T. Nagy and K. Strambach proved that the
group G topologically generated by the left translations of the 2-dimensional
proper multiplicative loops @Q* is the connected component of GLy(R) but
the group topologically generated by the right translations of @* has infinite
dimension (cf. [18], Section 29, p. 345). In contrast to this we find that the
group G topologically generated by the left translations of the multiplicative
loops Q* of 4-dimensional quasifields having the field C as their kernel is one of
the following groups: Sping(R) x R, Sping(R) x C, SLy(C) x R, GLy(C). The
classification of H&hl and Knarr shows that all these Lie groups are realized
as the group generated by the left translations of a multiplicative loop Q*.
In particular, if G is the group Sping(R) x R, then Q* is associative and @
is either a proper Kalscheuer’s near field or the skewfield of quaternions. We
note that any locally compact 2-dimensional near field is the field of complex
numbers ([11], XI1.12.2 Proposition, p. 348). In Section 3 we determine the
continuous sharply transitive sections corresponding to the loops @* and study
their properties. The images of these sections ¢ : G/H — G, where H is the
stabilizer of the identity of a loop @Q*, are the spreads corresponding to the
planes A coordinatizing by @. Using the images of these sections we prove that
if a loop Q* contains a 1-dimensional normal subloop, then Q* is a central
extension of the group R by a loop homeomorphic to S* (cf. Theorem 6).

The multiplicative loops Q* of locally compact left quasifields @ having
the field C as their kernels such that the set of the left translations of Q* is
the product TKC, where T is the set of the left translations of a 3-dimensional
compact loop and K is the set of the left translations of @Q* corresponding
to the 1-dimensional connected subgroup of the kernel of @) consisting of real
elements, form an important subclass of loops, that we call decomposable
loops. Namely, if @* has a normal subgroup of the form N = {(u,0),u > 0}
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or if it contains the group Spins(R), then Q* is decomposable (cf. Theorem 9
and Proposition 10).

Although P. Plaumann and K. Strambach showed that any locally compact
2-dimensional semifield is the field of complex numbers (cf. [23]) in Knarr’s
classification (cf. Theorem 6.6. in [17], p. 83) there are two families of 4-
dimensional proper semifields having the field C as their kernels. The multi-
plicative loops Q* of these semifields are direct products of R and a compact
loop K homeomorphic to the 3-sphere (cf. Proposition 11). For K one obtains
two classes of loops having the group SL4(R) as the group I' topologically
generated by all translations of K. These 3-dimensional compact loops are till
now the only known examples such that I" is a (finite dimensional) Lie group.
Hence the group generated by all translations of the multiplicative loops Q* of
4-dimensional proper semifields are Lie groups in contrary to the 2-dimensional
proper quasifields. Also the group topologically generated by the left transla-
tions of K has a remarkable structure: it is isomorphic to the group of complex
(2 x 2)-matrices the determinants of which have absolute value 1.

In Section 6 we use Héhl’s classification to determine in our framework
the multiplicative loops Q* of the quasifields @@ which coordinatize the 8-
dimensional locally compact translation planes A4 with an automorphism group
of dimension at least 16 such that the kernel of @ is isomorphic to the field C.
There are three classes of these quasifields Q.

The first class consists of quasifields @ such that the automorphism group
of the 8-dimensional locally compact translation planes coordinatizing by @
contains a subgroup G isomorphic to Spings(R) in the stabilizer of an affine
point and G acts as SO4(R) on the line Lo of infinity (cf. [12]). The multi-
plicative loops @* of @ have the group Sping(R) x C as the group generated
by their left translations and contain the group Spins(R) (cf. Proposition 12).

In the second class are the quasifields @ such that the automorphism group
of the 8-dimensional locally compact translation planes coordinatizing by @
has a subgroup G (locally) isomorphic to SL2(C) (cf. [13]). The multiplicative
loops @* of @ are central extensions of the group R by a loop homeomorphic
to S$% and they have the group SL»(C) x R as the group generated by their
left translations (cf. Proposition 13).

The third class consists of quasifields @ such that the automorphism group
A of the 8-dimensional locally compact translation planes coordinatizing by
@ contains a subgroup G isomorphic to Sping(R) in the stabilizer of an affine
point such that G acts as SO3(R) on the line L, of infinity and has fixed point
on L.,. Moreover, the stabilizer of an affine point in A contains a 3-dimensional
closed subgroup N of shears with fixed axis such that G normalizes N (cf.
[14]). The multiplicative loops Q* of @ have the group GLy(C) as the group
generated by their left translations (cf. Proposition 15).
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2 Preliminaries

A binary system (L, -) is called a loop if there exists an element 1 € L such
that z = 1.2 = x-1 holds for all z € L and for any given a,b € L the equations
a-y =band z-a = b have unique solutions which are denoted by y = a\b and
x =b/a. A loop L is proper if it is not a group. If (L,-) is a loop and K C L
is such that (K, -) is a loop, then (K, ) is called a subloop of (L, -).

Given two loops (L1, 0) and (Lg, *), amap « : Ly — Ly such that a(z)*a(y) =
a(x oy) holds for all z,y € L; is called a homomorphism. Two loops (L, o)
and (Lg,#) are called isomorphic if there exists a bijective homomorphism
« : L1 — Lo. The kernel of a homomorphism « : Ly — Lo from a loop Li to
a loop Loy is a normal subloop N of Ly, i.e. a subloop of L; such that

t-N=N-z, (z-N)-y=z-(N-y), (N-z)-y=N-(z-y) (1)

hold for all z,y € L;. A loop L is called simple if {1} and L are its only normal
subloops.

For all a € L, the left translations A\, : L — L,z — a - = (as well as the right
translations p, : L — L,x — x - a) are bijections of L and the loop L can be
identified with a transversal of the group G generated by the left translations,
modulo the stabilizer H of the identity.

A loop L is called topological, if it is a topological space and the binary oper-
ations (a,b) — a - b, (a,b) — b/a, (a,b) — a\b: L x L — L are continuous.
Then the left and right translations of L are homeomorphisms of L. We call
a connected topological loop quasi-simple if it contains no normal subloop of
positive dimension.

Every topological connected loop L having a Lie group G as the group topolog-
ically generated by the left translations of L corresponds to a sharply transitive
continuous section o : G/H — G, where G/H = {xH|z € G} consists of the
left cosets of the stabilizer H of 1 € L such that o(H) = 1¢ and o(G/H) gen-
erates G. The section o is sharply transitive if the image o(G/H) acts sharply
transitively on G/H, which means that to any zH, yH there exists precisely
one z € o(G/H) with zoH = yH (cf. [18], Sections 1.2, 1.3).

A (left) quasifield is an algebraic structure (@, +, -) such that (@, +) is an
abelian group with neutral element 0, (Q \ {0},-) is a loop, 0-z =2 -0 =0,
and between these operations the (left) distributive law z-(y+2) = x-y+z- 2
holds. If for any given a,b,c € @Q the equation a -z +b-x =c with a+b#0
has precisely one solution, then @ is called planar. A translation plane is an
affine plane with transitive group of translations. The translation planes may
be coordinatized by planar quasifields (cf. [22], Kap. 8).

The kernel K, of a (left) quasifield @ is a skewfield defined by

(x+y)-k=x-k+y-kand (x-y)-k=x-(y-k) forall z,y € Q,k € K,.

The center Z of Q is the set {z € K| z-x =z -z for all z € Q}.
If @ is a semifield, that is, if in ) also the right distributive law holds, then
@ may be consider also as a (right) quasifield and its kernel K; is given by

k-(z+y)=k-z+k-yandk-(z-y)=(k-z)-yforall z,y € Q,k € K;.
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The (left) quasifield @ is a right vector space over K, and for all a € Q the
map A\, : Q = Q,z — a-x is K,-linear. According to [16], Theorem 7.3, p.
160, every quasifield having finite dimension over its kernel is planar.

A locally compact connected topological quasifield is a locally compact con-
nected topological space @ such that (@, +) is a topological group, (@ \ {0}, )
is a topological loop, the multiplication - : @ X @ — @ is continuous and the
mappings A\, : € — a-x and p, : x — x-a with 0 # a € @ are homeomorphisms
of Q. Moreover one has (cf. [11], pp. 322-323) either K, = R and the dimen-
sion of @ over Ris 1,2,4 or 8, or K,, = C and the dimension of @ over C is 1
or 2, or @ is the skewfield of quaternions. We treat multiplicative loops of lo-
cally compact connected topological quasifields @) having dimension 2 over the
field C and coordinatizing non-desarguesian 8-dimensional topological trans-
lation planes. Then (Q, +) is the vector group C? and the multiplicative loop
Q* = (Q\{0},-) is a topological loop homeomorphic to R x S3, where S? is
the 3-sphere.

A near field is a quasifield with associative multiplication. Every locally com-
pact connected near field is isomorphic to R, C, or to the near field H, =
(H, +, o) obtained from the skewfield (H, +, -) of quaternions by modifying the
multiplication - with x oy = 2 - p(x) ™1 -y - p(), where ¢(z) = exp(ir log |z|),
for some r € R. The near fields H,., r # 0, are called proper Kalscheuer’s near
fields. The multiplicative group of the near fields H,. is Sping(R) x R.

3 Multiplicative loops of topological quasifields having dimension 2
over their kernel C

Assume that @ is a right vector space over C with the scalar multiplication
induced by C*. Let e; be the identity element of the multiplicative loop Q* of
@ which is the generator of the kernel K, as vector space and let B = {ej, ea}
be a basis of @ over K,.. Once we fix B, we identify @) with the vector space
of pairs (z,y)! € C? and K, with the subspace of pairs (z,0)*. The element
(1,0) is the identity element of the multiplicative loop Q* of @Q. Then the
set Ag of all left translations of () is a spread set M of the vector space @
(cf. Proposition 1.14 in [17], p. 12). Moreover, the set M consists of matrices
Ca, B,7,0) = <‘;‘ g) ,a,B3,7,0 € C. By Section 1.2 in [17], pp. 10-14, the
vectors (o, )t consists of all vectors of Q. Hence if (a,7)! is an element of
Q, then there exists a unique matrix of M = Ag having (a,7)" as the first
column (cf. [9], p. 2595).

As K, = C the group G topologically generated by the left translations of Q*
is a connected closed subgroup of GLa(C) (cf. [18], p. 345). Since the loop Q*
is homeomorphic to S% x R the group G acts transitively on the sphere S® and
it contains a 4-dimensional subgroup S = Sping(R) x R. Since Spins(R) is a
maximal compact subgroup of SLy(C) it follows that for G # Sping(R) x R
the group G is isomorphic either to the group Spinz(R) x C or to SLy(C) x R
or to GLy(C) (cf. [26], p. 24).

t
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Proposition 1 Let Q* be the multiplicative loop for a locally compact con-
nected topological 4-dimensional quasifield Q having the field C as its kernel.
If Q* contains the normal subgroup Spins(R), then Q is either a Kalscheuer’s
near field or the group G topologically generated by the left translations of Q*
is the group Sping(R) x C.

Proof By Lemma 1.7, p. 19, in [18], the left translations of a normal subloop
of @* generate a normal subgroup of the group G topologically generated
by all left translations of Q*. The group topologically generated by the left
translations of the normal subgroup Sping(R) of @* is isomorphic to Spinsz(R).
But this group is normal in the group G = Sping(R) xR or in G = Spinz(R) x
C. In the first case Q* is the group Sping(R) x R, or equivalently @ is a
Kalscheuer’s near field.

Assume that the loop Q* is proper. As dim(Q*) = 4 and the stabilizer H
of the identity element of @* in G does not contain any non-trivial normal
subgroup of G we may assume that H is the subgroup

i-{(12)e3

if G is Sping(R) x C or H has the form

H:{(gkl1>,k>07le(c} (3)

if G is SL2(C) x R or H is the subgroup

ko1
H:{(Okleis)’k>07l€C7SER} (4)

if G is GLy(C). The elements g of G have a unique decomposition as the

product
(52
uy uzx
withx,y € C, 2T+yy =1, 0 < u € R, h € H. Hence the loop Q* corresponds
to a continuous sharply transitive section of the form o : G/H — G;

ur —uy ur —uy a(u, z,y) b(u, =, y) _
(u,y T )H — (u,y uz ) ( 0 a—l(u,m,y)eiﬂ(u,m,y)) = M(u,a,y) ®)

such that a(u, z,y), respectively b(u, z,y), respectively c¢(u, z, y) are continuous
functions with positive, respectively complex, respectively real values. If G is
isomorphic to GLy(C), then one has a(1,1,0) = 1,5(1,1,0) = 0 and ¢(1,1,0) =
0. If G is isomorphic to SLy(C) x R, then one has a(1,1,0) =1, 5(1,1,0) =0
and c(u, z,y) is the constant function 0. If G is isomorphic to Spins(R) x C,
then the function a(u, x,y) is the constant function 1, the function b(u, z,y) is
the constant function 0 and ¢(1, 1,0) = 0. The section o given by (5) is sharply
transitive precisely if for all given (u1,x1,¥y1), (U2, 2, y2) in Rsg x Sping(R)
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there exists precisely one (u,x,y) € Rsg x Sping(R) and suitable £ > 0, ! € C,
s € R such that the matrix equation

ur —uy a(u, z,y) b(u, =, y) upey] —u1Yy \ _
wy uxT 0 a=L(u, x, y)etc(wz,y) wiyy w1z )

(55 2?) (o i) ®
is satisfied. As the determinant of the matrices on both sides of (6) are equal
we get that u = u] 'ug, c(u,z,y) = s. Using this, system (6) reduces to

-1 -1
(w —@) a(uy “ug,x,y) b(uy ‘ug,x,y) _ (12 —@) (k 1l ) ( TT ﬁ) 0
v T 0 a=l(uy ug, @, y)et® v2 T2 0 kT e —y1 ®1

Comparing in both sides of matrix equation (7) the elements in the first column
we obtain 4
za(uy tuy, z,y) = ok — Y120l + 17k e, (8)

ya(uy uz, x,y) = 2Tk — y1yal — 1 Tak " e”. 9)
Taking of both equation the complex conjugation we have

Ta(uy 'ug, 7, y) = Taw1k — yr1aol + Yryok e, (10)

ga(u tug, z,y) = Tox1k — yryel — Jrask e . (11)

Multiplying (8) with (10) and (9) with (11) and adding the obtained equations
we get

a(uy tug, z,y) = \/k2$1T1 — klyrzy — klyiey + g (U + k=2), (12)
. zoT1k — Y122l + y1yzk et , (13)
\//f2$13371 — klyrxy — Elyroey + yign (10 + k—2)
T1k — I —y1@gktels
y Y21 Y1Yy2 Y12 (14)

VK2 TT — Klyiws — Ky + gl + k2)

Comparing in both sides of matrix equation (7) the elements in the second
column we obtain

xb(u;lu%x, y) - yail(uflu%xvy)eis = oY1k + T1220 — 1’13/72/477161.87 (15)

yb(ufluQ, z,y) + fa_l(uflug, x,y)e" = york + 1yl + 1Tk e, (16)

Multiplying equation (15) with Z and (16) with § and adding the obtained
equations we have

1y k? — g2tk + 22k — 2 gr (1 + k2)
VK2 TT — Klyies — kg + g0+ k?)

b(ui ug, z,y) = (17)

For a continuous sharply transitive section o given by (5) the following holds:
u = u'ug >0, z, y are given by (13), (14) and for all fixed u = uj ‘ugy > 0
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functions a(uj ‘ug, x,y), b(u ‘u,z,y) are given by (12), (17) and function
c(uy 'ug, z,y) is the constant function s. Moreover, any continuous sharply
transitive section o given by (5) has this form with suitable £ > 0, [ € C,
s € R. As (13), (14) show x,y depend on (z1,y1,22,y2) € S® x S3. Hence
the continuous strictly positive function a(u,z,y), the continuous complex
function b(u,z,y) and the continuous real function c(u,z,y) are defined on
the set Rsg x 53 x S3.

According to Theorem 1.11 in [18], p. 21, if Ly and Lo are isomorphic
loops such that they have the same group G of left translations and the same
stabilizer H of e € L and ¢’ € L', then there is an automorphism of G leaving H
invariant and mapping the left translations of L onto the left translations of L'.
Each automorphism # id of the group G = GLy(C), respectively SLo(C) x R,
respectively Sping(R) x C leaving the subgroup H given by (4), respectively
(3), respectively (2) invariant are conjugations with an element # 1 of H.
Let Q7 and Q3% be two multiplicative loops Q* for locally compact connected
topological 4-dimensional quasifields @@ having the field C as their kernel such
that @7 and @5 have the same group G of left translations and the same
stabilizer H of e; € QF, i = 1,2. The loops @7 and ()5 are isomorphic if there
exists an element h € H such that o1(G/H) = h™'o2(G/H)h.

As @Q is a left quasifield, any (s, 2)" € Q* induces a linear transformation
Mz, € 0(G/H). More precisely

() ()= vmn () = (5 ("5 a2 ) ()

where s = uza(u,x,y), 2 = uya(u, z,y).

The kernel K, of @ consists of (0,0)*, (s,0)!, s € C\ {0}, such that the
matrix representation of the left translation with the element (s, 0)¢, s € C\{0}
has the form

uza(u,z,0) uzb(u, z,0) ) (18)

M,z.0) = ( 0 uza~ ' (u, x,0)etc®=0)

with s = uza(u,z,0), 2T = 1. The left translation A gy with the identity
element (1,0)* of Q* is the identity matrix. As s and x have the unique polar
representation |s|e’®, e?® we get that |s| = ua(u,x,0) and o = 3. The left
translation with the element (r,0)* € K., r > 0, has the form

v [ ua(u,1,0) ub(u, 1,0)
(u,1,0) — 0 ua—l(u7 1, O)eic(u,l,O) .

Since K, = C the set K, \ {(0,0)} is a commutative subgroup S of Q*.
Therefore the group topologically generated by all left translations of the ele-
ments of K, \ {(0,0)} is isomorphic to the multiplicative group SO2(R) x R
of the field C. Hence one has M(u7w,0)M(v7270) = M(uv,xz70) = M(v,z,O)M(u7w,0)
for all u,v > 0, z,2 € C, 2z = 1, zz = 1, and therefore the conditions
c(uv,z2,0) = c(u, x,0) + ¢(v, 2,0), a(uv, zz,0) = a(u, z,0)a(v, z,0) and

(19)

1 )
b(uwv, xz,0) = a(u, x,0)b(v, z,0) + Z—Zb(u,x, 0)a"* (v, 2, O)e"‘(”’Z’O) =
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1 i
a(v, z,0)b(u, ,0) + —b(v, 2, 0)a~ (u, z,0)ec(w=0)
x

are satisfied. The subgroup S is never normal in the loop Q* since otherwise
the factor loop Q*/S would be homeomorphic to S? and there does not exist
a multiplication with identity on the 2-sphere ([1]).

Proposition 2 The involution (—1,0)! of the multiplicative loop Q* of a lo-
cally compact 4-dimensional connected topological quasifield Q having the field
C as its kernel is contained in the centre of Q.

Proof The left translation belonging to the involution (—1,0)* has the form

<_01 __Z(i(’l’__ll’i?))), ie. a(u,—1,0) = 1 since f(u) = —ua(u,—1,0), u > 0 is

strictly monotone (cf. [9], p. 2596). As

1b(1,—1,0)(1 + eic1=1,0)
A(=1,0)tA(=1,0)t = (0 ( 62)11(:(1,71,0) )

is the left translation of the identity element (1,0)® € Q* we obtain that
b(1,—1,0) = 0 = ¢(1,—1,0). Hence (—1,0)" is in the centre of Q*.

Proposition 3 Let
k —ul u k —1 1,k,1 b(1l,k,1 — _
(Zz uE)H»—)(OB)(l E)(a( . )a71(1,§c,z)ei2(1«kvl))’“’>0’k’L€C'kk+”:1 (20)

be a section belonging to a multiplicative loop Q* of a locally compact 4-
dimensional connected topological quasifield Q@ having the field C as its kernel.
Then Q* contains a 3-dimensional compact subloop.

Proof The image of section (20), seen as a set of (4 x 4)-real matrices, acts
sharply transitively on the point set R*\ {(0,0,0,0)*}. Since the real matrices

g 2 ,u > 0 p consist of homotheties fixing
the point (0,0,0,0)¢ it leaves any line through (0,0,0,0)¢ fixed. Hence the
subset of (4 x 4)-real matrices corresponding to

(k=D (a(1,k) b(1,k, 1) __—
7- - {( l ]% > ( 0 a_l(Lk’l)eic(Lkvl) ,k,l G C, kk + ll — ]. (21)

acts sharply transitively on the oriented lines through (0,0,0,0). Therefore
T corresponds to a 3-dimensional compact loop.

corresponding to the subgroup

Proposition 4 Let Q be a 4-dimensional locally compact connected topological
quasifield having the field C as its kernel K. If the multiplicative loop Q* of
Q has a 1-dimensional connected normal subloop N*, then N* is a group
isomorphic to R and has the form N = {(esT* 0)t; s € R} C K, with some

real constant k. The group N topologically generated by the left translations
) eeriks
of Nj zst:{< 0 estiks ,SGR}.
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Proof By Lemma 1.7, p. 19, in [18], the left translations of a normal subloop
N* of @* generate a normal subgroup N of the group G = Spinz(R) x C or
G = SLy(C)xR or G = GL4(C) topologically generated by all left translations
of @*. If N* is homeomorphic to the 1-sphere S!, then the factor loop Q* /N*
is defined on a topological product of spaces having as a factor the 2-sphere.
Since there does not exist a multiplication with identity on the 2-sphere (cf.
[1]) we have that N* is homeomorphic to R. If N* would be a proper loop,
then the grﬂ[j/topologically generated by its left translations is the universal

covering PSLa(R) of PSLy(R) (cf. [18], Section 18, p. 235). But PSLy(R) is
not a subgroup of G. Hence N* = N is isomorphic to R. Since N is normal

in G it is a subgroup of C* = {(S 2) , z€C\ {0}} isomorphic to R. Then

es-l—iks 0

N has the form N, = {( > , S € R}, where k € R is a fixed

0 eeriks

constant. According to (18) the group Ny is contained in the set K of the
left translations corresponding to the kernel K, such that v = e®, x = €%,
a(u,z,0) =1, b(u, z,0) = 0, ¢(u,x,0) = 2ks. Hence the normal subgroup N*

of @* has the form N} = {(e*T%* 0)!, s € R}, k € R.

Proposition 5 Let Q be a 4-dimensional locally compact connected topological
quasifield having the field C as its kernel K,. The multiplicative loop Q* of
Q has a 1-dimensional connected normal subgroup N} = {(ests 0)t;s €
R}, k € R, as in Proposition 4 if and only if for all u > 0, (x,y) € C?,
xZ 4+ yy = 1, one has a(u,e**,0) = 1, b(u,e** 0) = 0, c(u,e™**,0) = 2ks,
a(u,m,n) = a(l,z,y), b(u,m,n) = b(l,2,y), c(u,m,n) = c(1,z,y) + 2ks,
where m = e*fSx, n = e*sy.

Proof The set Ky = {M(cs ciks 0y, 8 € R} of the left translations of Q* corre-
sponding to the subgroup N} = {(e**%2 0)!;s € R}, k € R, of the kernel K,
of Q has the form N given in Proposition 4. The conditions a(u, e’**,0) = 1,
b(u,e**, 0) = 0, c(u, e**,0) = 2ks are proved in the proof of Proposition 4.
Now we find the necessary and sufficient conditions under which N is normal
in @*. According to (5) the element

uxr 7“? CL(U, €z, y) b(u’ x, y)
uy uT 0 a=(u, z, y)erelwey)

belongs to the left translation of (uza(u,z,y),uya(u,x,y))t, v > 0, x,y €
C, 27 + yy = 1. For all elements q; := (z,y)! of S3, g2 := (v, w)! of Q* the
condition (N} - q1) - g2 = Nj - (q1 - ¢2) of (1) is satisfied if and only if we have

[5G G = (70 ) 16 ()]

for all z,y € C, 2z +yy = 1, (v,w) € C2\ {(0,0)} with suitable s, s’ € R. This
is the case precisely if one has

(ua.(u, m, n)mv + ub(u, m, n)mw — ua" ! (u, m, n)wnetc(w,m;n) )

wa(u, m, n)nv + ub(u, m, n)nw + ua~ L (u, m, n)wmetc(wm,n)



Multiplicative loops of quasifields with complex kernel 11

o8’ Fiks' (a(1, @, y)zv + b(1, z, Y)ww — a~1(1, z, y)wgeic(L::¥))
It ’ ,
e TR a(1, @, y)yv + b(1L @, wyw + a " H(1, @, yywaetehTv))

s+iks s+iks

where e
625(

x = ua(u,m,n)m, e y = ua(u, m,n)n, mm + ni = 1. Since

27 + yy) = u?a®(u,m,n)(mm + nn) one has e* = ua(u, m,n), m = e*x,

ﬁ = e'*sy. Using this for all 7,y € C, 2z +yy = 1, (v,w) € C2\ {(0,0)} we
ave

iks _

ywail(u, m, n)cic(u,nl,n)fiks]_

[z(va(u, m, n) + wb(u, m, n))e

lw(va(l, @, y) + wb(1, 2, ) + Fwa " 1(1, w, y)e LT V)] =

ly(va(u, m,n) + wb(u, m, n))e**® + zwa™l(u, m, n)etc(wm ) =iks),

[z(va(l,z,y) + wb(1l,z,y)) — ywa_l(l, x, y)eic(l‘z‘y)],

The last equation holds if and only if for all (v,w) € C?\ {(0,0)} one has

l(l’w’y)eic(l,m,y)eiks _ ic(u‘m‘n)efiks

(a(u, m,n)a™ o Y(u, m,n)a(l, z, y)e Y(2F + yP)vw

F(b(u, m,n)a" (1, @, y)elC(LTY) ks _ =1y nyb(1, @, )t ™)  — RSy (g 1 ugyw? = 0.
Hence we have

1(1,$,y)eic(1,x,y)eiks _ ic(u,m,n)e—iks -0,

a(u, m,n)a” o~ Y(u, m,n)a(l, z, y)e

b(u, m, n)a" L (1, z, y)etcLTW ths _ =1y nyb(1, @, y)etc(Wmin) o —iks _ g
Multiplying both equations with e~*(1#¥)e~%s one has

a(u, m,n)a”" (1, 2, y) — a” L (u, m, n)a(l, z, y)etc(Wmn)—ic(lx,y)=2iks _ o

b(u, m, n)a”"L(1, 2, y) — a” L (u, m, n)b(1, z, y)etc(wmm) —ic(lz,y)=2iks _ ¢

As a(u,m,n) is positive for all v > 0, m = e**z, n = e*y, we obtain
c(u,m,n) = ¢(l,z,y) + 2ks and hence a(u,m,n) = a(l,z,y), blu,m,n) =
b(1,z,y) for all u > 0, z,y € C, 2% + yy = 1. For all elements ¢; := (z,y)*
of S3, g2 := (v,w)! of Q* the condition (g1 - N}) - q2 = q1 - (N} - q2) of (1) is
satisfied if and only if for all z,y € C, 2Z + yg = 1, (v,w) € C?\ {(0,0)} one

has
() (5] ()= G- () ()] =

SRS o (1,0, )z e TR (@b(1, 0, y) — ga” (1, @, y)ete(h o)) ( w )
TR a1, 0, y)y TR (o1, 2, ) + 20711, @, y)efehm )y Jlw

. !’ . ’
a(l, =, y)e b(1, @, y)e — a1, o, y)gelc(Lmv) | [ os'+iks’,
a(l,z, y)y b(1, 2, )y + a1 (1, @, y)zetc(Loy) || o' +iks’y,

for suitable s, s’ € R. This is equivalent to

<ua(u, m, n)mv + ub(u, m, n)mw — ua" ! (u, m, n)wnetc(w,m;n) )

wa(u, m, n)nv + ub(u, m, n)nw + wa="L(u, m, n)wmetc(w,m,n)

(22)

AT VTN .
ves Hiks g (1 o, gy + o5 TR Wb, 2, y)e — a7 (1, @, y)geic(LTY))
’ ; ! ’ ; ’ .
ves TR (1, 2, )y + 5 TR wib(1, 2, vy + a7 11, @, y)zete(h )

stiks ua(u, m,n)n = ya(l,z,y)esT*s. The

with wa(u,m,n)m = za(l,z,y)e
last two equations yield that ua(u, m,n) = e®a(1,z,y), m = ze™**, n = ye'*s.
Using this a direct computation yields that equality (22) is true if and only if
alu,m,n) = a(l,z,y), c(u,m,n) = c(1,z,y) + 2ks and b(u, m,n) = b(1,x,y)
for all u > 0, z,y € C, xx + yy = 1. This proves the assertion.
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Theorem 6 Let QQ be a 4-dimensional locally compact connected topological
quasifield having the field C as its kernel K,.. If the multiplicative loop Q* of @
has a 1-dimensional connected normal subloop, then it is a central extension

of a normal subgroup N, k € R, isomorphic to R by a loop homeomorphic to
S3.

Proof According to Proposition 4 the only possibility for a connected normal
subloop of dimension 1 is a group IV;/, k € R. IV} is a central subgroup of Q*
since the set Ky of the left translations of Vj consists of diagonal matrices
of the group G generated by all left translations of @*. The intersection of a
compact subloop of Q* with N} is 1 (cf. Proposition 3 and Proposition 4).
Hence @Q* is a central extension as in the assertion.

Corollary 7 Let Q be a 4-dimensional locally compact connected topological
quasifield having the field C as its kernel K,.. The multiplicative loop Q* of Q
has the 1-dimensional normal subgroup N* = {(e*,0)%;s € R} = {(u,0);u >
0}, if and only if for allu > 0, (z,y) € C?, 2% +yy = 1, one has a(u,1,0) =
1, b(u,1,0) = 0, c(u,1,0) = 0, a(u,z,y) = a(l,z,y), blu,z,y) = b(1,z,y),
c(u,z,y) = ¢(1,2,y). In this case the set K = {M(u,1,0),u > 0} of the left
translations of Q* belonging to the subgroup {(u,0)%,u > 0} of the kernel K,
of Q is {(g 2) ,u > 0}. Then the set Ag« of all left translations of Q* can
be written into the form

z -7 va(l, @, 1 b(1, @, P .
{(y Iy) <1a( Ox ) uafl(;i,yd;e'?c)(lvwvy)>’u>0’m"yeb’mz+yy:1}' (23)

4 Decomposable multiplicative loops of 4-dimensional quasifields

Definition 1 We call the multiplicative loop Q* of a locally compact con-
nected topological 4-dimensional quasifield Q having K, = C as its kernel
decomposable, if the set of all left translations of Q* is a product TIC, where
T is the set of all left translations of a 3-dimensional compact loop of form
(21) and K is the set of all left translations of Q* belonging to the subgroup
{M(u,1,0),u >0} 2R of the kernel K, of Q of form (19).

If the loop Q* is decomposable, then it contains a compact subloop of form
(21). Then one has

k =T\ [ a(1, k1) b(1, k1) wa(u,1,0) ub(u, 1,0) N
(l ') 0 a~lq, k,peicllkl 0 ua~1(u, 1, 0)etc(%:1,0) (0) -

k —ul a(u, k, 1) b(u, k, 1) 1
= (Zz u% ) ( o o= 1(u, k,l)eic(u,k,l)> <U> (24)

Equation (24) yields that a(u, k,1) = a(1, k,l)a(u, 1,0).
Now we give sufficient and necessary conditions for the loop @* to be decom-
posable.



Multiplicative loops of quasifields with complex kernel 13

Proposition 8 The multiplicative loop Q* of a locally compact connected
topological 4-dimensional quasifield Q with K, = C is decomposable if and
only if one has a(u,k,l) = a(1,k,)a(u,1,0), c(u,k,l) = ¢(u,1,0) + (1, k,1)
and b(u, k,1) = a(1,k,1)b(u,1,0) + a=*(u, 1,0)e 101, k, 1) for all u > 0,
kEJ1eC, kk+1l=1.

Proof The point (z,y)* is the image of the point (1,0)* ‘under a suitable linear
mapping M, ;) and the set { M, 1 1);u > 0,k,1 € C, kk+Il = 1} acts sharply
transitively on Q*. The matrix equation

k —1 a(l,k, 1) b(1, k, 1) wa(u,1,0) ub(u, 1, 0) sza(s,z,y)
(l IE) 0 a=1(1, k, Deic(lk1) 0 wa=1(u, 1, 0)etc(u,;1,0) (sya(s,m,y)) =

 (uk —ul) [alu, kD) b(u, k, 1) sza(s,,y)
= ( ul uk ) < 0 a=Y(u, k, Deic(u k0 ) (Sya(s, x, y)) (25
holds precisely if the identities of the assertion are satisfied.

Theorem 9 If the multiplicative loop Q* of a locally compact connected topo-
logical 4-dimensional quasifield Q with K, = C has the 1-dimensional normal
subgroup N* = {(u,0)";u > 0}, then Q* is decomposable.

Proof By Corollary 7 the loop @* has a 1-dimensional normal subloop N* =
{(u,0);u > 0} if and only if for all w > 0, k,I € C, kk + 1l = 1 one has
a(u,1,0) = 1, b(u,1,0) = 0 = c(u,1,0), a(u,k,l) = a(l,k,1), b(u,k,l) =
b(1,k,1) and c(u, k, 1) = ¢(1, k,1). Therefore the identities given in the assertion
of Proposition 8 are satisfied.

Proposition 10 The set Ag- of all left translations of the multiplicative loop
Q* for a locally compact connected topological 4-dimensional quasifield QQ hav-
ing the field C as its kernel contains the group Spins(R) if and only if Ag-
has the form

z 7 (w,1,0) b(u, 1,0) P
Agr = {(; :Ey) (ua % uaf1<:, 11,‘0)91'6(“»1,0) ) ju>02y€Cat+yy= 1}’ (26)

where a(u,1,0), b(u,1,0), c(u,1,0) are continuous functions, a(u,1,0) > 0
and ua(u, 1,0) is strictly monotone. In this case Q* is decomposable.

Proof If the set Ag~ contains the group Sping(R), then for each fixed u > 0
the function a(u,z,y) is constant with value 1 and the functions c(u,z,y),
b(u,z,y) are constants with value 0. So the functions a(u,z,y) = a(u,1,0),
b(u,z,y) = b(u,1,0), c¢(u,z,y) = c¢(u,1,0) do not depend on the variables z,
y. Hence the identities in Proposition 8 are satisfied and the set Ag- has the
form TK as in the assertion.

Each positive number r has precisely one representation as ua(u,1,0) if
and only if the function ua(u,1,0) with a(u,1,0) > 0 is strictly monotone
in u > 0. If wa(u,1,0) is a strictly monotone continuous function, then for
arbitrary continuous functions a(u, 1,0), b(u, 1,0), ¢(u, 1,0) with a(u,1,0) > 0
the set given by (26) is the set Ag- of all left translations of the multiplicative
loop Q* of a locally compact quasifield @ having K, = C as its kernel such
that Ag- contains the group Sping(R). Hence @Q* is decomposable and the
assertion is proved.
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If the function a(u, 1,0) in (26) of Proposition 10 is differentiable, then for
every u > 0 the derivative a(u, 1,0) + ua’(u, 1,0) is either always positive or
negative equivalently [In(a(u, 1,0))]" is always greater or smaller, then —u~".

5 Semifields with complex kernel

Knarr in [17], Section 6, has been determined the 4-dimensional semifields @
having the field C as their kernel. The product (z1,x2)" * (y1,y2)!, (21, 22)%,
(y1,y2)t € C2\ {(0,0)} of the multiplicative loop @* of @Q is given either by

i85, =
X1 Y1 Y1 xT1 —€7 T2 U1
= A = _ 0<d< 27
() (1) =2 (32) = (2757 (1) 00 om)
or by
x1 Y1 Y1 T1 —CT2 — X2 Y1
= ANay,o = = = ) 28
(m) * (yz) (@1,w2) <yz) (9:2 T + T ) (yz) (28)

where r > 0 and ¢ = ¢; +icy € C, cg > 0 are constants such that for all u € R
one has 0 < P, .(u) = u* + (2Re ¢ — r?)u? — 2ru + |c|> — 1 (cf. [17], p. 83), Z
is the complex conjugate of z € C.

Both kernels K, and K; of the quasifields @5, 0 < § < 7 corresponding to
the multiplication (27) are K, = K; = {(k,0), k € C} and the centre of
Qs is Z = {(k,0), k € R}. Hence Qs are real algebras which are called Rees
algebras ([18], Section 29.2, pp. 346-348). The kernel K. of the quasifield Q..
corresponding to the multiplication (28) is K, = {(k,0),k € C} whereas the
kernel K; = {(k,0), k € R} is isomorphic to R and coincides with the centre
Z of Q(T7C)'

Proposition 11 Let Q be a 4-dimensional semifield having K, = C as its
kernel and coordinatizing an 8-dimensional locally compact non-desarguesian
translation plane A. Then the set Ag« of all left translations of the multiplica-
tive loop Q* has form (23) defined as follows:

a) If Q5 is given by (27), then one has

(L2.y) -
a\l,x,y) = y
V/(x2)2 + 22zyy cos & + (yy)2
eic(l,x,y) _ xx + ygeié
3/ (xZ)? + 22Ty cos d + (y7)?
(1 — 6
b1, 5) = <)

V/(@)? + 2xTyy cos § + (y)?
with

u = {/(3313371)2 + 221 T1 2922 COS O + ($2f2)2,
X1 €2

= — —, y = — —.
JT1T1 + ToT JT1T1 + T2T




Multiplicative loops of quasifields with complex kernel 15

The semifields Q5,0 < § < 7w coordinatize a one-parameter family of planes
As. The multiplicative loop Q} is the direct product of the group R and a loop
Ls diffeomorphic to S® and having the multiplication

(xl —6i6$2> o (yl —€i6y2> _ (2’1 —€i622)

T2 T Y2 Y1 C\z2 4 ’

where 21 = T1y1 — €°00Tays, 29 = Loy + T1Y2, |det( N2y 20))| = [det( Ay, y))| =
1 = |det(\z, 2,))|- The loop Q5 is decomposable. The group generated by all
left translations of Qj is the group GLo(C). The group generated by all left
translations of Ls and the group generated by all right translations of Ls is

the group of complez (2 X 2)-matrices the determinants of which have absolute
value 1. The group generated by all translations of Ls is the group SL4(R).

b) If Q?ﬁc) is given by (28), then one has

1
(zZ + roy + cyy + y?) (2T + ryx + cyy + y?)

a(l,z,y) = {4/

JieLr) _ xZ + ray + cyy + y?
Y (@Z + ray + cyy + y?) (2T + ryZ + eyy + §?)
1— 5l — & 2
b1, y) = (1-c)zy—Ty+ry

V(T + ray + cyy + y?) (@ + ryZ + cyy + i)
with

4 — _ _ _ — _ _ _
U= \/(Z‘ll‘l + rr1 Ty + cxads + 13) (2181 + rTaTy + creis + T22),

xr1 x2
= — —, y = — —.
\2/561131 + ToTo \2/1‘1581 + ToZo

The multiplicative loop Qz‘r o) s the direct product of the group R and a loop

L(y.c) diffeomorphic to S3 and having the multiplication

(1‘1 —CTo — J)g) o (yl —CYz — y2> _ <Z1 —CZ9 — ZQ)

i) .17_1 —|— ’I”.Z‘_Q y2 y_l —|— Ty_g z9 Z_l —|— ’I‘Z_g ’

where z1 = T1y1 — cTays — Tays, 22 = ToY1 + T1Y2 + rTays, |det( Nz, 2,))| =
|det( Ay, yo))| = 1 = |det(A(z, 2,))|. The loop Q?THC) is decomposable. The group
generated by all left translations of QZ‘T,C) is the group GLy(C). The group
generated by all left translations of L,y is the group of compler (2 x 2)-
matrices the determinants of which have absolute value 1. The group generated

by all right translations of L, ) and the group generated by all translations of
L) is the group SL4(R).
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Proof We denote by Q7, respectively by @3 the multiplicative loop @3, re-
spectively Qz‘m). Let Gq:, ¢ = 1,2, be the group topologically generated by
the left translations of Q. The group Ggs is the group GL2(C) (cf. [18], p.
346). We prove that Gz is GL2(C) too. Since the group det(Gg;) coincides
with C* the group Gg; is isomorphic either to the group Spinz(R) x C or to
GLy(C). For any matrix M in Spinz(R) x C one has M - M* € R- I, where I
is the identity matrix. But if 9 # 0 we have

(;; ;%E‘ZF :;;2 ) ( —51”;1— T2 T izmz ) -
CEEVINE i ERaY MING R e ) L
Hence Gy is the group GL2(C). In both cases @, i = 1,2, has a central sub-
group Z§ = {(k,0),k > 0} = R and the factor loop Q;/Z; is homeomorphic
to S3. Hence the group Gq:z; topologically generated by the left translations
of QF/Z; acts transitively on S%. Since G- is the group GLy(C) the group
Gq/z; is the group GL2(C)/Zy =2 SLy(C) x SO9(R), where Z is the group
of the left translations by the elements of Zj. Hence any maximal compact
subgroup of G+, zs is isomorphic to the direct product SU(C) x SO2(R).
i6 =

Let S5 be the set of matrices Az, ,z,) = 2 _eflu) with [det(A(z, 2,)) = 1.
Then Sj topologically generates the group A; of complex matrices A with
|det(A)| = 1 because S5 contains non-compact elements and the map Ss; —
SsZo/Zy is bijective. The product o : S5 x S5 — S5 given by

X1 —€i6f2 o Y1 —eiégg (= —€i652
T2 T Y2 U1 Z2 Z1 ’

where 21 = z1y1 — ei‘sfgyg, zo = Xoy1 + T1y2 yields a loop L diffeomorphic
to S since the set Sj is a system of representatives with respect to the sub-

group {(lg k‘ieis> k>0,1eC,s e R} in the group A;. It follows that the

multiplicative loop @5 of Qs is isomorphic to the direct product of R and Ls.
By Theorem 9 the loop Q) is decomposable. The group X topologically gen-
erated by the right translations of Ls is conjugate to the group A; in SL4(R)
whereas the group topologically generated by all translations of L is the group
SL4(R) (cf. [18], Section 29, pp. 347-348).

Let S(;,c) be the set of matrices

XT1 —CTo — T2
A a) = <x2 T1 + 12 ) » |det(Aa, o)) = 1.

Since S(;..) contains non-compact matrices and the map Sy = S¢r,¢)Z0/Zo
is bijective, the set S(, ) topologically generates the group Az which is again
the group of complex matrices A with |det(A)| = 1. The product o : S, oy x
S(T’C) — S(T’c) given by

T —CZZ?_Q — X9 o Y1 —Cy_2 — Y2 _ Al —CZ_Q )
Ty T1+TT2 Y2 Y1+ 7ry2 29 Z1+rZ20 )7
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where z1 = x1y1 — cTaya — Tay2, 22 = T2y1 + T1Y2 + ra2y2, yields a loop L, )
diffeomorphic to S3 because L) is a system of representatives with respect
to the subgroup {(g k*feis
the multiplicative loop QZ‘T’C) of Q) is isomorphic to the direct product of
R and L(; ). By Theorem 9 the loop er,c) is decomposable.

The right translations p(qp) of L) with a = a1 + iaz, b = by + iby are
represented in the group SL4(R) as

,k>0,l€C,s €R} in the group Asy. Hence

—c1by + cgbg — by —coby —c1by — by aj +1by ag + by

al ag by bo
Pla,b) (@ ¥) = (1,22, y1,v2) —a2 ay by —by i (29)
—coby — c1bs 4+ by c1b] — coby — by —ag + rby a1 — 7b]

where det(p(qp)) = 1, 2 = 21 +ix2, y = y1+iy2 and the parameters ¢ = ¢, +icy,
c2 > 0,7 > 0 satisfy the inequality in (28). Since the loop L, is diffeomorphic
to S the non-compact connected Lie group Y (r,c) topologically generated by
the right translations p(, ) of L) acts transitively on S3 and a subgroup
of SL4(R). The quasi-simple connected non-compact Lie groups G which act
transitively on S% are: SLy(C), SO5(R, 1), SU3(C, 1), the universal covering
of SL3(R), Spa(R), SL4(R) (cf. Table 2.3 in [20], p. 400, in the terminology of
[25]). The real representation of the group GLo(C) with respect to the basis

(1,0)%, (4,0), (0,1)%, (0,4)" has the form G = (é g) with det(G) # 0 such

that A, B, C, D are real (2 x 2)-matrices of the shape Y a2t y? > 0.

Therefore the group X, ) has no representation in the group SL2(C). The
groups SO5(R, 1), SU3(C, 1) have no linear representation in SL4(R) (see [24],
pp. 623-624). The universal covering of SL3(R) has no linear representation.
If ¥, c) were isomorphic to the group Sp4(R), then there would exist a skew-
symmetric matrix W such that ATW A = W for all matrices A in (29). For
the matrix

0 0 d d
A— 0 0 d —d
—cid+cod—d —cod—cid—drd rd |’
—cod —cid+d c¢id—cod —d rd —rd
with 0 < c? +c¢3—-1= ﬁ, this is possible only if W = 0. Therefore the group
Y(r,e) as well as the group topologically generated by all translations of L, )
are isomorphic to SL4(R).

According to Corollary 7 the sets Ag:, AQZ‘T.@ has form (23). The determi-

nant of a matrix M, ,, in (23) is u?ethry) e C. Since M4,z coincides

with Az, o,) given by (27), respectively (28) we obtain u = {/|det(A(z, 2,))[%,

; det(A(ay ,20)) .
1 _ ) _ _
eicllay) — ;121 2202 Since one has z1 = uza(l, z,y),z2 = uya(l,z,y) we

obtain 147 + 1272 = u?a?(1,1,y). As the second column of Ay ,w0) 18

(uzb(1,z,y) — uga~ (1, 2,9)e M"Y uyb(1,2,y) + uza™ (1, z,y)e o v))!
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one has b(1,z,y) = %(fmlg + §mas), where mys, Mmoo are the entries of the
second column of A(;, 4,). A straightforward computation yields that for the
loop @5 one has

VT1T1 + ToTo

(I1f1)2 + 2I1£L'_1I’2I_2 cos 0 + (1’250_2)2 ’

a(l,z,y) = {1/

eie(La,y) _ T3 + ToTae’ 7
{’/(:m:v_l)z + 221 T1 22T COS O + (gg2x—2)2
F102(1 — e
b(lvxvy) = ( )

\4/(£E1f1)2 + 2$1f1$2f2 cos 0 + (I2f2)2\2/l’1f1 + IQI'_Q’
U = {/(Z‘l.fl)z + 22101 22T cOS O + (ngQ)Q,

and for the loop Q7. | we have

(r:e)

V/T1T1 + ToT2

(x157 + ro1Ta + cxods + 13) (2181 + rT2Ty + CroTy + T22)

a(l,z,y) = \4/

- - - 2
eic(l,z,y) _ T1T1 +rr1xo + crodo + x5

i/(l’lfl + Tiblfg —+ CiCQiLTQ —+ l’%)(zlfl —+ Tl’gfl —+ E.%Ql'_g —+ fgz)

(1 —c)ayay — ayxo + 7‘1722
Y@y + rayog + cagay + 23) (w191 + regey + cwgwn + w22) Ya1El T Eaen

b(l,z,y) =

4 — _ _ _ — _ _ _
u = \/(xlxl + 1o Ty + cxeds + 13) (2181 + rTaTy + Cres + T22),
and for both loops one has
Z1 T2
= — — y = — —.
Y1 T1 + X2y VT1T1 + T2T2

From this it follows that the form of the functions a(1, z, %), b(1, z,y), e**(L:#¥)
in both cases is given as in the assertion.

6 Quasifields with complex kernel and large automorphism groups

The 8-dimensional locally compact translation planes A with an automor-
phism group of dimension at least 16 such that the kernel of the quasifield @
coordinatizing A is isomorphic to the field C are determined by H. Hahl in
[12], [13], [14] (cf. [8], Section 7). There are three types of such quasifields @
which are not semifields. Now we want to describe the multiplicative loops Q*

of Q.

Type 1: Let ¢ : Ry — Sping(R), (1) = 1 be a continuous mapping. Let
H = (R*, +,-) be the skewfield of quaternions. Then H,, = (R*, +,0) with the
multiplication o defined by 0 oz = 0 and for m # 0

mox=m-z?™) =m.p(m|)" -z o(m|) (30)
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yields a 4-dimensional topological quasifield. The kernel K, of H, is isomorphic
to the field C if and only if p(R¢) lies in a subfield of H isomorphic to C (cf.
[12], pp. 234-238). Any subfield of H isomorphic to C is a 2-dimensional real
vector space V,, with basis {1, u}, where u = uyi+usj+usk is a pure quaternion
of norm 1, i.e. 4 = —u and u? +u3+u3 = 1. Let V; = (1,4) = {ry +irg, 71,72 €
R} be the subfield C of H. There exists an automorphism £ of H with the form
x+— b~ txb, b € H, |b| = 1, such that 3(V;) = B(C) = V,,. One has

B(m)op(x) = B(m)p(jm|) " b~ wbp(|ml) = B(m)B(be(|Iml) ™ b~ abep(|m|)p~")

= g(m)ﬂ(zbw(\ml)b‘l) = B(ma?(mD)y,

where 1) = 37! 0 ¢. Since p(R~o) C V,, and 3(C) = V,, one has 9(R~q) C C.
Hence the quasifields H,, with kernel C, H,, with kernel V,, are isomorphic with
respect to § : Hy, — H,,. From now we assume that p(Rso) C C and the kernel
K, of H, is C. As H is a right vector space over C one can choose as a basis of
this vector space {1,j}. Let m = my + jmg with mq, mg € C be an arbitrary
quaternion. Since p(Rsq) C C N Spinz(R) we have ¢(|m|)~! = ¢(Jm|) and
©(lm|)~'j = je(Jm|). Then one has j°I™D = j(¢(|m]))? and hence

moj = (my+jma)j?Im = (my + jma)j(e(Im)))? =

—mma(p(Iml))? + jmi(p(Im)))*.
Then the multiplicative loop H, of H, is given by the multiplication:

mew =Moo (21) = (1 it ) (52)- o0

where x = x1 + jxo, 1,22 € C and ¢ : Ryg = CN Sping(R), (1) =1 is a
continuous mapping.

Proposition 12 The group GH; topologically generated by all left translations
of the loop H, is the group Sping (R) x C. The set AH:, of all left translations
of HY, has the form (26), where

a(u,1,0) =1, b(u,1,0) =0, e = (p(|m]))?,

with
miq mo

u=|ml, t=—, y=-—.
Im|

The loop H, is decomposable and Ay contains the group Sping(R). The centre
©
Z of H, is {1,—-1}.

Proof Since the determinant of M(,,, m,) in (31) is (mymy +momz)(¢(|ml))?
the group det(GH; ) coincides with C*. Moreover, for every matrix M,,, m.,)

one has M, m.) -Mﬁml)mz) = (m1mq + memg) - I, where I is the identity
matrix. Hence the group Gu: is the group Spins(R) x C. According to (5)
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the determinant of the matrix M, ;) is u 2¢ic(w,r,y) ¢ C. Since My,z,y) cO-

incides with M,,, ,) given by (31) we obtain u = /[ det(M(,, m,))? = |m|

and e?c(wry) — w = (p(lm]))%. As Gu: = Spinz(R) x C one has

a(u,z,y) = 1, b(u,x y) = 0 (cf. p. 6). Since uza(u,z,y) = |m|z = m; and
uya(u, x,y) = |m|y = ma we obtain the form of the variables x and y as in the
assertion. As e?(®¥) = ¢ic(w1.0) — ((|m|))? the function ¢ depends only on
the variable u = [m/|. Therefore the set Ag: of all left translations of H, has
form (26) with functions a(u, 1,0), b(u, 1, OS, ¢(u,1,0) given by the assertion.
By Proposition 10 the loop HY is decomposable and AH;; contains the group
Spinz(R). As | — 1| = 1 the centre Z of H, is {1, —1}.

Type 2:
Let o : S* — {il,l € R} be a continuous non-constant function having pure
imaginary values, p: S* — (1,00); 2 = /1 + |o(2)|? and

po (2 VIERET)
z 2 .
L+lo(2)?z —e(2)2
The multiplication of the quasifield @ is given by formula (2) in [13], (p. 87):

<a1> o (:c1> =c- (:El) +rB, (x_l) ) (32)
a9 U] i) )
where rz, (r > 0,z € S') and ¢ € C are uniquely determined by a;,as € C

ag ag
lag] lag]

and for aa = 0 we have rz = 0, ¢ = a;. Hence (32) can be written into the
form:

such that for as # 0 one has z = ,T—ﬂ,czm—L'Q(afz)
Ial p( ) ( ) laz]

1120(‘112\)

a1T1 — a9T2 + ——————(T1 — T
ar) _ (r1) _ e > ,/1+|0(‘a2‘)|2( )
as)  \z2 a20(7a27)

129 + A2%] — —F—a——=(T2 — T2
1T2 + a2y 1+|9(\a2\)|2( 2 2)
It follows that the kernel K of the quasifield @, is K1 = {(x,y)", 2,y € R}
isomorphic to C. The scalar multiplication in the right vector space @, = C?
over K is given in the following way: if a = (Zl) €Qp k= (Zl> € K1, then
2 2
al kl — agkg
arks + azk;
is K-linear. Applying the coordinate change T : C* — C2, (r + si,u + vi)!
(r + ui, s + vi)" the kernel K transforms to Ky = (x +iy,0)", 2,y € R} =
{(2,0)%, z € C}. Since @, has dimension 2 over the kernel K we can identify
the elements (m1,m2)t = (mi1 + imia, ma1 + ima2)t € C? of Q, with the
vector T'(my,ma)t = (mq1 + ima1, mia + imas)t € C% and the multiplication
of the loop @} can be represented as follows:

mi1 + imis T11 +iT12 —1 T11 + 1T12
2 12) 7 My T . =
mo1 + 1Ma2 To1 + 1222 T21 + 1T22

az)

one has ao k = ( ) Using this the left translation map A,
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2ma1Im(e(tm27)) .
—l = =+ 1m2y .
1+(Img( |m2\ ) <.’E11 + ZLE21>
1Moy

2m221m(9(‘:£|)) T12 + Z{,U22
1+(Img( |m2| ))

my1 + imor —Mmiz +
71
my2 +imoz Mmi1 +

(33)

Proposition 13 The set AQZ of all left translations of the multiplicative loop
Q; of Q, given by (33) corresponds to form (23) defined by:

1
a(l,z,y) = ;o ce(l,z,y) =0

_ Im(z)+iIm(y)
2Im(zy)Im —miz)remiy)
i <9( Fime)2+im)? ))
2141m(o 21"1(z)+711m(y)
VIm(@)2+Im(y)?
2Im (g (M>> (Im(z)Re(x) + Im(y)Re(y) — 'L'(I7n(:n)2 + I'm(y)2))

Yrm(e)2+1m(y)2
2
2 4 rm (o Im(z)+ilm(y) )) + 2Im(@y)Im (g( Im(z)+ilm(y) ))
( (\2/1m<z)2+1m(y)2 Yim(2)2+1m(y)2

b(l,z,y) =

with

T2)

2(my1moo — migmoy)Im(eo( Tmal

Jrr ime(rz?

_ 2 2 2 2
u = Jmn +mip +myy +may +

miq + imoy mi9 + imoo
y =
2 2 2 2’ 2 2 2 2
\/mu +miy +myy +ma, \/mu +miy +myy +ma,

x =

The group topologically generated by the left translations of Q) s the group
SLy(C) x R. The loop Q, is decomposable and it is a central extension of the
connected component Z§ = {(¢,0)*, ¢ > 0} 2 R of the centre Z* = {(c,0)!,c €
R\ {0}} of Q% by a 3-dimensional loop homeomorphic to S*.

Proof The determinant of the complex matrix M, .y given by (33) is the
2m11m221m(g(|::§|)) 2m12m211m(g(‘zgl))

L Im(e(727)2 VI Ime(2))?

Hence the group G topologically generated by thls lze‘ft translations of thzweI loop
@} is the group SLy(C) x R. The loop @} has a central subgroup Z* =
{(c,0)",¢ € R\ {0}}. By Theorem 6 the loop Q} is a central extension
of Z& = {(¢,0)*,¢ > 0} isomorphic to R by a 3-dimensional loop homeo-
morphic to S?. Hence the loop Q3 is decomposable (cf. Theorem 9). Since
G = SLy(C) xR according to Corollary 7 the set Ag: corresponds to form (23)
with ¢(1,z,y) = 0. Moreover the determinant of a matrix M, , ,) in the set
(23) is u® € R. Since M(y 4, coincides with M(,,, .,y given by (33) we obtain
u = \/det(M(;, m,)). Since one has my; +ima1 = ura(u, z,y), Mz +ima =
uya(u, z,y) we obtain m2, +m?2,+m3, +m3, = ua®(u,z,y). As the second col-
umn of M, myy is (uab(u, z,y) —uga™* (u, 2, y), uyb(u, x,y) +uza™ (u, z,y))"
one has b(u,x,y) = % (ZMyo + gMsz), where Mio, Mas are the entries of the
second column of My, m,)- A straightforward computation yields that

2 2 2 2
real number m?; +mi, +ms5, +ms, +

m . 2 2
\/”‘%1 T m2, + m3; + m3y 21m(g(ﬁ>)(m21m11 + mogmig — i(m3; + m3y))
yb(1,z,y) = s

“ \/1+1m<9(|m2\)) Vmiy +mis +m3y +m3,

a(l,z,y) =




22 Giovanni Falcone et al.

m
2(my1mog — m12m21)1m(£(ﬁ>)

\/1 + Im(e(121)?

u = Jmfl +m?y + m2, 4+ m2, +

miy +imaq myg + imoo

T = , oy = .
'\/7714?1 —+ 'm%2 —+ 'm%l —+ 771.%2 \/ﬂl%l —+ 'm%2 —+ m,%l =+ 771.%2

Hence the functions a(1, z,y), b(1, z,y) have the form as in the assertion.

The loop @, is a central extension of the group Z; = R by a loop Lj
homeomorphic to S3. By [19], pp. 761-762, the loop Q3 is isomorphic to a
loop L(Id,h) realized on S x R and given by the multiplication (7,t) * (k, s) =
(Th, h(1, K)ts), where S is a loop on S? isomorphic to L%. By Proposition 12.1
in [15], p. 225, the cohomotopy group 7™ (S™) is exactly the homotopy group
7, (S™). Moreover, one has 71 (S%) = m3(S!) = 0 (see Examples in [15], p.
109). Hence the function h : S% x $3 — R has the property h(r,1) = h(1,7) =
1. This means that h is the constant function 1 if the domain of h is S3.
The continuous section o corresponding to the loop @} is determined by the
continuous functions a(1,z,y) : S x % — Ry, b(1,7,y) : S x §3 — C such
that = as well as y depend on (x1,y1,%2,y2) € S® x S3 (cf. formulas (13),
(14) on p. 7). As Gy is the group SLz(C) x R the group Gg:z; topologically
generated by the left translations of Q}/Zg is isomorphic to the group SLy(C).
In Proposition 1 in [10] we claimed: There is no almost topological proper
loop L homeomorphic to S such that the group G topologically generated
by the left translations of L is isomorphic to the group SLs(C). According
to Proposition 13 and the above discussion the claim of Proposition 1 is true
under the additional condition that the domain of the continuous real function
f(z,y) and that of the continuous complex function g(x,y) of the section o,
r € R, corresponding to L is S3.

Type 3:
Let H be the skewfield of quaternions, IP be the subspace of pure quaternions
{ix + jy+ kz;x,y,2 € R} and let h = hy + ihe € C be a fixed element with
hi1 > 0 and |h| = 1. Let & C H be a closed subset homeomorphic to R which
is the image of a continuous section ¢ : H/(P - h) — H;a — ¢(a) such that
©(0) = 0, p(1) = 1, i.e. for every a € H there exists precisely one ¢(a) € &
with a + P+ h = ¢(a) + P - h. Every a € H has a unique decomposition as
a = p(a)+p(a)-h, where p: H — P;a — (a—¢(a))-h~1 (cf. [14], p. 303-304).
The multiplication of the quasifield Qp ¢ is given by formula (*x) in [14] (p.
304):

aox=pla) -z -h+z-¢a), (34)

where a,x € H, - is the multiplication in H.

Proposition 14 For all h # 1 the kernel K, of Qn ¢ is the field C of complex
numbers and the multiplication of the loop Q}, ¢ is given by:

a1 + ias o T+ 1To Y T +iTe )\
as + iay T3 4imy ) (ene2asaa) \ gpo gy e |
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<a1 +iag (h1 + ih2)?(ias — a3) )) <z1 + z‘a:Q) ,

as +ias 2¢1(a) — ar +i(az — 72(“”1(’22_“1%1 T3 + Ty

(35)

where 1 : H — R is a continuous function with v1(0) = 0, p1(1) = 1 such
that 1(a) +i (a2 T %) cd

If h =1, then every quasifield Q1,0 having a 2-dimensional subfield of H
isomorphic to the field C of complex numbers as its kernel is isomorphic to
the quasifield Q1,6 such that the kernel K, of Q1,4 is the field C. Then the
multiplication of the loop Q7 ¢ is given by:

(i) e () = Mernsen (5305 = (50 o i Mo ) (5552
where b(a1) € R is given such that for all a € H one has p(a) = a1 +ib(a1) € P,
where ¢ : H/P — @ is a continuous section such that p(0) =0, p(1) =1 but

not all b(ay) is 0.

Proof Assume that h # 1. According to [14], pp. 314-315, the kernel K. of
Qn,o is isomorphic to the field of complex numbers if and only if A and @
are in the same 2-dimensional subspace V with 1 € V. Since h € C one has
& CV ={ri+irg,r1,r2 € R} = Cand K, = C. Let a = a1 +ias+j(az+iay) =
a1 + tag + jag — kag, a; € R, ¢ = 1,...,4, be an arbitrary quaternion. Since
P- h is the subspace {—xzhg + izhy + j(yhy + zh2) + k(zhy — yhs),z,y, z € R}
for all @ € H one has p(a) = p1(a) +ip2(a) € C such that a; — ¢1(a) = —zhs
al*}:ﬂl(a) _ p2(a)—az

and ag — po(a) = xhy for some z € R. Hence we obtain -
and p(a) = ¢1(a) + 1 (a2 + %) € P, pla) = i("“(';% + jlashy +
ashs) + k(azhs — aghy). Using this, a straightforward computation yields the
multiplication of the loop QZ,@ given by (35) in the assertion.

Now we assume h = 1. The kernel K, of 1 ¢ is a 2-dimensional subfield
of H isomorphic to C. Hence K, is a subspace V,, = {r; +rou,r1,r2 € R} with
a suitable pure quaternion u of norm 1. Let (Q); &, respectively Q)1 ¢ be two
quasifields having V; = C, respectively V,, as its kernel. According to [14], p.
315, the automorphism 3 : H — H,z + b~xb, b € H, |b| = 1 with b~ tib = u
induces an isomorphism of @1 ¢ onto Q1,¢ With b~ 1®b = @'. Hence we may
assume that ¢’ C C and the kernel K, of Q1 ¢ is C = {ry +ire,ri1,72 € R}.
Since for all ¢ € H one has p(a) € & C C we obtain that a — ¢(a) is in P
precisely if p(a) = a1 +ib(a1) € D, b(a1) € R such that p(0) =0, ¢(1) =1
but not all b(ay) is 0. Hence one has p(a) = i(az — b(a1)) + jas — kag and the
multiplication of Q7 4 is given by (36).

Proposition 15 For all h € C with |[h| = 1 and Re(h) > 0 the group Gq: ,
topologically generated by the left translations of the multiplicative loop Q}, ¢
is the group GLa(C). The centre Z of Qj, ¢ is discrete.

a) For all h € C\ {1}, the set Aq; . of all left translations of the loop Q}, 4
given by (35) is the range of the section (5) defined by:
O L R R

u
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) ) 2hy (ag—i -
(a2 + a2)(hy + ih2)? — a2 — o + 201 (a)(ay + iag) + 2R1(02 ”}32(“’1(”) “1))

gie(uk,l) _ (
2

u

2(h% + ihiha)((agay — agay) + i(ajay + agag)) + 2¢1(a)(ag — iay) — 2<“4+ias>(g<a>—a1>h1

b(u, k,1) =
u%/a%{»a%#»a%#»az

with
ay + iag ag + iay

k= L ol= .
ot +a3+ a3 +a] {faf + a3 +af +a}

2hyaz(py(a) —ay)
ha

2 hiai(ar — ¢1(a) 2
ﬁ (<a§ +a2)(2h? = 1) — a? — a2 + 2¢1(a)ay + ) +4 ((u% +aZ)hihy + % + m(a)az) .
2

b) If h = 1, then the set Ag; , of all left translations of the multiplicative
loop Q7 ¢ given by (36) is the range of the section (5) defined by:

Za? + a3 + a3 + a3 __ 2b(a1)(aq + iag)

u u2a%+a§+a§+ai

gic(u,k,l) _ af + a3 + a3 + af + 2b(a1)Gay — ap)
5 ,

u

with

aq + iag ag + iay

— 4.2 2 2 2 2 2,2 — -
u = (a¥ 4+ a5 + a5 + af — 2b(ay)ag)® + 4b(ay)“ay, k = , L= .
Pt reg R C R R A C R R R

Proof Since the determinant of M4, 4, 44,4,) given by (35), respectively by
(36) is —(a? + a3 + a3 + a3) + 2(a3 + a?)h? + 2¢1(a)a; + 72@'”(";112(“)_@1) +
i(2(a3 +a3)h1ha +2p1(a)az — %{A‘(Q)_al)), respectively af + a3 + a3 + a3 +

2b(a1)(iay —az) the groups det(Ggq; ) and det(Gg: ) coincide with C*. Hence
the groups Gqs ., Gqs , are isomorphic either to the group Sping (R) x C or to

GL5(C). For any matrix M in Spins(R) x C one has M-I e R-I, where I is
the identity matrix. But a straightforward computation gives that the matrix
M a, a3,a3,a,) given by (35) does not have this property. Hence GQ;@ is the
group GLy(C). If b(ay) # 0, then we have

ay + iag —ag + iay ay — iag ag — iay _
ag + iag ay —i(ag — 2b(ay)) —ag —iayg ay +i(ag — 2b(ay)) )

a%+a%+a§+ai 2b(ay)(ay + iag) ¢RI
2b(aq)(ag +iag) af +a3 + a% + a3 — 4b(aq)(ag — b(aq))

Hence also Gg; , is the group GL»(C).

If the centre Z < K, of Qn s, respectively of Q1.4 would be contain the
field R of real numbers, then for all r € R and m € H one has r om =
m or = rm, where the last multiplication is the scalar multiplication with
reR. Asr=p(r)-h+¢(r) and rom =p(r)-m-h+m-(r) =rm it follows
that the image @ of the section ¢ is the field R (cf. [14], p. 309) and hence
p(r) = (r — ¢(r))h~* = 0. But then K, would be the field of real numbers
or the quasifield is the skewfield of quaternions (cf. [14], p. 314) which is a
contradiction. Hence the centre Z of @}, 4 as well as of Q7 4 is discrete.

According to (5) the determinant of the matrix M, ;) is u?etc(wkl) ¢ C.
Since M, k1) coincides with M4, 4, 44,4,) given by (35), respectively by (36)

. ; det(M(ay a0 .an.a .
we obtain u = {1/| det(M(a17a2,a3,a4))|2 and eic(wkl) — W Since
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one has a; + iay = kua(u,k,l), az +ias = lua(u, k,1) we obtain a? + a3 =
u?kka®(u, k,1) and a3 + a3 = w?lla®(u, k,l). Therefore we have a(u,k,l) =

2/21 2 2 .2
aitas+aztaj
u

. Since the second column of M4, 4,.a5,a4) 1S
(ukb(u, k, 1) — ula™*(u, k, 1)e*D ulb(u, k, 1) + uka™ (u, k, 1)eickD)t

one has b(u, k,1) = % (E‘Mm + ZMQQ), where Mo, Moo are the entries of the
second column of M4, 45,44,a4)- A straightforward computation yields the form
of the functions a(u, k, 1), b(u, k,1), e?(“*F) and u > 0, k,1 € C, kk+1l =1 as
given in assertion a), respectively b).
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