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Abstract. There exists, up to isomorphism, a unique countable existentially closed semi-
linear order, denoted by (S2;≤), whose reducts up to first-order interdefinability were char-
acterized. We refine that result to obtain a classification up to existential interdefinability.
It is shown that the techniques used to achieve this improvement can be applied in general
to structures with an injective function that collapses types. This common phenomenon was
a major technical difficulty before in problems about the classification of reducts of some
structure ∆, but the present paper demonstrates how its solution can be reduced to the
analysis of structures simpler than ∆.
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1. Introduction

A partial order (P ;≤) is called semilinear if for all a, b ∈ P there exists a c ∈ P such that
a ≤ c and b ≤ c, and for every a ∈ P the set {b ∈ P : a ≤ b} is a chain, that is, contains
no incomparable pair of elements. Finite semilinear orders are closely related to rooted trees:
the transitive closure of a rooted tree (viewed as a directed graph with the edges oriented
towards the root) is a semilinear order, and the transitive reduction of any finite semilinear
order is a rooted tree.

It was shown in [3] that there is a unique countable, dense, unbounded, nice, and binary
branching semilinear order without joins, which is denoted by (S2;≤); see also [15, 14]. It
is existentially closed in the class of all countable semilinear orders, and this property serves
as an alternative definition of (S2;≤). Since all these properties of (S2;≤) can be expressed
by first-order sentences, it follows that (S2;≤) is ω-categorical : it is, up to isomorphism, the
unique countable model of its first-order theory. It also follows from general principles that
the first-order theory T of (S2;≤) is model complete, that is, embeddings between models of T
preserve all first-order formulas, and that T is the model companion of the theory of semilinear
orders, i.e., is model complete and has the same universal consequences; again, we refer to [16]
(Theorem 8.3.6). Droste proved that (S2;≤) is the unique countably infinite, non-linear, 3 set–
homogeneous semilinear order (see Theorem 6.22 of [13]). It is not a homogeneous structure
though, but first-order interdefinable with a homogeneous structure in a finite relational
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language, a property that is stronger than ω-categoricity. We write x < y for (x ≤ y ∧ x 6= y)
and x‖y for ¬(x ≤ y) ∧ ¬(y ≤ x), that is, for incomparability with respect to ≤. Then a
3-tuple (a, b, c) is in the C-relation if it is an antichain, i.e., a‖b‖c‖a, and there is a d such
that a‖d and b, c < d. In the terminology of rooted trees, this means that the a, b, c are the
leaves of a binary tree whose root cuts it into two branches: one containing a, and the other
containing b and c (together with a common upper bound of b and c); see Figure 1. Then
(S2,≤, C) is homogeneous; cf. [3] for more details.

A reduct of a relational structure ∆ is a relational structure Γ with the same domain as
∆ such that every relation of Γ has a first-order definition over ∆ without parameters (this
slightly non-standard definition is common practice, see e.g. [24, 25, 17]). Thomas conjectured
that every countable homogeneous structure in a finite relational language has finitely many
reducts up to first-order interdefinability. This conjecture has been confirmed for various
fundamental homogeneous structures, with particular activity in recent years [12, 24, 25, 1,
17, 21, 20, 10, 19, 4]. One of the main results of the paper [3] is that the conjecture holds for
(S2,≤, C): it has three reducts up to first-order interdefinability, namely (S2,≤, C), (S2, B)
and (S2,=) where B is the ternary relation

B(x, y, z) ↔ (x < y < z) ∨ (z < y < x) ∨ (x < y ∧ y‖z) ∨ (z < y ∧ y‖x) .

By the theorem of Ryll-Nardzewski (see, e.g., Corollary 7.3.3. in Hodges [16]), two ω-categorical
structures are first-order interdefinable if and only if they have the same automorphisms. The
result about the reducts of (S2;≤) up to first-order interdefinability is equivalent to the state-
ment that there are precisely three subgroups of Sym(S2) that contain the automorphism
group of (S2;≤) and that are closed in Sym(S2) with respect to the topology of point-wise
convergence, i.e., the subspace topology on Sym(S2) of the product topology on (S2)S2 where
S2 is taken to be discrete. The Ryll-Nardzewski theorem has several generalizations: reducts
of an ω-categorical ∆ up to existential positive interdefinability are in a one-to-one correspon-
dence with the closed supermonoids of End(∆), i.e., the endomorphism monoids of reducts of
∆, and reducts of ∆ up to primitive positive interdefinability are in a one-to-one correspon-
dence with the closed superclones of Pol(∆), i.e., the polymorphism clones of reducts of ∆ [2].
The main focus of the current paper is a more exotic generalization of the same notion. The
reducts of an ω-categorical ∆ up to existential interdefinability are in a one-to-one correspon-
dence with the self-embedding monoids containing the self-embedding monoid Emb(∆) of ∆.
These monoids are not as easy to describe as endomorphism monoids or polymorphism clones:
the condition that a monoid be closed in the point-wise convergence topology is equivalent
to the monoid being the endomorphism monoid of some structure, but those are seldom self-
embedding monoids of structures. This is the main challenge why self-embedding monoids
are hard to work with, and why there are few results classifying reducts of a structure up to
existential interdefinability [11, 4, 6]. In the present paper, we show a method that can be
applied to prove such classification results. The technique is illustrated on the semiliniar order
(S2;≤), cf. Theorem 2.7. Then we prove some general results using recent improvements in
structural Ramsey theory [26, 23, 18], to show that it has a potential to be applied to a broad
class of structures, and to obtain results towards Thomas’ conjecture; cf. Proposition 3.2,
Corollary 3.3, Theorem 4.1, Corollary 4.3 and Proposition 4.6. There is no known example
to a homogeneous structure in a finite relational language that has infinitely many reducts
up to existential interdefinability. We note that the simplest countable structure (N,=) has
infinitely many reducts up to existential positive (and by extension, also primitive positive)
interdefinability. The current paper indicates that in some sense, reducts could be easier to
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handle up to existential interdefinability than the seemingly simpler problem of classification
up to first-order interdefinability, and that the existential variant of the Thomas conjecture
deserves more attention. In all verified instances of the Thomas conjecture, an ordered Ram-
sey expansion of the structure is made use of. The most effective method that builds on the
existence of such an expansion was introduced in [8, 7] and was first applied to achieve a new
classification result in [21, 20]. The main idea is to find the minimal closed supermonoids
above End(∆) via canonical functions, and determine which of those can be generated by
groups. The drawback of this approach is that it can be labor-intensive, and that it is often
unclear what groups are generated by some canonical functions. It is still unknown whether
there are only a finite number of minimal closed supergroups of the automorphisms group of a
structure that satisfies the condition of the Thomas conjecture. In contrast, by using a simple
argument based on canonical functions, it is clear that (provided the existence of a Ramsey
expansion, which is widely believed to be the case for all homogeneous relational structures in
a finite language) there are only finitely many minimal self-embedding supermonoids, closed
(endomorphism) supermonoids and closed (polymorphisms) superclones. This is yet another
argument why self-embedding supermonoids could be preferable to closed (automorphism)
supergroups.

The improvement of the classification of reducts of (S2;≤) up to first-order interdefinability
to existential interdefinability presented in this paper does not require the labor-intensive
application of canonical functions, and in fact, the existence of a Ramsey-type expansion is
not needed in any of the arguments; see Section 3. A technical element of the proof is a zig-zag
argument to show that the classification of self-embedding supermonoids over the semilinear
order containing a type-collapsing injection can be reduced to a classification problem over a
simpler structure. We present a general inductive technique in Section 4, and prove that if
the zig-zag argument never fails, then the first-order and existential Thomas conjecture (for
ordered Ramsey structures) are equivalent.

2. The universal C-relation and the semilinear order

b c a

Figure 1. C(a,bc)

The following proposition, already mentioned in the introduction, is of central importance
in understanding reducts up to existential interdefinability.

Proposition 2.1 (Proposition 3.4.7 in [2]). For every ω-catgorical structure ∆,

(1) a relation S has an existential positive definition in ∆ iff S is preserved by End(∆);
(2) a relation S has an existential definition in ∆ iff S is preserved by Emb(∆).

This yields the generalization of the Ryll-Nardziewski theorem: reducts of ∆ up to existen-
tial interdefinability are in a one-to-one correspondence with the self-embedding supermonoids
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of ∆. As the next theorem shows, there is only one proper reducts of the universal C-relation
(L, C) up to existential interdefinability: the structure (L, C) plays an important role as it
was already observed in [3], since it is the C-structure on any maximal antichain in (S2,≤, C).
The 4-ary relation Q is defined from C by the formula

Q(xy, uv)↔ (C(x, uv) ∧ C(y, uv)) ∨ (C(u, xy) ∧ C(v, xy))

The missing commas in between xy and uv indicates the symmetries of this relation: by
transposing the first of second pairs, or by exchanging the two pairs of entries in a tuple in
Q yields a tuple in Q. The same convention is used in the C-relation: it is invariant under
switching the second pair of coordinates.

Using Proposition 2.1 together with a Ramsey analysis, in [4] the following classification
was obtained.

Theorem 2.2 (Corollary 3 in [4]). Let Γ be a reduct of the universal C-relation (L, C).

Then Emb(Γ) is one of the following three monoids: Emb(L, C) = Aut(L, C), Emb(L, Q) =

Aut(L, Q), or Emb(L,=) = Aut(L,=). In particular, (L, C) has three reducts up to existential
interdefinability, namely (L, C), (L, Q), and (L,=), and all of these structures are model
complete.

We do not need the whole network of technical lemmas proved in [3], only the following
assertions.

Proposition 2.3. Let Γ be a reduct of (S2;≤). Then one of the following holds.

(1) End(Γ) contains a flat or a thin function.

(2) End(Γ) = Aut(S2;≤).

(3) End(Γ) = Aut(S2;B).

Lemma 2.4. Let Γ be a reduct of (S2;≤) with a thin self-embedding. Then Γ is isomorphic
to a reduct of (Q;<).

The ternary relation R in (S2,≤ C) was defined in [3]:

R(x, yz)↔ C(x, yz) ∨ (y < x ∧ z < x) ∨ (x‖z ∧ x‖y ∧ (z < y ∨ y < z))

Lemma 2.5. Let Γ be a reduct of (S2;≤) with a flat self-embedding. Then Γ is isomorphic
to a reduct of (Q;<), or it has a flat self-embedding that preserves R.

Lemma 2.6. Let Γ be a reduct of (S2;≤) which is isomorphic to a reduct of (Q;<). Then Γ
is existentially interdefinable with (S2; =).

Just as R is the full preimage of C under a flat self-embedding f ∈ Emb(S2, R), P is the
full preimage of Q under f , see [4]; namely P (xy, uv) is defined by

(R(x, uv) ∧R(y, uv)) ∨ (R(u, xy) ∧R(v, xy))

Then Emb(S2, P ) contains all rerootings (see [3]), that is Emb(S2, B) ⊆ Emb(S2, P ). We are
ready to present the assertion about the reducts of (S2,≤, C) up to existential interdefinability;
cf. Figure 2.

Theorem 2.7. The structure (S2,≤, C) has five reducts up to existential interdefinability with
self-embedding monoids Emb(S2,≤, C),Emb(S2, B),Emb(S2, R),Emb(S2, P ),Emb(S2,=).
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The next section is dedicated to the proof of Theorem 2.7. It turns out that the section of
the lattice of self-embedding monoids above Emb(S2, R) is in some sense induced by the lattice
of self-embedding monoids above Emb(L, C). That is, the three monoids in Theorem 2.2
correspond to the three monoids above Emb(S2, R) in Figure 2.

Emb(S , <, C)2

Emb(S , =)2

Emb(S , R)2 Emb(S , B)2

Emb(S , P)2

Figure 2. Reducts of (S2,≤, C) up to existential interdefinability

3. Existential reducts of the semilinear order

Lemma 3.1. LetM be a self-embedding monoid such that Emb(S2;≤) ⊆M ⊆ S2
S2 andM /∈

{Emb(S2;≤),Emb(S2;B),Emb(S2; =)}. Then M contains a flat function f ∈ Emb(S2;R).

Proof. There is a reduct Σ of (S2;≤) such that M = Emb(Σ) = End(Σ′), where Σ′ is
obtained from Σ by adding the negation of all relations in Σ to the language. According to
Proposition 2.3, M contains a flat or a thin function. It cannot contain a thin function by
Lemmas 2.4 and 2.6, thus M contains a flat function. Then by Lemma 2.5, M contains a
flat function f ∈ Emb(S2;R). �

We now present a novel approach that makes it possible to reduce the classification of self-
embedding monoids over Emb(S2;R) to the classification of self-embedding supermonoids of
Emb(L, C), cf. Theorem 2.2.

Proposition 3.2. Let ∆ be an ω-categorical structure with underlying set D and let M be
a self-embedding monoid such that Emb(∆) ⊆ M ⊆ DD. Let Γ be a reduct of ∆, and let
∆′ := Γ �D′ for some D′ ⊆ D. Assume that

• ∆′ is homogeneous,
• any partial isomorphism of ∆′ extends to a function in M, and
• there exists a g ∈M∩ Emb(Γ) whose image is contained in D′.

Then Emb(Γ) ⊆M.

Proof. Let T be an injective first-order definable relation in ∆ such that both T and its
complement are preserved by M. We show that T has a quantifier-free definition in Γ. To
this end, it is enough to prove that if two injective finite tuples a, b have the same quantifier-
free type in Γ, then T (a)↔ T (b). As g ∈ Emb(Γ) with the image contained in D′, the tuples
g(a) and g(b) have the same quantifier-free type in ∆′. The partial isomorphism mapping
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g(a) to g(b) extends to a function h ∈ M such that h(g(a)) = g(b). As g, h ∈ M and M
preserves both T and its complement, we obtain T (a)↔ T (b). �

Corollary 3.3. Let ∆ be an ω-categorical structure with underlying set D and let Γ be a
reduct of ∆. Let ∆′ := Γ �D′ for some D′ ⊆ D. Assume that ∆′ is homogeneous, and that two
finite tuples in D′ have the same type in ∆′ iff they have the same type in ∆. Let g ∈ Emb(Γ)
be a function with image contained in D′. Then the smallest self-embedding monoid containing
Aut(∆) and g is Emb(Γ).

Lemma 3.4. Let M be a self-embedding monoid such that Emb(S2;≤) ⊆ M ⊆ S2
S2 and

M /∈ {Emb(S2;≤),Emb(S2;B),Emb(S2; =)}. Then Emb(S2;R) ⊆M.

Proof. According to Lemma 3.1, M contains a flat function f ∈ Emb(S2;R). Let L be a
maximal antichain containing the image of f . Then the conditions of Corollary 3.3 apply
with ∆ = (S2;≤), Γ = (S2;R), D′ = L, ∆′ = (L;C), g = f . Hence, Aut(S2;≤) together with
f generate Emb(S2;R) as a self-embedding monoid. �

Let R0 = C, R1(a, b, c) ↔ (a‖b ∧ c < b), R2(a, b, c) ↔ (b‖c ∧ b < a ∧ c < a), R3(a, b, c) ↔
(b < c < a ∧ c < b < a). Note that R0 ∪R1 ∪R2 ∪R3 = R is the full preimage of C under f .
We say that a function h preserves a given n-ary relation on a set of n-tuples S if whenever
a tuple in S is in the given relation, then so is its h-image. A monoid N preserves a relation
on S if every function in N does.

Lemma 3.5. If R is preserved on R0 ∪ R1 ∪ R2 by a monoid Emb(S2;R) ⊆ M, then R is
preserved by M.

Proof. Seeking for a contradiction, let h ∈ M preserve R on R0 ∪ R1 ∪ R2 and violate R on
R3. By composing h with a flat function f ∈ Emb(S2;R) if necessary, we may assume that
R0, R1, R2 are mapped to C by h. To show the claim, we consider the 7-element substructure
in Figure 3 of the semilinear order, and assume that h violates R on {a, u, w}.

a dcb

u v

w

a dcb

Br(*)

Br(0) Br(1)

Br(00) Br(01) Br(10) Br(11)

Figure 3. The 7-element substructure in the proof of Lemma 3.5

By applying an automorphism in Aut(S2;≤), we may assume that the four points a, b, c, d
are fixed. Since we have R2(u, a, b) and R1(c, a, u), the point h(u) is attached to the branch
segment Br(0). Similarly, h(v) is attached to the branch segment Br(1). But then wherever
h(w) is attached to, R cannot be preserved on (w, u, v) ∈ R2 and violated on {a, u, w} by h
at the same time, a contradiction. �
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Given a function h (or monoid N ), we can define a digraph on the quantifier-free n-types
in the language {R} for any n ∈ N: there is a directed edge (s, t) in the graph iff h (or some
function in N ) maps a representative of s to a tuple in t. A relation is preserved by a monoid
iff there is no out-edge from the set of types in the relation. However, a relation and its
complement is preserved by a monoid iff there is no out-edge from or in-edge to the set of
types in the relation.

In the next proof, we refer to a special type of antichains as combs, or more precisely,
n-combs if it has n leaves. This is the proof where the zig-zag argument mentioned in the
introduction appears: we walk back-and-forth on edges of the digraph induced by a monoid
to find a path between any two types indistinguishable by the relation R.

a b c d e

Figure 4. 5-comb

Lemma 3.6. LetM be a self-embedding monoid such that Emb(S2;R) ⊆M ⊆ S2
S2. Assume

that M preserves R on R0. Then M = Emb(S2;R).

Proof. We assume indirectly that there is a function h ∈M that violates R. The assertion of
the lemma follows if we show that the digraph on the quantifier-free n-types corresponding to
M is weakly connected: in that case, M should be the set of all injective functions in S2

S2 ,
and thus would not preserve R on R0.

For the extent of this proof, we call two n-types s and t equivalent if by permuting the
entries of a representative in s by some σ ∈ Sn we obtain a tuple in t; this equivalence relation
is denoted by ∼. If s = t, we call the set of such σ ∈ Sn the symmetries of s. We say that
s and t are connected up to equivalence if there are s′ and t′ in the same weakly connected
component such that s ∼ s′ and t ∼ t′.

The strategy of the proof is to show by induction on n that all n-types are connected up
to equivalence and that equivalent types are in the same weakly connected component. This
clearly holds for n = 1, 2, 3. So let n ≥ 4 and assume that the assertion holds for smaller n.

According to Lemma 3.5 a function h ∈M violates R on R1 ∪R2. First assume that R is
violated on R1.

Given an arbitrary n-type t, we can represent it as a C-relation on the leaves of a binary
tree. This tree has a root, cutting it into two main branches. First, we show that we can
replace the tree structure on these two branches so that both of them are combs. Let t′ be the
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type we obtain by replacing the tree structure to a comb on the first branch. We represent
the n-type so that the leaves on the two branches are contained in two incomparable branches
of (S2,≤, C). By the induction hypothesis, there is a path in the weak component of the first
branch of t and that of t′. Each edge in this path is witnessed by an embedding that preserves
the C-relation. Hence, by keeping the rest of t in the incomparable branch with the same
C-structure, we can create a path of n-tuples between t and t′. The other branch can be dealt
with analogously.

As n ≥ 4, one of these combs has at least two leaves, say in the second branch. Pick the
two top leaves in the comb. Replace the tree structure on the second branch by deleting these
two leaves and introducing two comparable points inside the second branch that are bigger
than all the leaves in this branch. This modification has no effect on the R-structure.

a b c d e a b

c

d

e

Find an isomorphic copy of this tree in (S2,≤, C). By homogeneity of (S2,≤, C), we may
assume that the triple containing the two newly introduced points in the second branch and
the top leave in the first branch is a representative of R1 where h violates R. We may also
assume that all the leaves of this tree are fixed by h. A simple case distinction on the possible
positions of the image of the two newly introduced points shows that the branch containing
the vertices of the original first branch increases in size. By iterating this procedure, we
find a comb in the weak connected component of t. In such an n-comb, the top leaf is the
smaller branch. Hence we can restart the whole process on this n-type, and obtain a new
n-comb with a different top leaf. Each of these n-combs brings a copy of Sn−1 with itself:
however we permute the n − 1 vertices in the bigger branch, we stay inside the same weak
connected component by the induction hypothesis. As Sn−1 is a maximal subgroup in Sn,
and we have at least two different copies of these, any permutation of the entries of a type
in the weak component of t yields a type in the same component. Thus any tuple t is in the
same component with any permutation of the n-comb, thus all types are weakly connected.

Hence, we may assume that R is preserved on R1; then it must be violated on R2 by
Lemma 3.5. Just like before, it is enough to focus on n-types where both branches are combs.
Assume that there are at least three vertices a, b, c on one main branch of such an n-type t.
Pick the lowest one a on such a branch; see the illustration on Figure 5.

We claim that by deleting it, and replacing it with a new vertex that has its own main
branch, we obtain a tuple t′ in the same weak component. In order to show this claim, let us
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b c ad e b c

a

d e a b c d e

f h

Figure 5. Moving a low-positioned leaf to a new branch

represent the same R-structure by putting the vertex on top of the tree rather than as a leaf
of a new branch. This new vertex together with b, c form a tuple in R2. We may assume that
it is violated by h, as before, and that h fixes all the leaves. Then the top vertex can only be
moved between b and c; either way, we obtain a tuple equivalent to t.

If t is the 4-comb, then this argument shows that there is a 3-cycle on the entries leaving
the tuple in the same weak component. We show that the two different R-structures on the
leaves of a tree with four leaves are in the same component up to equivalence. To this end,
pick a triple a, b, c in R2 that is violated by h, and assume that h fixes the two leaves b, c. We
may assume that a is moved below the branch with c on it. Let d be a vertex smaller that b.

a b

c

d

a bcd

As R1 is preserved by h, the h-image of {a, b, c, d} are the four leaves of a tree both of
whose branches have two leaves. However, the R-structure of {a, b, c, d} is the same as that of
the leaves of a 4-comb. The symmetries of the h-image form a subgroup of S4 isomorphic to
the dihedral group D4, a maximal subgroup which does not contain a 3-cycle. Together with
the earlier observation, that the weak component is preserved by a 3-cycle, we have that there
are representatives of both leaf structures in the same weak component, and it is invariant
under all permutations of S4. Hence, all 4-tuples are in the same weak component, that is,
the assertion holds for n = 4. We proceed by induction for n ≥ 5, and pick an n-type t. By
using the induction hypothesis as in the first case, there is a tuple t′ in the weak component
of t both of whose branches are combs. By the pigeonhole principle, there is a branch of
t′ with at least 3 leaves. We can use the above claim for the lowest three vertices of this
branch, and replace the lowest vertex of this branch by a leaf on a new branch. By using the
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induction hypothesis once again, we have found an n-comb in the same component, whose
top leaf is one of the lowest leaves on a beach of t′. By repeating the same procedure for the
n-comb, we can find another n-comb in the same component with a different top leaf. As
the lower n− 1 leaves can be arbitrarily permuted according to the induction hypothesis, the
weak component is invariant under at least two copies of Sn−1 in Sn. As they generate Sn,
we obtain that any weak component contains an n-comb, and its vertices can be arbitrarily
permuted to have a new tuple in the same component. Thus all n-tuples are in the same
weak component.

�

Lemma 3.7. Let M be a self-embedding monoid such that Emb(S2;R) (M ⊆ S2
S2. Then

Emb(S2;P ) ⊆M.

Proof. According to Lemma 3.6, some h ∈M violates R on R0 = C. By composing h with an
automorphism in Aut(S2;≤, C) if necessary, we may assume that {h(a), h(b), h(c)} = {a, b, c}.
Let L be a maximal antichain in (S2,≤) that contains {a, b, c}, and let f ∈ Emb(S2;R) be
a flat function with image contained in L. Then f ′ := f ◦ h ∈ M violates C on L, and
then Aut(L;C) ∪ {f ′} locally generates Aut(L;Q) according to Theorem 2.2. Even though
Aut(L;C) is not contained in Emb(S2;R), any function in Aut(L;C) can be interpolated on
any finite subset of L by a function in Emb(S2;R). Hence, Emb(S2;R) ∪ {f ′} locally gen-
erates Aut(L;Q), and since Emb(S2;R) ⊆ M, we have that M locally generates Aut(L;Q).
According to [4], the structure (L;Q) is homogeneous, thus every partial isomorphism of
(L;Q) extends to a function generated by M. Then the conditions of Proposition 3.2 ap-
ply with ∆ = (S2;≤, C), M = M, Γ = (S2;P ), D′ = L, ∆′ = (L;Q), g = f , yielding
Emb(S2;P ) ⊆M. �

Lemma 3.8. Let M be a self-embedding monoid such that Emb(S2;P ) (M ⊆ S2
S2. Then

M = Emb(S2; =).

Proof. We can repeat the proof of Lemma 3.6 to show that if M preserves P on antichains,
then M = Emb(S2; =). Indeed, whenever we used the assumption of the lemma, it was
applied to the leaves of a tree, to show that we may assume that some function is identical on
that set. Instead, we can now use a rerooting to get back the original C-structure on the leaves
if P is preserved. Thus an h ∈M violates P on some antichain {a, b, c, d}. Let L be a maximal
antichain in (S2,≤) that contains {a, b, c, d}, and let f ∈ Emb(S2;R) be a flat function with
image contained in L. By composing h with an automorphism in Aut(S2;≤, C) if necessary,
we may assume that {h(a), h(b), h(c), h(d)} ⊆ L. Then f ′ := f ◦ h ∈ M violates Q on L,
and then Aut(L;Q) ∪ {f ′} locally generates Aut(L; =) = Sym(L) according to Theorem 2.2.
Even though Aut(L;Q) is not contained in Emb(S2;R), any function in Aut(L;Q) can be
interpolated on any finite subset of L by a function in Emb(S2;P ). Hence, Emb(S2;P )∪{f ′}
locally generates Sym(L), and since Emb(S2;P ) ⊆ M, we have that M locally generates
Sym(L). Thus every partial isomorphism of (L; =) extends to a function generated by M.
Then the conditions of Proposition 3.2 apply with ∆ = (S2;≤, C), M = M, Γ = (S2; =),
D′ = L, ∆′ = (L; =), g = f , yielding Emb(S2; =) ⊆M. �

Proof of Theorem 2.7. By Lemma 3.4 we only need to find the self-embedding monoids con-
taining Emb(S2, R). According to Lemmas 3.7 and 3.8, those are exactly Emb(S2, P ) and
Emb(S2,=). �



EXISTENTIAL REDUCTS OF THE SEMILINEAR ORDER 11

Note that in this section we have classified the self-embedding supermonoids of Emb(S2, R),
and to this end, we did not need anything else from the paper [3] but the four simple assertions
cited in the previous section. That covers the existential supermonoids of Emb(S2,≤, C)
that contain a flat function, which was one of the major difficulty in [3]. In particular,
the arguments in the present paper not only generalize the results in [3], but by properly
combining the two papers, a significant part of the arguments in [3] becomes obsolete, yielding
simpler proofs to the main results of that paper. The proofs rely more on the characterization
result Theorem 2.2 from [4], which is about the universal C-relation, a much simpler structure
to work with than (S2;≤, C).

In the next section, we generalize some of these ideas, and show that a self-embedding that
collapses types (just like the flat self-embedding f ∈ Emb(S2, R) does for (S2;≤, C)) always
gives rise to such a simpler structure.

4. Type-collapsing self-embeddings

A function f : ∆ → Γ is canonical if it maps tuples of the same type in ∆ to tuples of
the same type in Γ. If ∆ is homogeneous in a finite relational language with maximum arity
m, then this is witnessed on finitely many types: then f : ∆ → ∆ is canonical iff tuples of
the same type with arity at most m are mapped to tuples of the same type. For example, a
flat self-embedding f ∈ Emb(S2, R) as a function f : (S2,≤, C)→ (S2,≤, C) is canonical. We
call a canonical injection type-collapsing if every weakly connected component of the digraph
it induces on the injective types is a star. The above f is such a function: the 3-types are
mapped to the three permuted variants of the C-relation, making the digraph on the 3-types
the disjoint union of three stars, the 2-types are all mapped to incomparable pairs, and the
unique 1-type is mapped to itself.

Theorem 4.1. Let ∆ be a homogeneous structure in a finite relational language of maximum
arity m. Let f : ∆→ ∆ be a type-collapsing injection.

(1) There exists a homogeneous structure Γ in a finite relational language of maximum
arity m, whose relations are precisely the injective types of ∆ that occur as the type
of the f -image of an injective tuple, and Age(Γ) consists of the finite structures in
Age(∆) all of whose types are among these f -images.

(2) There is an isomorphic copy of Γ in ∆ containing the image of a canonical f ′ with
the same behavior as f .

(3) If ∆ has an ω-categorical ordered Ramsey expansion ∆∗, then Γ also has such an
expansion Γ∗.

(4) If ∆ is ordered Ramsey, then so is Γ.

Proof. Let Σ be the image of f . Then Age(Σ) consists of the injective types of ∆ that occur
as the type of the f -image of an injective tuple. In particular, this class of substructures is
the age of a countable structure, and thus it is countable up to isomorphism, hereditary, and
has the joint embedding property. To show that it is the age of a homogeneous structure, we
need to verify the amalgamation property for Age(Σ), as well.

Let A,B1, B2 ∈ Age(Σ) be given together with embeddings f1 : A ↪→ B1, f2 : A ↪→ B2.
Then there is a C ∈ Age(∆) and embeddings g1 : B1 ↪→ C, g2 : B2 ↪→ C such that g1 ◦ f1 =
g2 ◦ f2, since ∆ is homogeneous. Let C ′ be a copy of C in ∆; i.e., there is an embedding
h : C ↪→ ∆ whose image is C ′. Let C ′′ be the f -image of C ′. Put g′1 = f ◦ h ◦ g1 and
g′2 = f ◦ h ◦ g2. Then g′1 : B1 ↪→ C ′′, g′2 : B2 ↪→ C ′′ are embeddings with g′1 ◦ f1 = g′2 ◦ f2. As
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C ′′ is contained in the image of f , we have C ′′ ∈ Age(Σ), proving the amalgamation property
for Age(Σ). Then Age(Σ) is the age of a homogeneous structure Γ (see [16]), and Item (1) is
shown.

As ∆ is homogeneous and Age(Γ) ⊆ Age(∆), there are isomorphic copies of Γ in ∆. Let
us identify Γ with one of these isomorphic copies. Similarly, as Age(Σ) ⊆ Age(Γ) and Γ is
homogeneous, there exist a copy Γ′ of Γ (not necessarily contained in ∆) with Σ ≤ Γ′ and
an isomorphism ι : Γ′ → Γ. Let f ′ := ι ◦ f ; then for any tuple t the type of the f -image of
t coincides with that of the f ′-image of t. Hence, f ′ is a canonical injection with the same
behavior as f , and the image of f ′ is contained in Γ, finishing the proof of Item (2).

For the third item, we may assume that f ′ is also canonical as a function ∆∗ → ∆∗ by
using the ordered Ramsey property of ∆∗; see Theorem 5 in [9]. Let A ≤ B ∈ Age(Γ) and
k ∈ N. Let t(A) be the number of different types in ∆∗ whose f ′-image in Γ is isomorphic
to A: this is a finite number that only depends on A. Let C ∈ Age(∆∗) be the structure
that witnesses the Ramsey property with k colors for all these possible pre-images of A and
B: that is, however we color all structures in C whose f ′ image in Γ is isomorphic to A by k
colors, there is a B′ in C whose f ′ image in Γ is isomorphic to B such that all these different
isomorphism types are monochromatic in B′. Let C ′ be the f ′-image of C in Γ. Any coloring
of all copies of A in C ′ induces a coloring of all preimages of A in C. Thus the f ′-image of
the above B′ is at most t(A)-colored. This shows that every A ∈ Age(Γ) has a finite Ramsey
degree at most t(A). By [26, 23] Γ has an ω-categorical ordered Ramsey expansion Γ∗.

Finally for Item (4), assume that ∆ is ordered Ramsey. Then types coincide with labelled

isomorphism types. Let A ≤ B be finite structures in Age(Γ), and let χ :
(

Γ
A

)
→ {0, 1}

be a 2-coloring of the copies of A in Γ. This defines the 2-coloring χ′ :
(

∆
A

)
→ {0, 1} by

χ′(X) := χ(f ′(X)), since the image of f ′ is contained in Γ and the isomorphism type of
A is preserved by f ′. According to the Ramsey property of ∆, there is a copy B0 of B in(

∆
B

)
that is monochromatic with respect to χ′. As B is in the image of the type-collapsing

function f ′, we have that f ′ �B0 is type-preserving. Hence, f ′(B0) ∈
(

Γ
B

)
, and f ′ induces a

bijection between
(
B0

A

)
and

(f ′(B0)
A

)
, i.e., all copies of A in f ′(B0) are of the form f ′(X) for

some X ∈
(
B0

A

)
. The fact that χ′ is constant on

(
B0

A

)
then translates to χ being constant on(f ′(B0)

A

)
. By a standard compactness argument, this conclusion verifies the Ramsey property

of Γ. As every type of Γ is inherited from ∆, all of whose substructures are rigid, the same
holds for Γ, making it an ordered Ramsey structure according to [18]. �

According to Item (4) of Theorem 4.1, type-collapsing embeddings define a preorder (a.k.a.
quasiorder) on the class of all homogeneous ordered Ramsey structures in a finite relational
language: Γ � ∆ if there is a type-collapsing injection f : ∆ → Γ. The induced partial
order is obtained by factoring out with the equivalence relation ∆ ∼ Γ defined by Γ � ∆ and
∆ � Γ. This equivalence relation is coarser than first-order interdefinability.

Proposition 4.2. The partial order induced by type-collapsing injections has a least element,
namely the class of structures first-order interdefinable with (Q, <). Furthermore, the order
ideal generated by any element is finite.

Proof. Let ∆ be a homogeneous ordered Ramsey structure in a finite relational language with
maximum arity m. For all 1 ≤ n ≤ m, let us color each n-element subset A of ∆ by the
isomorphism type of the n tuple in which the elements of A are indexed in increasing order
with respect to a fixed total order in the language of ∆. Then according to the original
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Ramsey theorem [22] (about sets), for every N ∈ N there is an N -element set in ∆ such that
for all 1 ≤ n ≤ m the n-element subsets are monochromatic. By using Kőnig’s lemma, there
is an infinite subset S ⊆ ∆ with the same property.

Let f : ∆ → S be a bijection. Then f is a type-collapsing injection, and according to
Theorem 4.1, there is a homogeneous ordered Ramsey structure Γ ⊆ ∆ containing the image
of f , whose age consists of the unique n-element structure for all n that was selected by
the monochromatic coloring above. We show that Γ is first-order interdefinable with (Q, <).
Assume that there is an endpoint in Γ, say a biggest element x. Pick another element y < x.
Then there is an automorphism of Γ mapping y to x. If z is the image of x under this
automorphism, then x < z, a contradiction. Assume that the order is not dense, that is,
there are elements a < b in Γ with no element in between. Let c < d < e be a three element
chain in Γ. As there is only one 2-element substructure in the age of the homogeneous Γ, there
is an automorphism mapping c to a and e to b. Then the image of d is in between a and b, a
contradiction. Hence, the order structure of Γ is isomorphic to (Q, <). Both structures have
the property that there is a unique n-element structure in their age, providing a first-order
definition of n-ary relations of one in those of the other.

The second assertion follows trivially from Theorem 4.1: there are only finitely many ways
to collapse m-types. �

Theorem 4.1 and Proposition 4.2 provide us with the opportunity to prove partial results to
Thomas’ conjecture, and in general about reducts of homogeneous ordered Ramsey structures
by an inductive argument. For example, one technical difficulty in proving general results are
the existence of type-collapsing canonical function, as it was illustrated by the semilinear
order: the existence of the reduct (S2, R) together with the canonical flat self embedding
preserving R caused a major challenge in the classification. We show that in some sense,
we can disregard such reducts completely when we are interested in the Thomas conjecture
for ordered Ramsey structures. According to the Bodirsky-Pinsker conjecture, we do not
lose anything by restricting our attention to such structures: to this day, there is no known
example to a homogeneous structure in a finite relational language that does not have an
ordered Ramsey expansion with the same properties. We say that a function f : ∆→ ∆ has
a full image if the age of the image of f coincides with the age of ∆.

Corollary 4.3. Let ∆ be a minimal counterexample to the Thomas conjecture for ordered
Ramsey structures in terms of the size of the order ideal with respect to type-collapsing in-
jections. Then Aut(∆) has infinitely many closed supergroups in Sym(∆) that only generate
functions with a full image.

Proof. If the automorphism group of a reduct Σ generates a function whose image is not
full, then the canonization of that function must be a type-collapsing injection f . According
to Theorem 4.1, there is a homogeneous ordered Ramsey substructure Θ of ∆ containing
the image of f with the same age as that of the image of f . Then Θ has a strictly smaller
order ideal than ∆, as Θ is strictly below ∆ in the partial order. By the minimality of ∆,
Θ has finitely many reducts up to first-order interdefinability, that is, Aut(Θ) has finitely
many closed supergroups in Sym(Θ). Let Γ be the reduct of ∆ whose relations are the full
f pre-images of the definable relations in Θ. Then the conditions of Proposition 3.2 apply to
∆ = ∆, Γ = Γ, f = g, ∆′ = Θ. Moreover, f is generated by automorphisms, hence locally
invertible in the sense that the restriction of its inverse to any finite set can be interpolated
by an automorphism of Σ. Hence, we can avoid the zig-zag argument, and conclude that
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reducts of Γ correspond to some reducts of Θ. Similarly, each reduct of Σ corresponds to a
reduct of Γ. Thus Σ has finitely many reducts up to first-order interdefinability. �

As we mentioned in the introduction, it is worth studying self-embedding supermonoids
of the self-embedding monoid of a structure ∆ satisfying the conditions of the Thomas con-
jecture: there is no known counterexample to the existential variant of that conjecture, and
the Ramsey-type methods combined with the techniques presented in this paper work very
effectively to self-embedding monoids.

Question 4.4. Does the zig-zag argument presented in the proof of Lemma 3.6 apply to
every reduct Γ of a homogeneous Ramsey structure ∆ in a finite relational language that is
the image of a type-collapsing injection f (cf. Theorem 4.1)? That is, given self-embedding
monoid Emb(Γ) ⊆M that preserves the pre-image of the basic relations in Γ, is it true that
Emb(Γ) =M?

Conjecture 4.5. Every homogeneous Ramsey structure ∆ in a finite relational language has
finitely many reducts up to existential interdefinability.

Proposition 4.6. Provided a positive answer to Question 4.4, Conjecture 4.5 is equivalent
to its first-order variant.

Proof. According to [5], the self-embedding supermonoids of Emb(Q, <) are exactly the
monoids obtained as the monoid closure of each of the five closed supergroups of Aut(Q, <).
Hence, the assertion holds for the structure (Q, <), which is the least element of the partial
order induced by type-collapsing injections according to Proposition 4.2. Let ∆ be a minimal
counterexample in terms of the size of the order ideal with respect to type-collapsing injec-
tions. That is, ∆ has finitely many reducts up to first-order interdefinability and infinitely
many up to existential interdefinability. There are only finitely many self-embedding super-
monoids of Emb(∆) that contain at least one of the essentially finitely many type-collapsing
injections f . Indeed, using the positive answer to Question 4.4, these monoids correspond to
the self-embedding supermonoids of Emb(Γ) (cf. Theorem 4.1). As Γ is strictly below ∆ with
respect to the partial order induced by type-collapsing injections, using the assumption on the
minimality of ∆ and Proposition 4.2, there are finitely many self-embedding supermonoids of
Emb(Γ).

Thus all but finitely many self-embedding supermonoidsM of Emb(∆) consist of functions
with a full image. In particular, the induced digraph relation on types is symmetrical, i.e., if
M maps a tuple with type a to a tuple with type b, then it also maps a tuple with type b
to a tuple with type a. It follows from Theorem 3.4.12 of [2] that such a monoid M is the
monoid closure of its invertible elements, i.e., the monoid closure of one of the finitely many
closed supergroups of Aut(∆), a contradiction. �

We remark that in a personal communication, Michael Pinsker has shown the author a con-
struction of a continuum of closed supermonoids of Emb(Q, <, 0, 1) generated by bijections
(none of which is a self-embedding monoid). This construction and the fact that the endo-
morphism monoid of the simplest structure (N,=) has a continuum of closed supermonoids
indicate that there is little room for improvement in Conjecture 4.5.
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à diriger des recherches, Université Diderot – Paris 7. Available at arXiv:1201.0856, 2012.

[3] Bodirsky, M., Bradley-Williams, D., Pinsker, M., and Pongrácz, A. The universal homogeneous
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