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Abstract

In a recent paper, we generalized the basic constructions of the tangent prolongation of
Lie groups to Cr-differentiable local loops. The prolongation leads to a Cr−1-differentiable
linear abelian extension of a tangent vector space by the local loop. The purpose of this
article is to investigate the tangent algebra of the tangent prolongation of a local loop.
The study of tangent algebras of loops was initiated in 1976 by M. A. Akivis. The abstract
version is now called Akivis algebra, defined by a skew-symmetric bilinear and a trilinear
operation connected only by the Akivis identity, which generalizes the Jacobi identity.
Using the power series expansion of the multiplication, we prove that the tangent Akivis
algebras of linear abelian extensions are semidirect sums of Akivis algebras. Applying to
the tangent prolongation of a Cr-differentiable local loop, r ≥ 4, we obtain the operations
of the tangent Akivis algebra, which are similar in structure to the associative case.

1 Introduction

First, we remember the main constructions and results of the theory of tangent prolongation
of a Lie group G with Lie algebra g. Denote λx : G → G and ρx : G → G the left,
respectively, right multiplication of G with identity element e ∈ G. The tangent bundle T(G)
can be identified with the product G×Te(G) by the map (x, ξ) 7→ (x,dxλ

−1
x ξ) for ξ ∈ Te(G).

The manifold G × Te(G) has a natural Lie group structure, called tangent prolongation of
G, determined by the multiplication

(x,X) · (y, Y ) =
(
xy,dxyλ

−1
xy

d

dt

∣∣
t=0

(x exp tX · y exp tY )
)

=
(
xy,Ad−1y X + Y

)
, (1)

where x, y ∈ G, X,Y ∈ Te(G) and Adg = de(λgρ
−1
g ) : Te(G)→ Te(G), g ∈ G, is the adjoint

action of G on Te(G). This means that the tangent prolongation is a semidirect product
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G n Te(G) determined by the adjoint representation. The Lie algebra of G n Te(G) is the
semidirect sum g⊕α a of g with the abelian Lie algebra a on Te(G), which is determined by
the homomorphism g→ End(a) given by α : ξ 7→ θ−1 · adξ · θ, where θ : a→ g is the identity
map of underlying vector space. The Lie bracket of g⊕α a is given by

[(ξ,X), (η, Y )] = ([ξ, η], αξY − αηX) = ([ξ, η], θ−1([ξ, θ(Y )] + [θ(X), η])), (2)

cf. e.g. [16], §V.1. and [15], §3.15.
The purpose of this article is to generalize the basic constructions of tangent prolongation of
Lie groups to differentiable non-associative systems and to examine the resulting structures.
There are two main differences between Lie theory of groups and loops. As long as a differ-
entiable group multiplication is necessarily analytic, loop multiplications can satisfy various
differentiability conditions. Moreover, the tangent Lie algebra of a Lie group determines the
multiplication up to local isomorphism, but differentiable local loops corresponding to the
same Akivis algebra are not necessarily locally isomorphic. These claims justify the interest
in studying the construction of tangent Akivis algebras in the context of local loops.
The development of Lie’s theory of differentiable local loops and their tangent algebras was
initiated by M. A. Akivis (see [1], [2], [3]). The tangent space of a local loop at the identity
element has a natural algebra structure with a skew-symmetric bilinear commutator and a
trilinear associator operation, connected only by a particular relationship known as the Akivis
identity that generalizes the Jacobi identity. The abstract version of this algebra was later
called the Akivis algebra, a theory of which has been developed by many authors in the last
few decades (see e.g. [7], [8], [11], [12], [13]).
The tangent prolongation of a Cr-differentiable local loop L can be obtained by generalization
of the multiplication (1) to non-associative system, which is studied in our paper [6]. It be-
came clear that the tangent prolongation of a Cr-differentiable loop L is a Cr−1-differentiable
loop which is a linear abelian extension (cf. [5]) of the tangent space Te(L) at the identity
element e by L given by suitable Cr−1-differentiable loop cocycle (P,Q). This loop extension
has the same classical weak inverse and weak associative properties as the initial loop. We
will now determine Akivis algebras of linear abelian extensions, in particular of the tangent
prolongation of Cr-differentiable local loops with r ≥ 4.
In §2 we introduce the basic concepts and methods of our research, in particular the tools of
Taylor expansions of differentiable local loop operations. In §3, after defining abstract Akivis
algebras and tangent Akivis algebras of differentiable local loops, we define and examine the
class of semidirect sums of Akivis algebras, which are called linear semidirect sums. These
extensions of Akivis algebras are determined by one bilinear and three trilinear maps from
the first Akivis algebra to the endomorphism algebra of the second Akivis algebra, which
fulfill the so-called generalized Akivis identity. §4 is devoted to the computation of the op-
erations of the tangent Akivis algebra of linear abelian extensions of L. Using power series
expansion of the cocycle maps P , Q we prove that this tangent Akivis algebra is a special
semidirect sum of Akivis algebras called a linear semidirect sum. In §5 we apply the results
on tangent Akivis algebras of linear abelian extensions to the case of tangent prolongation
of differentiable loops. We obtain a remarkable form of the commutator and the associator
of the tangent Akivis algebra and prove that both operations of the tangent Akivis algebra
are given by analogous formulas to the expression (2) of the commutator of the Lie algebra
of the tangent prolongation of a Lie group.
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2 Preliminaries

A loop is a set L with three binary operations ·, \, / : L× L→ L in which the identities

(x/y) · y = x, y\(y · x) = x, (x · y)/y = x, y · (y\x) = x, x, y ∈ L (3)

are fulfilled and there is an identity element e ∈ L satisfying

e · x = x · e = x/e = e\x = x for all x ∈ L (4)

Left translations λx : L → L, λxy = x · y, and right translations ρx : L → L, ρxy = y · x, of
the multiplication operation x · y are bijective maps and the left and right division operations
of L satisfy x\y = λ−1x y, respectively x/y = ρ−1y x.

Cr-differentiable local loops

For a differentiable map ϕ : M → N between differentiable manifolds M and N we denote
by dxϕ : Tx(M) → Tϕ(x)(N) the linear differential map between the tangent spaces at a
point x ∈M . Let V n be a real vector space of dimension n and F a k-variable differentiable
map defined in a neighbourhood of (0, . . . , 0) ∈ V n × · · · × V n, then F ′i (u), i = 1, . . . , k,
will denote the linear differential map of F at the point (0, . . . , 0) with respect to the i-th
vector variable, applied to the vector u ∈ V n. Similarly, F ′′ij(u, v) denotes the bilinear second,
respectively, F ′′′ijk(u, v, w) the trilinear third differential map at (0, . . . , 0) with respect to the
i-th and j-th, respectively, the i-th, j-th and k-th vector variables, applied to the adequate
number of vectors u, v ∈ V n or u, v, w ∈ V n.
An n-dimensional Cr-differentiable manifold L equipped with a Cr-differentiable partial op-
eration (x, y) 7→ x · y (called partial multiplication) that is defined in an open domain
(e, e) ∈ U ⊂ L × L and satisfies e · x = x · e = x for all x ∈ L with a fixed e ∈ L is
called Cr-differentiable local H-space with identity element e ∈ L.
If two more Cr-differentiable partial operations \, / : U → L (called left and right partial
divisions) are defined in a Cr-differentiable local H-space L, and ·, \, / : U → L satify (3) and
(4), if the terms connected by equal sign have meaning, then L is a Cr-differentiable local loop
with identity element e ∈ L.
Let L be a Cr-differentiable local H-space (r ≥ 4) covered by a coordinate neighbourhood.
We identify L with its coordinate chart in the euclidean vector space (V n, 〈., .〉) and the
identity element e ∈ L with the zero element 0 ∈ V n. The coordinate function of the local
multiplication has the Taylor expansion

x · y = x+ y + q(x, y) + r(x, x, y) + s(x, y, y) +M(x, y), (5)

in a neighbourhood of (0, 0) ∈ V n × V n with an error term M(x, y) satisfying

lim
x,y→0

M(x, y)

(|x|+ |y|)3
= 0.

The bilinear and trilinear monomials in (5) are expressed by

q = (x · y)′′xy(0, 0), r =
1

2
(x · y)′′′xxy(0, 0), s =

1

2
(x · y)′′′xyy(0, 0), (6)
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on the vector space V n, (e.g. Corollary 4.4. in [10]), hence r and s are symmetric in the first,
respectively, in the last two variables.

Remark 2.1. We notice that q(x, y) is skew-symmetric in canonical coordinate systems
(cf. [9] and [4]), having the same differentiability property as the local multiplication. This
property of the bilinear form q can also be provided by a locally invertible coordinate change
φ(x) = x − 1

2q(x, x) in a neighbourhood of 0 ∈ V n. Indeed, denoting the multiplication by
φ(x) ? φ(y) with respect to the coordinates φ(x) ∈ V n we have

φ(x) ? φ(y) = φ(x · y) = x− 1

2
q(x, x) + y − 1

2
q(y, y) + q(x, y)− 1

2
q(x, y)− 1

2
q(y, x) + · · · .

The inverse of the map φ(x) = x− 1
2q(x, x) is of the form φ−1(x) = x+ 1

2q(x, x) +o(2), hence
with x̃ = φ(x) and ỹ = φ(y) we get the expansion

x̃ ? ỹ = x̃+ ỹ +
1

2
(q(x̃, ỹ)− q(ỹ, x̃)) + o(2).

In the following we will assume that the bilinear map q : V n × V n → V n in (5) is
skew-symmetric.

According to the implicit mapping theorem the partial left and right division operations
are implicitly determined by the equation x · y − z = 0 in a neighbourhood of (0, 0, 0) in
V n × V n × V n → V n and have the same differentiability properties as the multiplication
(x, y) 7→ x · y, since the tangent maps (x · y− z)′y(0, 0, 0) and (x · y− z)′x(0, 0, 0) are invertible
(see e.g. Theorem 5.9. in [10]). It follows

Proposition 2.2. Any Cr-differentiable local H-space L is a Cr-differentiable local loop on
a neighbourhood of the identity element e ∈ L (cf. [4] (1.3) Proposition).

An immediate computation shows that the Taylor expansions of the coordinate functions
of the left and right divisions are of the form

y/x =y − x− q(y − x, x) + q(q(y − x, x), x)− r(y − x, y − x, x)− s(y − x, x, x) + o(3),

x\y =y − x− q(x, y − x) + q(x, q(x, y − x))− r(x, x, y − x)− s(x, y − x, y − x) + o(3),
(7)

where o(3) is an error term up to order 3.

Definition 2.1. Let L be a Cr-differentiable local loop and α(t), β(t), γ(t) differentiable
curves in L with initial data

α(0) = β(0) = γ(0) = e, α′(0) = X, β′(0) = Y, γ′(0) = Z, X, Y, Z ∈ Te(L).

The bilinear tangent commutator (X,Y ) 7→ [X,Y ] of the local loop L on the tangent space
Te(L) is defined by

[X,Y ] =
1

2

d2t

d t2

∣∣∣
t=0

(α(t) · β(t))/(β(t) · α(t)) =
1

2

d2t

d t2

∣∣∣
t=0

(β(t) · α(t))\(α(t) · β(t)). (8)

The trilinear tangent associator (X,Y, Z) 7→ 〈X,Y, Z〉 of L on the tangent space Te(L) is
defined by

〈X,Y, Z〉 =
1

6

d3t

d t3

∣∣∣
t=0

((α(t) · β(t)) · γ(t)) / (α(t) · (β(t) · γ(t))) =

=
1

6

d3t

d t3

∣∣∣
t=0

(α(t) · (β(t) · γ(t))) \ ((α(t) · β(t)) · γ(t)) .

(9)
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3 Akivis algebras and their semidirect sum

Definition 3.1. An Akivis algebra An = (V n, [., .], 〈., ., .〉) is a vector space V n equipped
with a skew-symmetric bilinear and a trilinear operation:

(X,Y ) 7→ [X,Y ], (X,Y, Z) 7→ 〈X,Y, Z〉,

fulfilling the so-called Akivis identity :

〈X,Y, Z〉 − 〈Y,X,Z〉+ 〈Y,Z,X〉 − 〈Z, Y,X〉+ 〈Z,X, Y 〉 − 〈X,Z, Y 〉 =

=[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ].
(10)

An Akivis algebra An is abelian if [X,Y ] = 0 and 〈X,Y, Z〉 = 0 for any X,Y, Z ∈ V n.
A derivation of An is a map ∂ ∈ End(V n) satisfying the identity:

∂[X,Y ] = [∂X, Y ] + [X, ∂Y ], X, Y ∈ V n.

Let L be a local loop identified with a neighbourhood Wn of 0 in the vector space V n,
the identity element of L with 0 ∈ V n and the tangent space TeL with V n. The bilinear and
trilinear maps q : TeL × TeL → TeL and r, s : TeL × TeL × TeL → TeL are well defined
by (6), using this identification. According to 2.1.Lemma and 2.2.Lemma in [7] (or IX.6.6.
Theorem in [8]) the commutator (8) and the associator (9) of the local multiplication (5) are
expressed by the first non-vanishing term of the Taylor series of

(x · y)/(y · x) or (y · x)\(x · y) and
(
(x · y) · z

)
/
(
x · (y · z)

)
or

(
x · (y · z)

)
\
(
(x · y) · z

)
,

respectively. It follows for any X,Y, Z ∈ Te(L)

[X,Y ] = 2q(X,Y ),

〈X,Y, Z〉 = q(q(X,Y ), Z)− q(X, q(Y,Z)) + 2r(X,Y, Z)− 2s(X,Y, Z).
(11)

Moreover, these operations (X,Y ) 7→ [X,Y ] and (X,Y, Z) 7→ 〈X,Y, Z〉 determine an Akivis
algebra on the tangent space Te(L).

Definition 3.2. The tangent Akivis algebra A(L) of a Cr-differentiable local loop L is the
tangent space TeL equipped with the tangent commutator (8) and tangent associator (9)
operations expressed by (11).

Let An = (V n, [., .]A, 〈., ., .〉A) and Bk = (Uk, [., .]B, 〈., ., .〉B) be Akivis algebras defined
on the vector spaces V n and Uk, respectively. Let α : V n → End(Uk) be a linear map and
λ, µ, ν : V n × V n → End(Uk) bilinear maps. We define the operations

[(ξ,X), (η, Y )] = ([ξ, η]A, [X,Y ]B + αξY − αηX),

〈(ξ,X), (η, Y ), (ζ, Z)〉 =
(
〈ξ, η, ζ〉A, 〈X,Y, Z〉B + λ(η,ζ)X + µ(ζ,ξ)Y + ν(ξ,η)Z

) (12)

(ξ,X), (η, Y ), (ζ, Z) ∈ V n ⊕ Uk on the direct sum V n ⊕ Uk.
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Theorem 3.1. The operations (12) on V n ⊕ Uk determined by the linear, respectively,
bilinear maps

α : V n → End(Uk), λ, µ, ν : V n × V n → End(Uk)

satisfy the Akivis identity if and only if

(i) the maps αξ ∈ End(Uk), ξ ∈ V n, are derivations of Bk,

(ii) the general Akivis identity

λ(ξ,η) − λ(η,ξ) + µ(ξ,η) − µ(η,ξ) + ν(ξ,η) − ν(η,ξ) = α[ξ,η]A − αξαη + αηαξ (13)

is satisfied for any ξ, η ∈ V n.

Proof. The left and right hand sides of the Akivis identity for the operations [(ξ,X), (η, Y )]
and 〈(ξ,X), (η, Y ), (ζ, Z)〉 defined by (12) and (10) give the expressions

(〈ξ, η, ζ〉A + 〈η, ζ, ξ〉A + 〈ζ, ξ, η〉A − 〈η, ξ, ζ〉A − 〈ζ, η, ξ〉A − 〈ξ, ζ, η〉A,
〈X,Y,Z〉B + 〈Y, Z,X〉B + 〈Z,X, Y 〉B − 〈Y,X,Z〉B − 〈Z, Y,X〉B − 〈X,Z, Y 〉B+

+ (λ(η,ζ) + µ(η,ζ) + ν(η,ζ) − λ(ζ,η) − µ(ζ,η) − ν(ζ,η))X+

+ (λ(ζ,ξ) + µ(ζ,ξ) + ν(ζ,ξ) − λ(ξ,ζ) − µ(ξ,ζ) − ν(ξ,ζ))Y+

+ (λ(ξ,η) + µ(ξ,η) + ν(ξ,η) − λ(η,ξ) − µ(η,ξ) − ν(η,ξ))Z),

and

([[ξ, η]A, ζ]A + [[ζ, ξ]A, η]A + [[η, ζ]A, ξ]A,

[[X,Y ]B, Z]B + [[Z,X]B, Y ]B + [[Y,Z]B, X]B + [αηZ,X]B + [Z,αηX]B − αη[Z,X]B+

+ [αξY, Z]B + [Y, αξZ]B − αξ[Y,Z]B + [αζX,Y ]B + [X,αζY ]B − αζ [X,Y ]B+

+ (α[η,ζ]A − αηαζ + αζαη)X + (α[ζ,ξ]A − αζαξ + αξαζ)Y + (α[ξ,η]A − αξαη + αηαξ)Z.

The operations (12) of Akivis algebras An and Bk satisfy the Akivis identity precisely if

[αηZ,X]B + [Z,αηX]B − αη[Z,X]B + (α[ζ,ξ]A − αζαξ + αξαζ)Y+

+[αξY,Z]B + [Y, αξZ]B − αξ[Y,Z]B + (α[η,ζ]A − αηαζ + αζαη)X+

+[αζX,Y ]B + [X,αζY ]B − αζ [X,Y ]B + (α[ξ,η]A − αξαη + αηαξ)Z =

=(λ(η,ζ) − λ(ζ,η) + µ(η,ζ) − µ(ζ,η) + ν(η,ζ) − ν(ζ,η))X+

+(µ(ζ,ξ) − µ(ξ,ζ) + ν(ζ,ξ) − ν(ξ,ζ) + λ(ζ,ξ) − λ(ξ,ζ))Y+

+(ν(ξ,η) − ν(η,ξ) + λ(ξ,η) − λ(η,ξ) + µ(ξ,η) − µ(η,ξ))Z

(14)

for all ξ, η, ζ ∈ V n and X,Y, Z ∈ Uk. Putting η = ζ = 0 we get

[αξY,Z]B + [Y, αξZ]B − αξ[Y,Z]B = 0,

for all ξ ∈ V n, which means that αξ ∈ End(Uk) is a derivation of the Akivis algebra Bk,
giving the condition (i). Hence putting X = Y = 0 into (14) we obtain that the identity (14)
is equivalent to the condition (ii). Hence the assertion is proved.
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Definition 3.3. If the linear α : V n → End(Uk) and bilinear λ, µ, ν : V n × V n → End(Uk)
maps satisfy the conditions (i) and (ii) of Theorem 3.1, then the operations (12) on V n⊕Uk
define an Akivis algebra AnoBk, called the linear semidirect sum of Akivis algebras An and
Bk, determined by α : V n → End(Uk) and λ, µ, ν : V n × V n → End(Uk).

Note that the linear semidirect sum An o Bk defined above belongs to a special class of
semidirect sums of Akivis algebras, which are characterized by the condition that the values
of the bilinear and trilinear operations (12) determined by the mappings α, λ, µ, ν are linear
maps on Uk, i.e. contained in End(Uk) ∼= Uk

∗ ⊗ Uk. More generally, the trilinear operation
could also contain components that are linear maps of the form V n → Uk

∗ ⊗ Uk∗ ⊗ Uk.

Remark 3.2. Let An = (V n, [., .], 〈., ., .〉) be an Akivis algebra. In the case αXY = [X,Y ],
λ(X,Y )Z = 〈Z,X, Y 〉, µ(X,Y )Z = 〈Y, Z,X〉, ν(X,Y )Z = 〈X,Y, Z〉 the general Akivis identity

(13) applied to Uk = V n

λ(X,Y ) − λ(Y,X) + µ(X,Y ) − µ(Y,X) + ν(X,Y ) − ν(Y,X) = α[X,Y ] − αXαY + αY αX . (15)

is reduced to the classical Akivis identity (10).

We now formulate a special construction of linear semidirect sum of Akivis algebras, which
will be useful in the investigation of tangent Akivis algebras of tangent prolongations.

Proposition 3.3. Let An = (V n, [., .]A, 〈., ., .〉A), A∗n = (V n, [., .]A, 〈., ., .〉∗) be Akivis alge-
bras, (V n)+ the abelian Akivis algebra on the vector space V n and θ : {0}⊕ V n → V n⊕{0}
a bijective linear map. The maps

αξZ = θ−1[ξ, θZ]A, λ(ξ,η)Z = θ−1〈θZ, ξ, η〉∗, µ(ξ,η)Z = θ−1〈η, θZ, ξ〉∗, ν(ξ,η)Z = θ−1〈ξ, η, θZ〉∗

determine a linear semidirect sum An o (V n)+ of Akivis algebras.

Proof. The condition (i) of Theorem 3.1 is satisfied since (V n)+ is abelian. The identity (13)
can be obtained by conjugation with the map θ of the Akivis identity A∗n. For example:

αξαηZ = θ−1[ξ, θ · θ−1[η, θZ]A]A = θ−1[ξ, [η, θZ]A]A, λ(ξ,η)Z = θ−1〈θZ, ξ, η〉∗.

Likewise, we can get the same conjugation relationship for the other terms of the Akivis
identity.

4 Akivis algebra of linear abelian extensions

Let L = (L, ·, /, \) be a Cr-differentiable local loop with r ≥ 4, Uk a vector space and GL(Uk)
the general linear group of Uk. For any given pair P,Q : L×L→ GL(Uk) of Cq-differentiable
maps (3 ≤ q ≤ r) satisfying P (a, e) = Id = Q(e, b) we construct a Cq-differentiable local loop
with identity (e, 0) on the product manifold L×Uk, (this construction is investigated in [5]).

Definition 4.1. A Cq-differentiable loop cocycle on the product manifold L×Uk is a pair of
Cq-differentiable maps:

P,Q : L× L→ GL(Uk) with P (x, e) = Id = Q(e, y) for all x, y ∈ L. (16)
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The linear abelian extension F(P,Q) is the Cq-differentiable local loop on L×Uk defined by
the Cq-differentiable operations

(x,X) · (y, Y ) = (xy, P (x, y)X +Q(x, y)Y ),

(y, Y )/(x,X) =
(
y/x, P (y/x, x)−1(Y −Q(y/x, x)X)

)
,

(x,X)\(y, Y ) =
(
x\y,Q(x, x\y)−1(Y − P (x, x\y)X)

)
and identity element (e, 0).

Assume that L is covered by a coordinate neighbourhood and hence L can be identified
with a coordinate chart Wn ⊂ V n containing 0 ∈ V n such that e ∈ L corresponds to 0 ∈Wn.
We investigate the linear abelian extension F(P,Q) determined by the cocycle (16). The
power series expansion of the maps P,Q : Wn ×Wn → GL(Uk) in a neighbourhood of (0, 0)
has the form

P (x, y) = Id + P ′2(y) + P ′′12(x, y) +
1

2
P ′′22(y, y) + o(2),

Q(x, y) = Id +Q′1(x) +
1

2
Q′′11(x, x) +Q′′12(x, y) + o(2),

(17)

since P (x, 0) = Id = Q(0, y), x, y ∈ Wn, where P ′′22(x, y) and Q′′11(x, y) are symmetric bi-
linear forms. Consequently we have the expansion at (0, 0) with respect to the variables
(x,X), (y, Y ) ∈Wn × Uk:

P (x, y)X +Q(x, y)Y = X + Y + P ′2(y)X +Q′1(x)Y+

+P ′′12(x, y)X +
1

2
P ′′22(y, y)X +

1

2
Q′′11(x, x)Y +Q′′12(x, y)Y + o(3).

(18)

The trilinear maps

((x,X), (y, Y ), (z, Z)) 7→ P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z,

((x,X), (y, Y ), (z, Z)) 7→ P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z

are symmetric in the first, respectively, last two variables. Introducing the notations

Q ((x,X), (y, Y )) =
(
q(x, y), P ′2(y)X +Q′1(x)Y

)
,

R ((x,X), (y, Y ), (z, Z)) =

(
r(x, y, z),

1

2

(
P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z

))
,

S ((x,X), (y, Y ), (z, Z)) =

(
s(x, y, z),

1

2

(
P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z

))
,

(19)

we obtain the expansion

(x,X) · (y, Y ) = (x,X) + (y, Y )+Q ((x,X), (y, Y )) +R ((x,X), (x,X), (y, Y )) +

+S ((x,X), (y, Y ), (y, Y )) + o(3), (x,X), (y, Y ) ∈Wn × Uk
(20)

of the multiplication of F(P,Q). Now we can compute the commutator:

[(x,X), (y, Y )] = Q ((x,X), (y, Y ))−Q ((y, Y ), (x,X)) =

=([x, y],
(
P ′2(y)−Q′1(y)

)
X +

(
Q′1(x)− P ′2(x)

)
Y ).

(21)
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and the associator:

〈(x,X), (y, Y ),(z, Z)〉 = Q(Q((x,X), (y, Y )), (z, Z))−Q((x,X),Q((y, Y ), (z, Z)))+

+ 2R((x,X), (y, Y ), (z, Z))− 2S((x,X), (y, Y ), (z, Z)) =

=
(
q(q(x, y), z), P ′2(z)

(
P ′2(y)X +Q′1(x)Y

)
+Q′1(q(x, y))Z

)
−

−
(
q(x, q(y, z)), P ′2(q(y, z))X +Q′1(x)

(
P ′2(z)Y +Q′1(y)Z

))
+

+
(
2r(x, y, z), P ′′12(y, z)X + P ′′12(x, z)Y +Q′′11(x, y)Z

)
−

−
(
2s(x, y, z), P ′′22(y, z)X +Q′′12(x, z)Y +Q′′12(x, y)Z

)
=

=
(
〈x, y, z〉,

(
P ′2(z)P

′
2(y)− P ′2(q(y, z)) + P ′′12(y, z)− P ′′22(y, z)

)
X+

+
(
P ′2(z)Q

′
1(x)−Q′1(x)P ′2(z) + P ′′12(x, z)−Q′′12(x, z)

)
Y+

+
(
Q′1(q(x, y))−Q′1(x)Q′1(y) +Q′′11(x, y)−Q′′12(x, y)

)
Z
)

(22)

of the tangent Akivis algebra of the linear abelian extension F(P,Q). Substituting arbitrary
tangent vectors into the variables x, y, z in the equations (21) and (22), we obtain

Theorem 4.1. The tangent Akivis algebra A(F(P,Q)) of the linear abelian extension
F(P,Q) is a linear semidirect sum A(L) o (Uk)+ of the tangent Akivis algebra A(L) of
L and the abelian Akivis algebra (Uk)+ on the vector space Uk. The linear, respectively,
bilinear maps

α : Te(L)→ End(Uk), λ, µ, ν : Te(L)× Te(L)→ End(Uk)

that determine the linear semidirect sum A(L) o (Uk)+ are expressed by

αξ = Q′1(ξ)− P ′2(ξ),
λ(ξ,η) = P ′2(η)P ′2(ξ)− P ′2(q(ξ, η)) + P ′′12(ξ, η)− P ′′22(ξ, η),

µ(ξ,η) = P ′2(ξ)Q
′
1(η)−Q′1(η)P ′2(ξ) + P ′′12(η, ξ)−Q′′12(η, ξ),

ν(ξ,η) = Q′1(q(ξ, η))−Q′1(ξ)Q′1(η) +Q′′11(ξ, η)−Q′′12(ξ, η)

for any ξ, η ∈ Te(L).

5 Tangent Akivis algebra of the tangent prolongation

Definition 5.1. Let L be a Cr-differentiable local loop and α(t), β(t) differentiable curves in
L with initial data α(0) = β(0) = e, α′(0) = X, β′(0) = Y , where X,Y ∈ Te(L). The tangent
prolongation T (L×Te(L)) of L is the manifold L×Te(L) equipped with the multiplication

(x,X) · (y, Y ) =
(
xy,dxyλ

−1
xy

d

dt

∣∣
t=0

(xα(t) · yβ(t))
)

= (xy,deλ
−1
xy ρyλxX + deλ

−1
xy λxλyY ),

for all (x,X), (y, Y ) ∈ L× Te(L).

We can see immediately, (cf. [6], Lemma 4.1.):
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Lemma 5.1. The tangent prolongation T (L×Te(L)) of a Cr-differentiable local loop L is a
Cr−1-differentiable linear abelian extension F(P,Q) of L determined by the Cr−1-differentiable
cocycle

P (x, y) := de(λ
−1
xy ρyλx), Q(x, y) := de(λ

−1
xy λxλy). (23)

Lemma 5.2. The monomial terms of the power series expansion (18) of

P (x, y)X +Q(x, y)Y = de(λ
−1
xy ρyλx)X + de(λ

−1
xy λxλy)Y

are expressed by

P ′2(y)X = 2q(X, y),

P ′′12(x, y)X = q(q(x,X), y)− q(q(x, y), X)− 2q(x, q(X, y))+

+ 2r(x,X, y)− 2r(x, y,X),

1

2
P ′′22(x, y)X = −q(x, q(X, y))− q(y, q(X,x))− r(x, y,X) + s(X,x, y),

(24)

and

Q′1(x) = Q′′11(x, y) = 0,

Q′′12(x, y)Y = q(x, q(y, Y ))− q(q(x, y), Y ) + 2s(x, y, Y )− 2r(x, y, Y ).
(25)

Proof. Let us denote

Σ = x · y, Γ(z) = ρyλxz, ∆(z) = λxλyz.

The map P (x, y) = de(λ
−1
xy ρyλx) = de(Σ\Γ) is the linear part of Σ\Γ(z) with respect to the

variable z. We have the expansions

Γ(z) = (x · z) · y = x+ y + z + q(x, z) + q(x+ z, y) + q(q(x, z), y)+

+r(x, x, z) + r(x+ z, x+ z, y) + s(x, z, z) + s(x+ z, y, y) + o(3)

and

Γ(z)− Σ = z + q(x, z) + q(z, y) + q(q(x, z), y) + r(x, x, z)+

+2r(x, z, y) + r(z, z, y) + s(x, z, z) + s(z, y, y) + o(3).

Using

x\y = y − x− q(x, y − x) + q(x, q(x, y − x))− r(x, x, y − x)− s(x, y − x, y − x) + o(3)

we obtain

Σ\Γ(z) = Γ(z)− Σ− q(Σ,Γ(z)− Σ) + q(Σ, q(Σ,Γ(z)− Σ))−
− r(Σ,Σ,Γ(z)− Σ)− s(Σ,Γ(z)− Σ,Γ(z)− Σ) + · · · =
= z + 2q(z, y) + q(q(x, z), y)− q(q(x, y), z)−
− q(x+ y, q(z, y)− q(y, z)) + 2r(x, z, y)− 2r(x, y, z)+

+ r(z, z, y)− r(y, y, z) + s(x, z, z) + s(z, y, y)− s(x+ y, z, z) + o(3).
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The linear part of Σ\Γ with respect to the variable z gives

P (x, y)Z = Z + 2q(Z, y) + q(q(x, Z), y)− q(q(x, y), Z)− 2q(x+ y, q(Z, y))+

+ 2r(x, Z, y)− 2r(x, y, Z)− r(y, y, Z) + s(Z, y, y) + o(3).
(26)

Similarly, Q(x, y) = de(λ
−1
xy λxλy) = de(Σ\∆) is the linear part of λ−1xy λxλy(z) = Σ\∆(z) with

respect to the variable z. We have

∆(z)− Σ = z + q(x+ y, z) + q(x, q(y, z)) + r(x, x, z) + r(y, y, z)+

+ s(y, z, z) + 2s(x, y, z) + s(x, z, z) + o(3),

and

Σ\∆(z) = ∆(z)− Σ− q(Σ,∆(z)− Σ) + q(Σ, q(Σ,∆(z)− Σ))−
− r(Σ,Σ,∆(z)− Σ)− s(Σ,∆(z)− Σ,∆(z)− Σ) + · · · =
= z + q(x, q(y, z))− q(q(x, y), z)− 2r(x, y, z) + 2s(x, y, z) + o(3).

It follows

Q(x, y)Z = Z + q(x, q(y, Z))− q(q(x, y), Z) + 2s(x, y, Z)− 2r(x, y, Z) + o(3). (27)

According to (17), (26) and (27) we have

P ′2(y)X + P ′′12(x, y)X +
1

2
P ′′22(y, y)X =

= 2q(X, y) + q(q(x,X), y)− q(q(x, y), X)− 2q(x+ y, q(X, y))+

+ 2r(x,X, y)− 2r(x, y,X)− r(y, y,X) + s(X, y, y),

(28)

and

Q′1(x)Y +
1

2
Q′′11(x, x)Y +Q′′12(x, y)Y =

= q(x, q(y, Y ))− q(q(x, y), Y ) + 2s(x, y, Y )− 2r(x, y, Y ).
(29)

The assertion of lemma follows from the formulas (28) and (29).

Proposition 5.3. The commutator and the associator of the tangent Akivis algebra of the
tangent prolongation T (L× Te(L)) are expressed by

[(x,X), (y, Y )] = ([x, y], [X, y] + [x, Y ])

and
〈(x,X), (y, Y ), (z, Z)〉 =

(
〈x, y, z〉, 〈X, y, z〉+ 〈x, Y, z〉+ 〈x, y, Z〉

)
in a distinguished coordinate chart Wn × V n.
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Proof. We apply the results of Theorem 4.1 to linear abelian prolongation F(P,Q) of L
determined by the cocycle (23). We compute the commutator

[(x,X), (y, Y )] = ([x, y],
(
P ′2(y)−Q′1(y)

)
X +

(
Q′1(x)− P ′2(x)

)
Y ) =

= ([x, y], 2(q(X, y)− q(Y, x)) = ([x, y], [X, y] + [x, Y ]),

and the associator

〈(x,X), (y, Y ), (z, Z)〉 =

=
(
〈x, y, z〉, (P ′2(z)P ′2(y)− P ′2(q(y, z)) + P ′′12(y, z)− P ′′22(y, z))X+

+(P ′2(z)Q
′
1(x)−Q′1(x)P ′2(z) + P ′′12(x, z)−Q′′12(x, z))Y+

+(Q′1(q(x, y))−Q′1(x)Q′1(y) +Q′′11(x, y)−Q′′12(x, y))Z
)

=

=
(
〈x, y, z〉, q(q(X, y), z)− q(X, q(y, z)) + 2r(X, y, z)− 2s(X, y, z)+

+q(q(x, Y ), z)− q(x, q(Y, z)) + 2r(x, Y, z)− 2s(x, Y, z)−
−q(x, q(y, Z)) + q(q(x, y), Z)− 2s(x, y, Z) + 2r(x, y, Z)

)
=

=
(
〈x, y, z〉, 〈X, y, z〉+ 〈x, Y, z〉+ 〈x, y, Z〉

)
.

Hence the assertion is proved.

In Proposition (5.3) we identified the local loop L with the coordinate chart Wn ⊂ V n, the
tangent space Te(L) with the vector space V n, the tangent prolongation T (L×Te(L)) with
Wn×V n, and computed the commutator and associator in the tangent space T(0,0)(W

n×V n).
Now we will find a coordinate-free expression for the operations of the tangent Akivis algebra
of tangent prolongation T (L×Te(L)). Using the fact that the tangent spaces of a vector space
are canonically isomorphic to the vector space we get a canonical linear isomorphism of the
tangent space T(e,0) (L× Te(L)) to the direct sum Te(L)⊕Te(L). The bilinear, respectively,
trilinear forms q, r, s, the commutator and the associator of L are defined on the subspace
Te(L)⊕ {0} ∼= Te(L). Let

θ : {0} ⊕ Te(L)→ Te(L)⊕ {0}, θ : (0, X) 7→ (X, 0)

be the canonical linear isomorphism induced by the identity map of Te(L). In the expressions
in Proposition (5.3) of the operations of the tangent Akivis algebra of T (L×Te(L)) we replace
x, y, z ∈ Wn with ξ, η, ζ ∈ Te(L) ⊕ {0}. Using the map θ : (0, X) 7→ (X, 0) we can express
the commutator

[(ξ,X), (η, Y )] = ([ξ, η], 2θ−1(q(θ(X), η)+q(ξ, θ(Y ))) = ([ξ, η], θ−1([θ(X), η])+θ−1([ξ, θ(Y )])),

and the associator

〈(ξ,X), (η, Y ), (ζ, Z)〉 =

=
(
〈ξ, η, ζ〉, θ−1

(
q(q(θ(X), η), ζ)− q(θ(X), q(η, ζ)) + 2r(θ(X), η, ζ)− 2s(θ(X), η, ζ)+

+ q(q(ξ, θ(Y )), ζ)− q(ξ, q(θ(Y ), ζ)) + 2r(ξ, θ(Y ), ζ)− 2s(ξ, θ(Y ), ζ)−
− q(ξ, q(η, θ(Z))) + q(q(ξ, η), θ(Z))− 2s(ξ, η, θ(Z)) + 2r(ξ, η, θ(Z))

))
=

=
(
〈ξ, η, ζ〉, θ−1(〈θ(X), η, ζ〉) + θ−1(〈ξ, θ(Y ), ζ〉) + θ−1(〈ξ, η, θ(Z)〉)

)
.

Hence we obtain:
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Theorem 5.4. The tangent Akivis algebra A(T (L × Te(L))) of the tangent prolongation
T (L× Te(L)) of a Cr-differentiable local loop L is a linear semidirect sum

A(T (L× Te(L))) ∼= A(L) o Te(L)+

of the tangent Akivis algebra A(L) and the abelian Akivis algebra Te(L)+ on the tangent
space Te(L). The commutator and the associator of A(T (L× Te(L))) are expressed by

[(ξ,X), (η, Y )] = ([ξ, η], θ−1([θ(X), η]) + θ−1([ξ, θ(Y )])),

〈(ξ,X), (η, Y ), (ζ, Z)〉 =
(
〈ξ, η, ζ〉, θ−1(〈θ(X), η, ζ〉) + θ−1(〈ξ, θ(Y ), ζ〉) + θ−1(〈ξ, η, θ(Z)〉)

)
for any (ξ,X), (η, Y ), (ζ, Z) ∈ Te(L)⊕ Te(L).

The expressions obtained for the commutator and associator of the tangent Akivis algebra
of the tangent prolongation show that this semidirect sum of Akivis algebras is constructed
as described in Proposition (3.3) in the case if An = A∗n and θ : {0}⊕Te(L)→ Te(L)⊕{0}
is induced by the identity map of Te(L).

Corollary 5.5. The tangent Akivis algebra A(T (L × Te(L))) is the linear semidirect sum
A(L) o Te(L)+ determined by the maps

αξZ = θ−1[ξ, θZ], λ(ξ,η)Z = θ−1〈θZ, ξ, η〉, µ(ξ,η)Z = θ−1〈η, θZ, ξ〉, ν(ξ,η)Z = θ−1〈ξ, η, θZ〉

where θ : (0, X) 7→ (X, 0).
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