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1. Introduction

Symmetry analysis [4, 5, 21, 22] is a framework for constructing analytic
solutions for differential equations. Several examples come from Physics (see
[16, 23]), as well as from Biology (see [2, 17, 18]). Finding some symmetries
for a differential equation can be used to derive an appropriate change of
coordinates which then helps to eliminate the independent variables or to
decrease the order of the system and then transform it to an integrable form.
In many cases (e.g. the Fitzhugh–Nagumo model [3, 14] or the model for the
population of Easter Island [18]) the model is based on a first order system
of two equations. One advantage for investigating first order systems is that
any system of differential equations has an equivalent system of first order
system. However, the symmetry groups of higher order systems behave very
differently than first order systems. They have finite dimensional symmetry
groups as opposed to the infinite dimensional Lie groups for the first order
system. Many physical systems (see. [7, 19, 20]) are naturally governed by
second order systems.

Here we tackle the problem from the other way around. Following the
works of Lie we look for small dimensional Lie groups and see what systems
of ordinary differential equations admit them as symmetries. Lie deter-
mined the groups of transformations of the (x, y)-plane and written these
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into canonical form (cf. [13, Sections 3, 4, 5, pp. 28–78] and [13, Section 19,
pp. 360–392], see also [6], p. 341) In [9, Sections X, XI, XIV, XVI] he pro-
vided a classification of all ordinary differential equations of arbitrary order
which admit these given groups as groups of their symmetries. For a given
Lie algebra g of dimension r, represented in an n-dimensional space, one can
determine every differential equation of order at most r−2 whose Lie group’s
tangential Lie algebra contains g as a Lie subalgebra. He described also the
equations for which integration or lowering of the order could be effected by
group theoretical methods. Section 3 is devoted to present his method. In
Section 4 we apply this method to find the ordinary differential equations
which admit some given Lie groups as groups of their symmetries. We use
the given symmetries to find the solutions of these equations. Analogously
to the method of Lie in Section 5 we formulate the appropriate necessary
condition for a system of first order ordinary differential equations allowing
a given Lie group as a subgroup of their symmetries and give examples for
systems which are invariant under Lie groups of symmetries. We restrict us
mostly to the cases where the tangential Lie algebra of the Lie group G is
semi-simple. To obtain our examples we use the REDUCE program [15].

We note two remarkable facts of our study. The differential equations
obtained by this method do not only depend on the isomorphism class of
the given Lie group, but rather on the representation of its tangential Lie
algebra. This will be illustrated in more detail in Section 4.2 taking the
four different representations of the Lie algebra sl2(R) in the plane R2. On
the other hand, in Section 4.3 we obtain a second order ordinary differential
equation admitting the Lie group SO3(R) as its symmetry group. This three-
dimensional simple Lie group has no two-dimensional solvable subgroup.
Therefore, the obtained second order differential equation is not solvable.
To completely solve a second order equation it needs a two dimensional
solvable Lie subgroup of its symmetry group (cf. [21], [5]).

We list the considered real Lie algebras g by increasing dimension together
with their representation in the (x, y)-plane and we list the differential equa-
tions admitting a symmetry group whose tangential Lie algebra is the one
we listed.

(I) Example 4.4: sl2(R), 3-dimensional simple, its generators are

X1 =
∂

∂x
+

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ y2 ∂

∂y
.(1)

The differential equations

(2) y(2) + 2
(y′)2 + y′ + c (y′)3/2

x− y
= 0 (c ∈ R)

of order at most 2 admit this symmetry group.
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(II) Example 4.5: sl2(R), 3-dimensional simple, its generators are

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ xy

∂

∂y
.(3)

The differential equations of order at most 2 admitting this symme-
try group are

(4) y(2) − a

y3
= 0 (a ∈ R).

(III) Example 4.6: sl2(R), 3-dimensional simple, its generators are

X1 =
∂

∂y
, X2 = y

∂

∂y
, X3 = y2 ∂

∂y
.(5)

The differential equations of order at most 3 allowing this symmetry
group are

(6) y(3) −
3
(
y(2)
)2

2y′
− y′f(x) = 0,

for an arbitrary real function f .
(IV) Example 4.8: sl2(R), 3-dimensional simple, its generators are

X1 =
∂

∂x
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = (x2 − y2)

∂

∂x
+ 2xy

∂

∂y
.(7)

The differential equations of order at most 2 admitting this symme-
try group are

(8) y(2) = −1 + (y′)2

y
+ d

(
1 + (y′)2

)3/2

y
(d ∈ R).

(V) Example 4.9: so3(R) ∼= su2(C), 3-dimensional simple, its generators
are

X1 =
(
1 + x2

) ∂

∂x
+ xy

∂

∂y
, X2 = xy

∂

∂x
+
(
1 + y2

) ∂
∂y
,(9)

X3 = y
∂

∂x
− x ∂

∂y
.

The differential equations of order at most 2 allowing this symmetry
group are

(10) y(2) = c

(
1 + y2 − 2xyy′ +

(
1 + x2

)
(y′)2

1 + x2 + y2

)3/2

(c ∈ R).

(VI) Example 4.11: 3-dimensional solvable Lie algebra gα, α ≥ 0, its
generators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = α

(
x
∂

∂x
+ y

∂

∂y

)
+ y

∂

∂x
− x ∂

∂y
.(11)
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There is no differential equation of order at most 1 admitting this
symmetry group.

(VII) Example 4.12: 3-dimensional solvable Lie algebra gβ, 0 < |β| ≤ 1,
its generators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ βy

∂

∂y
.(12)

The differential equation of order at most 1 admitting this symmetry
group is

y′ = 0.

(VIII) Example 4.13: a 4-dimensional solvable Lie algebra, its generators
are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
, X4 = y

∂

∂x
− x ∂

∂y
.(13)

The differential equation of order at most 2 admitting this symmetry
group is

y(2) = 0.

(IX) Example 4.14: 4-dimensional solvable Lie algebra, its generators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂y
.(14)

The differential equations of order at most 2 allowing this symmetry
group are

y′ = 0, y(2) = 0.

(X) Example 4.15: 4-dimensional Lie algebra sl2(R)× R, its generators
are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = x2 ∂

∂x
.(15)

The differential equation of order at most 2 admitting this symmetry
group is

y′ = 0.

(XI) Example 4.16: 4-dimensional Lie algebra gl2(R), its generators are

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂y
, X4 = x2 ∂

∂x
+ xy

∂

∂y
.(16)

The differential equation of order at most 2 admitting this symmetry
group is

y(2) = 0.
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(XII) Example 4.17: 5-dimensional Lie algebra sl2(R) × L2, where L2 is
the 2-dimensional non-abelian Lie algebra, its generators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂y
, X5 = x2 ∂

∂x
.(17)

There are two differential equations of order at most 3 admitting
this symmetry group:

y′ = 0, 2y′y(3) − 3
(
y(2)
)2

= 0.(18)

(XIII) Example 4.18: 5-dimensional Lie algebra sl2(R)nR2, its generators
are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
− y ∂

∂y
, X4 = y

∂

∂x
, X5 = x

∂

∂y
.(19)

The differential equation of order at most 3 allowing this symmetry
group is

y(2) = 0.

(XIV) Example 4.1: sl2(C), 6-dimensional simple, its generators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
− y ∂

∂x
, X4 = x

∂

∂x
+ y

∂

∂y
,(20)

X5 =
(
x2 − y2

) ∂

∂x
+ 2xy

∂

∂y
, X6 = 2xy

∂

∂x
+
(
y2 − x2

) ∂
∂y
.

The differential equation of order at most 4 admitting this symmetry
group is

(21) y(3) + y(3)
(
y′
)2 − 3y′

(
y(2)
)2

= 0.

(XV) Example 4.2: sl2(R)× sl2(R), 6-dimensional semi-simple, its gener-
ators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂y
,(22)

X4 = x
∂

∂x
, X5 = y2 ∂

∂y
, X6 = x2 ∂

∂x
.

The differential equations of order at most 4 admitting this symme-
try group are y′ = 0 and

(23) 2y′y(3) − 3
(
y(2)
)2

= 0.
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(XVI) Example 4.19: 6-dimensional Lie algebra gl2(R)nR2, its generators
are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
,(24)

X4 = y
∂

∂x
, X5 = x

∂

∂y
, X6 = y

∂

∂y
.

The differential equations of order at most 4 admitting this symme-
try group are

y(2) = 0, 3y(4)y(2) − 5
(
y(3)
)2

= 0.(25)

(XVII) Example 4.3: sl3(R), 8-dimensional simple, its generators are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
, X4 = y

∂

∂y
,(26)

X5 = x
∂

∂x
, X6 = y

∂

∂y
, X7 = x2 ∂

∂x
+ xy

∂

∂y
, X8 = xy

∂

∂x
+ y2 ∂

∂y
.

The differential equations of order at most 6 admitting this symme-
try group are

y(2) = 0, 9
(
y(2)
)2
y(5) − 45y(2)y(3)y(4) + 40

(
y(3)
)3

= 0.(27)

In the following list we collect the real Lie algebras g, their type and
infinitesimal generators in the (x, y, z)-space and the appropriate invariant
systems of first order ordinary differential equations.

(i) Example 5.2: so3(R) ∼= su2(C), 3-dimensional simple, its generators
are

X1 = x
∂

∂y
− y ∂

∂x
, X2 = y

∂

∂z
− z ∂

∂y
, X3 = z

∂

∂x
− x ∂

∂z
.(28)

The time-dependent invariant system is

y′ =
y

x
,(29)

z′ =
z

x
.

Only the trivial time-independent system is invariant under the ac-
tion of so3(R):

x′ = 0,

y′ = 0,(30)

z′ = 0.
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(ii) Examples 5.4 and 5.5: sl2(R) × sl2(R), 6-dimensional semi-simple,
its generators are

X1 =
∂

∂y
+ x

∂

∂z
, X2 = y

∂

∂y
+ z

∂

∂z
,(31)

X3 = (xy − z) ∂
∂x

+ y2 ∂

∂y
+ yz

∂

∂z
, X4 =

∂

∂x
+ y

∂

∂z
,

X5 = x
∂

∂x
+ z

∂

∂z
, X6 = x2 ∂

∂x
+ (xy − z) ∂

∂y
+ xz

∂

∂z
.

There does not exist any time-dependent explicit invariant system
of the first order ordinary differential equations. The invariant time-
independent system is trivial (30).

(iii) Example 5.3: sl3(R), 8-dimensional simple, its generators are

X1 = z
∂

∂x
, X2 = z

∂

∂y
, X3 = x

∂

∂y
, X4 = x

∂

∂x
− y ∂

∂y
,(32)

X5 = y
∂

∂x
, X6 = x

∂

∂x
− z ∂

∂z
, X7 = x

∂

∂z
, X8 = y

∂

∂z
.

The time-dependent invariant system is (29). Only the trivial time-
independent system (30) is invariant under the action of sl3(R).

2. Preliminaries

Symmetries of a differential equation are transformations that move (con-
tinuously) a solution of the equation into another solution. Thus for each
symmetry there exists a corresponding vector field (the infinitesimal genera-
tor of the symmetry). In the case of ordinary differential equations of order

m the space of the variables x, y, y′, . . . , y(m) is called the jet space. The
differential equation f

(
x, y, y′, . . . , y(m)

)
= 0 defines an (m+1)-dimensional

surface in this space which is called the hull of the differential equation. A
smooth solution is a continuously differentiable function ϕ(x) such that the

curve y = ϕ(x) with y′ = ∂ϕ(x)
∂x , . . . , y(m) = ∂mϕ(x)

∂xm belongs to the hull, that

is, f
(
x, ϕ(x), . . . , ∂

mϕ(x)
∂xm

)
= 0 identically holds for all x. Understanding

symmetries of differential equations is useful for generating a new solution
from a known solution of the differential equation and creating new methods
for solving it. For example, symmetries can help lowering the order of the
differential equation. In the process of integrating differential equations the
crucial step is the simplification of the hull by a suitable change of variables.
To this end we use the symmetry group of the differential equation which
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is defined as the group of transformations of the (x, y)-plane whose prolon-

gation to the derivatives y′, . . . , y(m) leaves the hull of the equation under
consideration invariant.

3. Lie’s method to find the ordinary differential equations
allowing a given Lie group as a group of their symmetries

In this section we present Lie’s method to obtain the ordinary differential
equations which admit a given Lie group as a group G of their symmetries.
This method can be found in [9, Section X, pp. 243–248]. The r-dimensional
real Lie group G has the tangential Lie algebra g, which is given by the basis
elements (the infinitesimal generators)

(33) Xi = φi(x, y)
∂

∂x
+ ηi(x, y)

∂

∂y
, i = 1, 2, . . . , r.

We define recursively η
(k)
i (i = 1, 2, . . . , r, k = 1, 2, . . . ,m) using the total

derivative of ηi as well as of φi with respect to the variable x:

η
(k)
i =

dη
(k−1)
i

dx
− y(k)dφi

dx
, that is

η
(1)
i (x, y, y′) =

∂ηi
∂x

+
∂ηi
∂y

y′ − ∂φi
∂x

y′ − ∂φi
∂y

(y′)2,(34)

η
(2)
i (x, y, y′, y(2)) =

∂η
(1)
i

∂x
+
∂η

(1)
i

∂y
y′ +

∂η
(1)
i

∂y′
y(2)(35)

− ∂φi
∂x

y(2) − ∂φi
∂y

y′y(2),

η
(3)
i (x, y, y′, y(2), y(3)) =

∂η
(2)
i

∂x
+
∂η

(2)
i

∂y
y′ +

∂ + η
(2)
i

∂y′
y(2) +

∂η
(2)
i

∂y(2)
y(3)(36)

− ∂φi
∂x

y(3) − ∂φi
∂y

y′y(3),

η
(4)
i (x, y, y′, y(2), y(3), y(4)) =

∂η
(3)
i

∂x
+
∂η

(3)
i

∂y
y′ +

∂η
(3)
i

∂y′
y(2) +

∂η
(3)
i

∂y(2)
y(3)

(37)

+
∂η

(3)
i

∂y(3)
y(4) − ∂φi

∂x
y(4) − ∂φi

∂y
y′y(4), etc.
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The mth prolonged vector fields X
(m)
i (i = 1, 2, . . . , r) are defined as

X
(m)
i = φi(x, y)

∂

∂x
+ ηi(x, y)

∂

∂y
+ η

(1)
i (x, y, y′)

∂

∂y′
+ . . .

+ η
(m)
i

(
x, y, . . . , y(m)

) ∂

∂y(m)

(cf. [9, Section X, p. 245]). They depend on x, y, y′, . . . , y(m) and they
generate a Lie algebra isomorphic to g (cf. [9, Section X, p. 245] or [21,

Theorem 2.39, p. 117]). A differential equation f
(
x, y, y′, . . . , y(m)

)
= 0 of

order m admits a group of symmetries whose Lie algebra is g if and only
if the following system of partial differential equations is satisfied whenever
f
(
x, y, y′, . . . , y(m)

)
= 0 holds:

(38)

φ1
∂f
∂x + η1

∂f
∂y + η

(1)
1

∂f
∂y′ + · · ·+ η

(m)
1

∂f
∂y(m) = 0,

φ2
∂f
∂x + η2

∂f
∂y + η

(1)
2

∂f
∂y′ + · · ·+ η

(m)
2

∂f
∂y(m) = 0,

...

φi
∂f
∂x + ηi

∂f
∂y + η

(1)
i

∂f
∂y′ + · · ·+ η

(m)
i

∂f
∂y(m) = 0,

...

φr
∂f
∂x + ηr

∂f
∂y + η

(1)
r

∂f
∂y′ + · · ·+ η

(m)
r

∂f
∂y(m) = 0.

Let

(39) M =


φ1 φ2 φ3 . . . φr
η1 η2 η3 . . . ηr

η
(1)
1 η

(1)
2 η

(1)
3 . . . η

(1)
r

...
. . .

...

η
(m)
1 η

(m)
2 η

(m)
3 . . . η

(m)
r

 .

Then the system of partial differential equations given by (38) can be treated

as the following system of ‘linear equations’ in the variables ∂f
∂x , ∂f∂y , ∂f

∂y′ , . . . ,
∂f

∂y(m) :

(40)
(

∂f
∂x

∂f
∂y

∂f
∂y′ . . . ∂f

∂y(m)

)
·M =

(
0 . . . 0

)
.

Here, the coefficient matrix M is an (m+ 2)× r matrix. Thus, the system

(38) has more than only trivial solution (i.e. ∂f
∂x = ∂f

∂y = · · · = ∂f
∂y(m) = 0,

which does not correspond to any differential equation f) if and only if the
rank of the coefficient matrix in (40) is strictly less than (m+ 2):

rankM < m+ 2.

Now, rankM ≤ r always holds, hence if r < m+ 2, then the rank condi-
tion is automatically satisfied. In such a situation one needs to solve (38) in
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∂f
∂x ,

∂f
∂y , . . . ,

∂f
∂y(m) , and see if any solution corresponds to a nontrivial differ-

ential equation f . In the following we consider the case r ≥ m+2, where one
can arrive at the possible differential equations in a somewhat more direct
manner.

First, suppose m+ 2 = r. Then the coefficient matrix of the system (40)
of linear equations is an (m + 2) × (m + 2)-matrix. The system (40) has a
non-trivial solution f if and only if the rank of the coefficient matrix of (40)
is < m+ 2. Hence the determinant

(41) D =

∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 φ3 . . . φr
η1 η2 η3 . . . ηr

η
(1)
1 η

(1)
2 η

(1)
3 . . . η

(1)
r

...
. . .

...

η
(r−2)
1 η

(r−2)
2 η

(r−2)
3 . . . η

(r−2)
r

∣∣∣∣∣∣∣∣∣∣∣
of the coefficient matrix of (40) (which is a polynomial function of x, y,

y(i), i = 1, 2, . . . , r − 2) has to be 0. Now, if D is identically 0 (as a
polynomial), one needs to make further considerations, like solving (38)

in ∂f
∂x ,

∂f
∂y , . . . ,

∂f
∂y(m) , and see if such a solution corresponds to a nontrivial

differential equation f . The phenomenon D ≡ 0 is quite rare, though. How-
ever, when D is not identically 0, then D is a polynomial function of x, y,
y(i) (i = 1, 2, . . . , r−2) which has to be 0 if a nontrivial differential equation
f exist, and hence by factoring D we obtain the only possibilities for such
an f .

Conversely, the differential equations arising from the condition D = 0
always admit the group of symmetries corresponding to the Lie algebra
g = 〈Xi, i = 1, 2, . . . , r〉 given by (33) (cf. [12, p. 475]). An analytical proof
of this assertion can be found in [10, Abh. I, No. 24, pp. 36–37]. The crucial
step of this proof is to show that the differential equation arising from the
condition D = 0 satisfies the system (38) of partial differential equations
whenever D = 0 holds.

Now, assume m + 2 < r. Then the coefficient matrix of the system (40)
of linear equations arising from (38) is an (m + 2)× r-matrix. To obtain a
non-trivial solution of the system (40) it is necessary that rankM < m+ 2.
Hence the determinants of all (m + 2) × (m + 2) submatrices of M has
to be 0. Again, these subdeterminants are polynomials of the variables x,
y, y(i), i = 1, 2, . . . ,m, and therefore (unless all of these subdeterminants
are identically 0) their common factors provide the only possibilities for
nontrivial differential equations f admitting the group G as symmetries.
Summarizing our discussion we obtain.

Theorem 3.1. Finding the differential equations f
(
x, y, y′, . . . , y(m)

)
= 0

of order m, which admit a group of symmetries whose Lie algebra is a
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given r-dimensional real Lie algebra g = 〈Xi = φi(x, y) ∂
∂x + ηi(x, y) ∂∂y , i =

1, 2, . . . , r〉 such that m ≤ r − 2, one has to build the matrix M defined by
(39) and compute the greatest common divisor of all its (m + 2) × (m + 2)
subdeterminants. The factors of this polynomial give the only possibilities
for the sought differential equations, unless this polynomial is identically 0.

4. Examples of differential equations admitting a given Lie
group as a group of their symmetries

Applying the method described in Section 3 we give examples of ordi-
nary differential equations which allow such a Lie group as a group of their
symmetries whose tangential Lie algebra is listed in Section 1.

4.1. Examples where m ≤ r − 2. We apply the notations introduced
in Section 3. Throughout this subsection we only determine differential
equations of orderm such thatm ≤ r−2, where r is the number of generators
of the tangential Lie algebra of the given Lie group. Applying the known
symmetries we solve some of these differential equations.

Example 4.1. The Lie algebra g = sl2(C) is generated by the vector fields
in (20). Therefore one has

(φ1, φ2, φ3, φ4, φ5, φ6) = (1, 0,−y, x, x2 − y2, 2xy),(42)

(η1, η2, η3, η4, η5, η6) = (0, 1, x, y, 2xy, y2 − x2).(43)

Using (34), (35), (36), (37) we obtain η
(1)
i , η

(2)
i , η

(3)
i , η

(4)
i , (i = 1, 2, . . . , 6):

(η
(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 , η

(1)
5 , η

(1)
6 )(44)

= (0, 0, 1 + (y′)2, 0, 2y(1 + (y′)2),−2x(1 + (y′)2)),

(η
(2)
1 , η

(2)
2 , η

(2)
3 , η

(2)
4 , η

(2)
5 , η

(2)
6 )(45)

= (0, 0, 3y′y(2),−y(2), 2y′ − 2xy(2) + 2(y′)3 + 6yy′y(2),

− 2− 2(y′)2 − 2yy(2) − 6xy′y(2)),

(η
(3)
1 , η

(3)
2 , η

(3)
3 , η

(3)
4 , η

(3)
5 , η

(3)
6 )(46)

= (0, 0, 3(y(2))2 + 4y′y(3),−2y(3),

12(y′)2y(2) + 6y(y(2))2 − 4xy(3) + 8yy′y(3),

− 12y′y(2) − 6x(y(2))2 − 8xy′y(3) − 4yy(3)),
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(η
(4)
1 , η

(4)
2 , η

(4)
3 , η

(4)
4 , η

(4)
5 , η

(4)
6 )

(47)

= (0, 0, 10y(2)y(3) + 5y′y(4),−3y(4),

30y′(y(2))2 + 20(y′)2y(3) + 20yy(2)y(3) − 4y(3) − 6xy(4) + 10yy′y(4),

− 18(y(2))2 − 24y′y(3) − 20xy(2)y(3) − 10xy′y(4) − 6yy(4)).

Applying (42)-(47) the determinant (41) is

D = 16
(

1 +
(
y′
)2)(

y(3) + y(3)
(
y′
)2 − 3y′

(
y(2)
)2
)2

.

Since (y′)2 + 1 > 0 the only one ordinary differential equation of order at
most 4 such that the Lie algebra g = sl2(C) is the tangential Lie algebra of
a subgroup of its symmetries is given by (21) (cf. Theorem 3.1). Introducing
the new variable z := y′ equation (21) reduces to

z(2)
(
1 + z2

)
− 3z

(
z′
)2

= 0.

Since y(3) = 0 is not an invariant differential equation under the symmetry
group corresponding to the Lie algebra g = sl2(C) one has z′ 6= 0. Therefore,
we obtain

z(2)

z′
=

3z

1 + z2
z′ ⇐⇒ (ln z′)′ =

(
3

2
ln(1 + z2)

)′
⇐⇒(

ln
z′

(1 + z2)
3
2

)′
= 0⇐⇒ z′

(1 + z2)
3
2

= ec, c ∈ R is a constant⇐⇒∫
dz

(1 + z2)
3
2

=

∫
kdx, k := ec is a constant⇐⇒

z√
1 + z2

= kx+ l, k, l ∈ R are constants⇐⇒

1

z2
=

1

(kx+ l)2
− 1 =

1− (kx+ l)2

(kx+ l)2
⇐⇒

y′(x) = ±

√
(kx+ l)2

1− (kx+ l)2
⇐⇒

y(x) = ±
∫ √

(kx+ l)2

1− (kx+ l)2
dx = ±1

k

√
1− (kx+ l)2 + p,

where k, l, p ∈ R are constants.
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Example 4.2. The Lie algebra g = sl2(R) ⊕ sl2(R) is generated by the
vector fields in (22). Therefore we have

(φ1, φ2, φ3, φ4, φ5, φ6) = (1, 0, 0, x, 0, x2), (η1, η2, η3, η4, η5, η6) = (0, 1, y, 0, y2, 0).

Using (34), (35), (36), (37) the functions η
(1)
i , η

(2)
i , η

(3)
i , η

(4)
i , i = 1, 2, . . . , 6,

are the following:

(η
(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 , η

(1)
5 , η

(1)
6 )

= (0, 0, y′,−y′, 2yy′,−2xy′),

(η
(2)
1 , η

(2)
2 , η

(2)
3 , η

(2)
4 , η

(2)
5 , η

(2)
6 )

= (0, 0, y(2),−2y(2), 2yy(2) + 2(y′)2,−2y′ − 4xy(2))

(η
(3)
1 , η

(3)
2 , η

(3)
3 , η

(3)
4 , η

(3)
5 , η

(3)
6 )

= (0, 0, y(3),−3y(3), 2yy(3) + 6y′y(2),−6xy(3) − 6y(2)),

(η
(4)
1 , η

(4)
2 , η

(4)
3 , η

(4)
4 , η

(4)
5 , η

(4)
6 )

= (0, 0, y(4),−4y(4), 2yy(4) + 8y′y(3) + 6(y(2))2,−8xy(4) − 12y(3)).

Therefore the determinant (41) is D = −4y′
(

2y′y(3) − 3
(
y(2)
)2)2

. From

Theorem 3.1 it follows that there are two ordinary differential equations of
order at most 4 which allow the group of symmetries corresponding to the
Lie algebra g = sl2(R)⊕ sl2(R). These differential equations are y′ = 0 and
the equation given by (23).
Finally, to obtain the solutions of (23) we introduce the new variable z := y′.
Then we have

2zz(2) − 3(z′)2 = 0⇐⇒ z(2)

z′
=

3

2

z′

z
⇐⇒(

ln z′ − 3

2
(ln z)

)′
= 0⇐⇒ ln

(
z′

z
3
2

)
= c, c ∈ R is a constant⇐⇒

z′

z
3
2

= ec = d, d ∈ R is a constant⇐⇒

−2z−
1
2 = dx+ e, d, e ∈ R are constants⇐⇒ y′ =

(
−2

dx+ e

)2

⇐⇒

y(x) =

∫
4

(dx+ e)2
dx = − 4

d(dx+ e)
+ a, a, d, e ∈ R are constants.
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Example 4.3. The Lie algebra g = sl3(R) is generated by the vector fields
given in (26). Hence we have

(φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) = (1, 0, 0, 0, x, y, x2, xy),

(η1, η2, η3, η4, η5, η6, η7, η8) = (0, 1, x, y, 0, 0, xy, y2).

Applying the formulas (34), (35), (36), (37) we obtain

(η
(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 , η

(1)
5 , η

(1)
6 , η

(1)
7 , η

(1)
8 )

= (0, 0, 1, y′,−y′,−(y′)2, y − xy′, yy′ − x(y′)2),

(η
(2)
1 , η

(2)
2 , η

(2)
3 , η

(2)
4 , η

(2)
5 , η

(2)
6 , η

(2)
7 , η

(2)
8 )

= (0, 0, 0, y(2),−2y(2),−3y′y(2),−3xy(2),−3xy′y(2)),

(η
(3)
1 , η

(3)
2 , η

(3)
3 , η

(3)
4 , η

(3)
5 , η

(3)
6 , η

(3)
7 , η

(3)
8 )

= (0, 0, 0, y(3),−3y(3),−3(y(2))2 − 4y′y(3),−5xy(3) − 3y(2),

− yy(3) − 3y′y(2) − 3x(y(2))2 − 4xy′y(3)),

(η
(4)
1 , η

(4)
2 , η

(4)
3 , η

(4)
4 , η

(4)
5 , η

(4)
6 , η

(4)
7 , η

(4)
8 )

= (0, 0, 0, y(4),−4y(4),−10y(2)y(3) − 5y′y(4),−8(y(3))− 7xy(4),

− 6(y(2))2 − 8yy(3) − 10xy(2)y(3) − 5xy′y(4) − 2yy(4)).

Furthermore computing η
(5)
i and η

(6)
i one gets

(η
(5)
1 , η

(5)
2 , η

(5)
3 , η

(5)
4 , η

(5)
5 , η

(5)
6 , η

(5)
7 , η

(5)
8 )

= (0, 0, 0, y(5),−5y(5),−15y(2)y(4) − 10(y(3))2 − 6y′y(5),−15y(4) − 9xy(5),

− 30y(2)y(3) − 15y′y(4) − 15xy(2)y(4) − 10x(y(3))2 − 6xy′y(5) − 3yy(5)),

(η
(6)
1 , η

(6)
2 , η

(6)
3 , η

(6)
4 , η

(6)
5 , η

(6)
6 , η

(6)
7 , η

(6)
8 )

= (0, 0, 0, y(6),−6y(6),−21y(2)y(5) − 35y(3)y(4) − 7y′y(6),

− 24y(5) − 11xy(6),−60y(2)y(4) − 40(yy(3))2 − 24y′y(5)−

− 21xy(2)y(5) − 35xy(3)y(4) − 7xy′y(6) − 4yy(6)).

Hence the determinant (41) is

D = −2y(2)

(
9
(
y(2)
)2
y(5) − 45y(2)y(3)y(4) + 40

(
y(3)
)3
)2

.

According to Theorem 3.1 there are two ordinary differential equations of
order at most 6 which are invariant under the group of symmetries belonging
to the Lie algebra sl3(R). These are given by (27).
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4.2. Examples for sl2(R). In [11, p. 501] three representations are given
of the Lie algebra g = sl2(R). These are exactly those representations for
which the action of the corresponding Lie group on the plane is imprimitive
(cf. [6, p. 341]). We consider them in Examples 4.4, 4.5, 4.6. There is one
representative of g = sl2(R) such that the corresponding group action is
primitive on the plane (cf. [6, p. 341], see also [13, (16), p. 374]). We deal
with this case in Example 4.8.

Again, we apply the notations introduced in Section 3. Throughout this
subsection we not only determine differential equations of order m such
that m ≤ r − 2, but also those explicit equations where m = r − 1 (where
r is the number of generators of the tangential Lie algebra of the given Lie
group). We solve some of these differential equations applying the known
symmetries.

Section 4.2 shows that if a Lie algebra is given, then the differential equa-
tion admitting this Lie algebra as infinitesimal generators of symmetries
depends not only on the isomorphism class of this Lie algebra but also its
representation, that is its action on the space it is represented in. For Ex-
amples 4.4, 4.5 and 4.8 there exist one or a family of second order ODEs
admitting the particular Lie algebra. However, for Example 4.6 there are
no second order ODEs admitting the particular Lie algebra.

Example 4.4. Firstly we consider the representation of the Lie algebra
g1 = sl2(R) generated by the vector fields (1). Hence one gets

(48) (φ1, φ2, φ3) = (1, x, x2), (η1, η2, η3) = (1, y, y2).

Using the formulas (34), (35) we have

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0, 0, (2y − 2x)y′),(49)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0,−y(2),−2y′ + 2(y′)2 − 4xy(2) + 2yy(2)).(50)

Since the determinant (41) is D = 2(y − x)2y′, one can see that the first
order differential equation y′ = 0 is invariant under the symmetry group
corresponding to the Lie algebra g1 given by (1) (cf. Theorem 3.1).

To find the second order ordinary differential equations allowing a group of
symmetries whose tangential Lie algebra g1, we assume an explicit form:

f(x, y, y′, y(2)) = y(2) − g(x, y, y′) = 0,

Now, we have to solve the system of partial differential equations given by
(38) for the case m = 2, r = 3. Putting (48), (49), (50) into (38) we obtain
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the following system of partial differential equations:

∂g

∂x
+
∂g

∂y
= 0,(51)

x
∂g

∂x
+ y

∂g

∂y
+ g = 0,(52)

−x2 ∂g

∂x
− y2 ∂g

∂y
− (2y − 2x)y′

∂g

∂y′
+ 2(y′)2 − 2y′ + (2y − 4x)g = 0.(53)

From (51) it follows that g = g(x−y, y′). Taking u = x−y as a new variable

one has ∂g
∂x = ∂g

∂u , ∂g
∂y = − ∂g

∂u . Putting these into the partial differential

equation (52) it reduces to g + u ∂g∂u = 0. Hence g has the form

(54) g =
h(y′)

u
.

Therefore, one obtains

(55)
∂g

∂y′
=
h′

u
,
∂g

∂x
= − h

u2
,
∂g

∂y
=

h

u2
.

After substituting (54) and (55) into (53) we have

(56) 2
(
y′
)2 − 2y′ − 3h

(
y′
)

+ 2y′h′
(
y′
)

= 0.

Putting the new variable z := y′ 6= 0 into (56) we have the following first
order linear differential equation

(57) 2h′(z)− 3
h(z)

z
+ 2z − 2 = 0.

The solution of (57) is h(z) = −2
(
z2 + z + cz3/2

)
, where c is a real constant.

Therefore the invariant differential equations of order 2 have the form (2).
(See also Table 8 in [5, p. 151]).

To find the solutions of the second order ordinary differential equation (2) we
need a two-dimensional solvable subalgebra of g1 (see Section 2.1.2 in [5]).
In particular, we can use the symmetries corresponding to the subalgebra
〈X1, X2〉 with the Lie bracket [X1, X2] = X1. The differential equation (2)
can be written into the form

(58)
dy′

dx
= −2

(y′)2 + y′ + c (y′)3/2

x− y
=: ω(x, y, y′).

Introducing the vector field

Y =
∂

∂x
+ y′

∂

∂y
+ ω(x, y, y′)

∂

∂y′
,
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where the coefficients of the partial derivatives ∂
∂x , ∂

∂y , ∂
∂y′ are dx

dx = 1,
dy
dx = y′, dy′

dx = ω(x, y, y′), the equation (58) is equivalent to the linear
partial differential equation

(59) Y (f) =
∂f

∂x
+ y′

∂f

∂y
+ ω(x, y, y′)

∂f

∂y′
= 0

of three variables x, y, y′. The equation (59) is invariant under the first
prolonged vector fields

X
(1)
1 = X1 =

∂

∂x
+

∂

∂y
, X

(1)
2 = X2 = x

∂

∂x
+ y

∂

∂y
.

Hence the integration of the differential equation (2) can be reduced to the
integration of the equation (59) (cf. [11, Kapitel 20, 4, pp. 457–464]). We use
the method of integration given by [11, Kapitel 20, 2, pp. 443–444] for the

equation (59). Since the first prolonged vector fields have no term with ∂f
∂y′ ,

a first integral of (59) can be obtained in the following way. The determinant
of the coefficient matrix for the system of linear equations

0 =
∂f

∂x
+ y′

∂f

∂y
+ ω(x, y, y′)

∂f

∂y′

0 =
∂f

∂x
+
∂f

∂y

0 = x
∂f

∂x
+ y

∂f

∂y

of variables ∂f
∂x , ∂f

∂y , ∂f
∂y′ is

D1 =

∣∣∣∣∣∣
1 y′ ω
1 1 0
x y 0

∣∣∣∣∣∣ = (y − x)ω 6= 0.

Consider the determinant

D2 =

∣∣∣∣∣∣
dx dy dy′

1 y′ ω
1 1 0

∣∣∣∣∣∣ .
A first integral of (59) is∫

D2

D1
=

∫
ω(dy − dx) + (1− y′)dy′

ω(y − x)
=∫

dx− dy
x− y

+
(1− y′)dy′

2((y′)2 + y′ + c(y′)
3
2 )

=

∫
du

u
+

∫
(1− y′)dy′

2((y′)2 + y′ + c(y′)
3
2 )

=

ln(x− y) +
1

2
ln y′ − ln(1 + c

√
y′ + y′),
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where u = x − y is an invariant of X1 (cf. [11, p. 533]). By exponentiating
this, we obtain that a first integral is

ϕ(x, y) =
(x− y)

√
y′

1 + c
√
y′ + y′

.

Now we can integrate the equation

ϕ =
(x− y)

√
y′

1 + c
√
y′ + y′

= constant =
1

b
.

Expressing and solving it for y′ we obtain

1

b(x− y)
=

√
y′

1 + c
√
y′ + y′

⇔

1 + (c− b(x− y))
√
y′ + y′ = 0⇔

y′ = (v +
√
v2 − 1)2 = v2 + 2v

√
v2 − 1 + v2 − 1, with v :=

b(x− y)− c
2

.

As dv
dx = v′ = b

2(1− y′) we get v′

b = 1
2(1− y′) = 1− v2 − v

√
v2 − 1. Solving

this first order separable differential equation for v we have∫
dv

1− v2 − v
√
v2 − 1

=

∫
bdx⇐⇒

1

v +
√
v2 − 1

= bx+ a⇔

2v = bx+ a+
1

bx+ a
.

Therefore for the solutions y(x) of (2) one obtains

by(x) = − 1

bx+ a
− a− c,

where a, b, c ∈ R are constants.

Example 4.5. Secondly, the Lie algebra g2 = sl2(R) is generated by the
vector fields given in (3). Hence one has

(60) (φ1, φ2, φ3) = (1, 2x, x2), (η1, η2, η3) = (0, y, xy).

Applying the formulas (34), (35) we obtain

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0,−y′, y − xy′),(61)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0,−3y(2),−3xy(2)).(62)

As the determinant (41) is D = y2, Theorem 3.1 does not yield any differ-
ential equation of order 1 which is invariant under the group of symmetries
corresponding to the Lie algebra g2 given by (3).
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To obtain the second order ordinary differential equations of the form y(2)−
g(x, y, y′) = 0 allowing the Lie algebra g2 as the tangential Lie algebra of
a subgroup of their symmetries, we have to solve (38) for the case m = 2,

r = 3, f(x, y, y′, y(2)) = y(2) − g(x, y, y′) = 0. Using (60), (61), (62) the
system (38) of partial differential equations is equivalent to

∂g

∂x
= 0(63)

−3g − y∂g
∂y
− 2x

∂g

∂x
+ y′

∂g

∂y′
= 0(64)

3xg + (y − xy′) ∂g
∂y′

+ x2 ∂g

∂x
+ xy

∂g

∂y
= 0.(65)

It can be seen that the differential equation y(2) = 0, i.e. g(x, y, y′) = 0,
satisfies equations (63), (64), (65). We may assume that g(x, y, y′) 6= 0.
From (63) it follows that the function g does not depend on the variable x,
i.e g(x, y, y′) = g(y, y′). Therefore equation (64) reduces to

(66) −3 + y′
∂ ln g

∂y′
− y∂ ln g

∂y
= 0.

This is equivalent to the following ordinary differential equation (character-
istic equation):

(67)
dy′

y′
=
dy

−y
=
d ln g

3
= 0.

Equation (67) yields the first integrals yy′ = c1 and g
y′3 = c2. Hence the

function g has the form g = (y′)3 f(yy′). Introducing the new variable

z := yy′ for the function f(yy′) = f(z) one gets ∂f
∂y = y′ dfdz and ∂f

∂y′ = y dfdz .

From these, equation (66) reduces to 3f(z)+zf ′(z) = 0. The solution of this
last differential equation is f(z) = az−3, where a is a constant. Therefore
one has g = ay−3 and hence the differential equations (4 of order 2 are
invariant under the group of symmetries belonging to the Lie algebra g2

given by (3). (See also Table 8 in [5], p. 151.)

To find the solutions of these differential equations we can multiply both
sides of (4) by 2y′. Then we obtain

2y′y(2) − 2ay′

y3
= 0⇐⇒ (y′)2 +

a

y2
= const. = b⇐⇒

y′ =

√
by2 − a
y

⇐⇒
∫

ydy√
by2 − a

=

∫
1 · dx⇐⇒
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1

b

√
by2 − a = x+ c, where c is a constant⇐⇒

by2 = b2(x+ c)2 + a, a, b, c ∈ R.

Example 4.6. Thirdly, the Lie algebra g3 = sl2(R) is generated by the
vector fields (5). Hence one has

(68) (φ1, φ2, φ3) = (0, 0, 0), (η1, η2, η3) = (1, y, y2).

Using (34), (35), (36) we get

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0, y′, 2yy′),(69)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0, y(2), 2(y′)2 + 2yy(2)),(70)

(η
(3)
1 , η

(3)
2 , η

(3)
3 ) = (0, y(3), 6y′y(2) + 2yy(3)).(71)

The determinant D in (41) is identically 0, thus one needs to solve the
following system of partial differential equations for f :

∂f
∂y = 0,

y ∂f∂y + y′ ∂f∂y′ = 0,

y2 ∂f
∂y + 2yy′ ∂f∂y′ = 0.

From the first equation we obtain that f does not depend on y, that is
f = f(x, y′). The third equation is redundant, and finally, from the second

we have y′ ∂f∂y′ = 0, that is f = g(x)y′ for arbitrary real function g. Thus

the differential equations look like g(x)y′ = 0. However, this means that
only the trivial differential equation y′ = 0 is invariant under the group of
symmetries corresponding to the Lie algebra g3.

Now we show that there are no differential equations of order two allowing
as a group of their symmetries the Lie group G whose tangential Lie algebra
is g3. If there exists a differential equation f

(
x, y, y′, y(2)

)
= 0 which admits

the group G as its symmetries, then using (38), (68), (69), (70) the function
f would be satisfied the following system of partial differential equations:

∂f

∂y
= 0(72)

y
∂f

∂y
+ y′

∂f

∂y′
+ y(2) ∂f

∂y(2)
= 0(73)

y2∂f

∂y
+ 2yy′

∂f

∂y′
+
(

2
(
y′
)2

+ 2yy(2)
) ∂f

∂y(2)
= 0.(74)
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From (72) it follows that f is independent of the variable y, that is f =

f
(
x, y′, y(2)

)
. Applying this to equations (73), (74) we have

y′
∂f

∂y′
+ y(2) ∂f

∂y(2)
= 0(75)

2yy′
∂f

∂y′
+
(

2
(
y′
)2

+ 2yy(2)
) ∂f

∂y(2)
= 0.(76)

Multiplying equation (75) by −2y and adding the obtained equation to (76)
we get

2
(
y′
)2 ∂f

∂y(2)
= 0.

Hence the function f does not depend on the variable y(2), i.e. f = f(x, y′),
which is a contradiction to the assumption that f is a differential equation
of order 2.

To obtain the third order ordinary differential equations of the form y(3) −
g(x, y, y′, y(2)) = 0 allowing the Lie algebra g3 as a subalgebra of the Lie
algebra tangential to their symmetry group, one has to solve the system
(38) of partial differential equations for the case f(x, y, y′, y(2), y(3)) = y(3)−
g(x, y, y′, y(2)) = 0. Using (68), (69), (70) the system (38) is equivalent to
the following system of partial differential equations:

∂g

∂y
= 0(77)

−y∂g
∂y
− y′ ∂g

∂y′
− y(2) ∂g

∂y(2)
+ g = 0(78)

−y2 ∂g

∂y
− 2yy′

∂g

∂y′
−
(

2
(
y′
)2

+ 2yy(2)
) ∂g

∂y(2)
+ 6y′y(2) + 2yg = 0.(79)

From (77) it follows that g = g(x, y′, y(2)). Using this, equation (78) reduces
to

(80) y′
∂g

∂y′
+ y(2) ∂g

∂y(2)
= g

and therefore equation (79) reduces to

(81)
3y(2)

y′
=

∂g

∂y(2)
.

Equation (81) yields that g =
3(y(2))

2

2y′ + h (x, y′). Substituting this form of

g into (80) we obtain the partial differential equation y′ ∂h(x,y′)
∂y′ = h(x, y′).

It yields that h(x, y′) = y′f(x). Therefore the ordinary differential equation
(6) of order 3 is invariant under the group of symmetries corresponding to
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the Lie algebra g3 for arbitrary real function f(x). (See also Table 8 in [5,
p. 151]).

The solution of the differential equation (6) leads to the solution of a Ri-
catti differential equation (cf. [8, Section 4.9, p. 21]). Let z(x) := y′(x).
Substituting this into the differential equation (6) one gets

z(2) − 3(z′)2

2z
− zf(x) = 0⇐⇒(82)

d

dx

(
z′

z

)
= f(x) +

1

2

(
z′

z

)2

.(83)

Putting l(x) := z′

z the equation (83) is equivalent to the Ricatti differential
equation

(84) l′ =
1

2
l2 + f(x).

Let v := 1
2 l. For v we obtain the Ricatti differential equation v′ = v2 +

1
2f(x). Substituting v = −u′

u the function u satisfies the second order linear
differential equation

(85) 0 = u(2) +
1

2
uf(x).

With the solutions ũ of (85) we obtain that the solutions l̃ of (84) have the

form l̃ = −2 ũ
′

ũ . With the solution l̃ of (84) we obtain the solution z̃ of (82)

in the form z̃ = e
∫
l̃dx, and hence the solution ỹ of (6) in the form

ỹ =

∫
e
∫
l̃dxdx.

Remark 4.7. In [17] the fluid draining equation

w(3) = w−2

is considered. It can be rewritten to the Riccati equation l′ = 1
2 l

2 +x, which
is exactly the same as (6) for f : x 7→ x. In particular, Nucci in [17] found
an isomorphic representation of sl2(R) as is described in Example 4.8, and
used it to solve the fluid draining equation. This is our final example in this
subsection.

Example 4.8. Now we deal with the Lie algebra g4 = sl2(R) generated by
the vector fields given in (7). Hence one has

(86) (φ1, φ2, φ3) = (1, x, x2 − y2), (η1, η2, η3) = (0, y, 2xy).

Applying (34), (35), (36) we obtain

(87) (η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0, 0, 2y(1 + (y′)2),
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(88) (η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0,−y(2), 2y′ + 2(y′)3 + 6yy′y(2) − 2xy(2)).

Since the determinant (41) is D = 2y2(1 + (y′)2), according to Theorem 3.1
there does not exist any first order differential equation which admits a Lie
group of symmetries having the Lie algebra g4 as its tangential Lie algebra.

To find the second order ordinary differential equations of the explicit form
y(2) − g(x, y, y′) = 0 which allow a Lie group of symmetries having Lie
algebra g4 as its Lie algebra, one has to solve the following system of partial
differential equations:

∂g

∂x
= 0(89)

x
∂g

∂x
+ y

∂g

∂y
+ g = 0(90)

−
(
x2 − y2

) ∂g
∂x
− 2xy

∂g

∂y
− 2y

(
1 +

(
y′
)2) ∂g

∂y′
(91)

+2y′ + 2
(
y′
)3

+ 6yy′g − 2xg = 0

which is obtained if we apply (38) for the case m = 2, r = 3, f(x, y, y′, y(2)) =

y(2) − g(x, y, y′) = 0, and use (86), (87), (88). It follows from (89) that
the function g does not depend on the variable x, i.e g(x, y, y′) = g(y, y′).
Therefore equation (90) reduces to

−y∂g
∂y

= g.

Hence we may assume that the function g has the form g = h(y′)
y . Putting

this form into equation (91) and using the fact that g is independent of x,
after simplification we obtain the following linear differential equation for
the function h(y′)

(92) y′
(

1 +
(
y′
)2)

+ 3y′h
(
y′
)

=
(

1 +
(
y′
)2)

h′
(
y′
)
.

The solution of the separable differential equation 3y′

1+(y′)2 = h′(y′)
h(y′) is h(y′) =

d
(

1 + (y′)2
)3/2

, where d is a real constant. Applying this we obtain the

following solution for (92):

h
(
y′
)

= −
(

1 +
(
y′
)2)

+ d
(

1 +
(
y′
)2)3/2

,

where d is a real constant. Therefore the ordinary differential equations (8)
of order 2 are invariant under the group of symmetries corresponding to the
Lie algebra g4.
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Analogously to Example 4.4, finding the solutions of the second order ordi-
nary differential equation (8) we can use the symmetries corresponding to
the 2-dimensional subalgebra 〈X1, X2〉 with the Lie bracket [X1, X2] = X1.
The differential equation (8) can be written into the form

(93)
dy′

dx
= −1

y

(
1 +

(
y′
)2)(

1− d
(

1 +
(
y′
)2)1/2

)
=: ω(y, y′).

Introducing the vector field

Y =
∂

∂x
+ y′

∂

∂y
+ ω(y, y′)

∂

∂y′
,

where the coefficients of the partial derivatives ∂
∂x , ∂

∂y , ∂
∂y′ are dx

dx = 1,
dy
dx = y′, dy′

dx = ω(y, y′), the equation (8) is equivalent to the linear partial
differential equation

(94) Y (f) =
∂f

∂x
+ y′

∂f

∂y
+ ω(y, y′)

∂f

∂y′
= 0

of three variables x, y, y′. The equation (94) is invariant under the first
prolonged vector fields

X
(1)
1 = X1 =

∂

∂x
, X

(1)
2 = X2 = x

∂

∂x
+ y

∂

∂y
.

Hence the integration of the differential equation (8) can be reduced to the
integration of the equation (94) (cf. [11, Kapitel 20, 4, pp. 457–464]) and we
apply again the method of integration given by [11, Kapitel 20, 2, pp. 443–
444 ] for the equation (94). Since the first prolonged vector fields have no

term with ∂f
∂y′ , a first integral of (8) can be obtained in the following way.

The determinant of the coefficient matrix for the system of linear equations

0 =
∂f

∂x
+ y′

∂f

∂y
+ ω(y, y′)

∂f

∂y′

0 =
∂f

∂x

0 = x
∂f

∂x
+ y

∂f

∂y

of variables ∂f
∂x , ∂f

∂y , ∂f
∂y′ is

D1 =

∣∣∣∣∣∣
1 y′ ω
1 0 0
x y 0

∣∣∣∣∣∣ = ωy 6= 0.
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Consider the determinant

D2 =

∣∣∣∣∣∣
dx dy dy′

1 y′ ω
1 0 0

∣∣∣∣∣∣ = ωdy − y′dy′.

A first integral of (94) is∫
D2

D1
=

∫
ωdy − y′dy′

ωy
=

∫
dy

y
+

y′dy′(
1 + (y′)2

)(
1− d

√
1 + (y′)2

)
=

∫
dy

y
+

∫
y′√

1 + (y′)2

(√
1 + (y′)2 − d

)dy′
= ln y + ln

(√
1 + (y′)2 − d

)
.

Exponentiating, we obtain the first integral

ϕ = y

(√
1 + (y′)2 − d

)
.

Now we can integrate the equation

ϕ = y

(√
1 + (y′)2 − d

)
= constant = c.

Expressing y′ from the last relation and solving it for y′ we obtain

y′ =

√(
c

y
+ d

)2

− 1,

where c is a real constant. Therefore for the solution y(x) of (8) we have

√
c2 + 2cdy + (d2 − 1) y2

d2 − 1
−
cd ln

(
(d2−1)y+cd
√
d2−1

+
√
c2 + 2cdy + (d2 − 1) y2

)
(d2 − 1)

3
2

= x+ a,

where a, c, d are real constants.

4.3. Differential equations for so3(R).

Example 4.9. The Lie algebra g = so3(R) ∼= su2(C) which has no 2-
dimensional subalgebra is generated by the vector fields (9). Hence one
has

(95) (φ1, φ2, φ3) = (1 + x2, xy, y), (η1, η2, η3) = (xy, 1 + y2,−x).
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Applying formulas (34), (35) to (95) we have

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (y − xy′, yy′ − x(y′)2,−1− (y′)2),(96)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (−3xy(2),−3xy′y(2),−3y′y(2)).(97)

There does not exist any first order ordinary differential equation which
admits the Lie algebra g = so3(R) as the Lie algebra for a group of their
symmetries, because the determinant D = −(1 + x2 + y2)(x2(y′)2− 2xyy′+

1+y2) cannot be 0, since x2(y′)2−2xyy′+1+y2 = x2
((
y′ − y

x

)2
+ 1

x2

)
> 0.

Finding the second order ordinary differential equations of the explicit form
y(2) − g(x, y, y′) = 0 which allow the group of symmetries corresponding
to the Lie algebra g = so3(R) we have to solve the system (38) of partial

differential equations for the case m = 2, r = 3, f(x, y, y′, y(2)) = y(2) −
g(x, y, y′) = 0. Putting (95), (96), (97) into (38) we obtain the following
system of partial differential equations:(

1 + x2
) ∂g
∂x

+ xy
∂g

∂y
+
(
y − xy′

) ∂g
∂y′

+ 3xg = 0(98)

xy
∂g

∂x
+
(
1 + y2

) ∂g
∂y

+
(
yy′ − x

(
y′
)2) ∂g

∂y′
+ 3xy′g = 0(99)

−y ∂g
∂x

+ x
∂g

∂y
+
(

1 +
(
y′
)2) ∂g

∂y′
− 3y′g = 0.(100)

For g = 0 the partial differential equations (98), (99), (100) are satisfied.

Hence the differential equation y(2) = 0 allows the group of symmetries
corresponding to the Lie algebra g = so3(R). We may assume that g 6= 0.
Multiplying (98) by y′ and subtracting (99) from it we have

(101)
((

1 + x2
)
y′ − xy

) ∂g
∂x

+
(
xyy′ −

(
1 + y2

)) ∂g
∂y

= 0.

Multiplying (100) by x and adding the new equation to (99) one has

(102) (1 + x2 + y2)
∂g

∂y
+ (x+ yy′)

∂g

∂y′
= 0.

Putting the expressions

∂g

∂y
= − (x+ yy′)

(1 + x2 + y2)

∂g

∂y′
,

∂g

∂x
=

((
1 + y2

)
− xyy′

)
((1 + x2) y′ − xy)

∂g

∂y
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into (100) we obtain(
1 + y2 − 2xyy′ +

(
1 + x2

) (
y′
)2) ∂g

∂y′
= 3

((
1 + x2

)
y′ − xy

)
g ⇐⇒

1

g

∂g

∂y′
=

3

2

∂ ln
(

1 + y2 − 2xyy′ +
(
1 + x2

)
(y′)2

)
∂y′

⇐⇒

∂ ln

(
g

(1+y2−2xyy′+(1+x2)(y′)2)
3/2

)
∂y′

= 0⇐⇒

g = K(x, y)
(

1 + y2 − 2xyy′ +
(
1 + x2

) (
y′
)2)3/2

.(103)

After substituting (103) into (102) and simplification we get

1

K(x, y)

∂K(x, y)

∂y
= − 3y

(1 + x2 + y2)
⇐⇒

∂ ln
(
K(x, y)

(
1 + x2 + y2

)3/2)
∂y

= 0⇐⇒

K(x, y) =
U(x)

(1 + x2 + y2)3/2
, or equivalently

g = U(x)

(
1 + y2 − 2xyy′ +

(
1 + x2

)
(y′)2

1 + x2 + y2

)3/2

.(104)

Putting (104) into (101) after some calculations we obtain

U ′(x)
1 + y2 − 2xyy′ + (1 + x2)(y′)2

1 + x2 + y2
= 0.

This yields that U(x) = c, c ∈ R. Therefore the second order differential
equations (10) are invariant under a symmetry group whose Lie algebra
g = so3(R). (See also Table 8 in [5, p. 151]).

Remark 4.10. As (10) is a second order ordinary differential equation we
need to have a two dimensional solvable Lie subalgebra to being able to solve
it (see e.g. [21], Section 2.1.2 in [5]). However, so3(R) has no two dimensional
subalgebras, as all its proper subalgebras are one dimensional. That is, even
though we know a three dimensional subalgebra of the tangential Lie algebra
of the Lie symmetry group of the second order equation (10), we cannot
apply this knowledge to completely solve it.

4.4. Further examples. Finally we apply the method of Lie for some non
semi-simple Lie transformation groups of dimension r acting on the (x, y)-
plane. Here we only give a list of the ordinary differential equations of order
m ≤ r − 2 which are invariant under the action of these Lie groups.
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Example 4.11. The 3-dimensional Lie algebra gα is generated by the vector
fields given in (11). (See [6, p. 341], Table 1, Case 1). Since the determinant

(41) is D = −
(

1 + (y′)2
)

and cannot be 0, there does not exist any first

order ordinary differential equation which allows the Lie algebra gα as the
tangential Lie algebra for a group of its symmetries.

Example 4.12. The 3-dimensional Lie algebra gβ has as basis elements
given in (12). (See [6, p. 341], Table 1, Case 12). Then for the determinant
(41) we have D = y′ (β − 1). Hence, only the differential equation y′ = 0
admits the Lie algebra gβ as the Lie algebra of a group of its symmetries
(cf. Theorem 3.1).

Example 4.13. According to [6, p. 341], Table 1, Case 4, the 4-dimensional

Lie algebra g is generated by the vector fields (13). As D = −y(2)((y′)2 +1),
the only ordinary differential equation of order at most 2 which is invariant
under the group of symmetries corresponding to the Lie algebra g is y(2) = 0.

Example 4.14. According to [6, p. 341], Table 1, Case 13, the 4-dimensional
Lie algebra g has as basis elements (14). The determinant (41) of the matrix

in Theorem 3.1 is D = y(2)y′. Therefore among the ordinary differential
equations of order at most 2, the differential equations y(2) = 0 and y′ = 0
allow the group of symmetries corresponding to the Lie algebra g.

Example 4.15. The basis elements of the Lie algebra sl2(R)×R are given
by (15). (See [6, p. 341], Table 1, Case 14). For the determinant (41) one has

D = 2 (y′)2. Therefore among the at most second order ordinary differential
equations the differential equation y′ = 0 allows the group of symmetries
corresponding to the Lie algebra g (cf. Theorem 3.1).

Example 4.16. The 4-dimensional Lie algebra g = gl2(R) has as basis
elements (16). (See [6, p. 341], Table 1, Case 19). Therefore the determinant

(41) is D = −2y2y(2). By Theorem 3.1 among the ordinary differential

equations of order at most 2 the equation y(2) = 0 admits the group of
symmetries corresponding to the Lie algebra g.

Example 4.17. The generators of the Lie algebra sl2(R) × L2, where L2

is the 2-dimensional non-abelian Lie algebra are given by (17). (See [6,

p. 341], Table 1, Case 15). Since D = 2y′
(

2y′y(3) − 3
(
y(2)
)2)

, according to

Theorem 3.1 among the at most third order ordinary differential equations
the equations given by (18) admit the group of symmetries corresponding
to the Lie algebra sl2(R)× L2.

Example 4.18. According to [6, p. 341], Table 1, Case 5, the Lie algebra
g = sl2(R)nR2 has as basis elements in (19). Since the determinant (41) of

the matrix in Theorem 3.1 is D = 9
(
y(2)
)3

, among the ordinary differential



Title of the article 29

equations of order at most 3 the equation y(2) = 0 allows the group of
symmetries corresponding to the Lie algebra g.

Example 4.19. The basis elements of the Lie algebra g = gl2(R) n R2

are given by (24). (See [6, p. 341], Table 1, Case 6). Since the determinant

(41) is D = −2
(
y(2)
)2 (

3y(4)y(2) − 5
(
y(3)
)2)

among the ordinary differential

equations of order at most 4 the equations given by (25) admit the group of
symmetries corresponding to the Lie algebra g (cf. Theorem 3.1).

5. Systems of first order ordinary differential equations
which allow a given Lie group as a group of their

symmetries

In this section we devise a method based on Lie’s original idea in Section 3
to obtain systems of first order ordinary differential equations which admit
a given Lie group as a subgroup of their symmetries. Let G be a given r-
dimensional real Lie group. First we deal with the case that the Lie algebra
g of G is the direct sum of infinitesimal generators of trivial symmetries and
time-preserving symmetries such that both direct factors are non-trivial.

5.1. Time-dependent symmetries. Let us use the following notation
y′ = dy

dx , z′ = dz
dx . Let us consider the following time-dependent system

of first order ordinary differential equations in R2:

f1(x, y, z, y′, z′) = 0,(105)

f2(x, y, z, y′, z′) = 0.

Then the Lie algebra g of G has as basis elements the following vector fields
in the 3-dimensional space:

Xi(x, y, z) = φi(x, y, z)
∂

∂x
+ ηi(x, y, z)

∂

∂y
+ αi(x, y, z)

∂

∂z
, i = 1, 2, . . . , r.

The first prolonged vector field of Xi(x, y, z), i = 1, 2, . . . , r, with respect to
x has the form

X
(1)
i (x, y, z, y′, z′) = Xi + η

(1)
i (x, y, z, y′, z′)

∂

∂y′
+ α

(1)
i (x, y, z, y′, z′)

∂

∂z′
,

where

η
(1)
i =

∂ηi
∂x

+
∂ηi
∂y

y′ +
∂ηi
∂z

z′ − y′
(
∂φi
∂x

+
∂φi
∂y

y′ +
∂φi
∂z

z′
)
,(106)

α
(1)
i =

∂αi
∂x

+
∂αi
∂y

y′ +
∂αi
∂z

z′ − z′
(
∂φi
∂x

+
∂φi
∂y

y′ +
∂φi
∂z

z′
)
.(107)
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The time-dependent system (105) of first order ordinary differential equa-
tions allows the given group G of symmetries if and only if the functions fj ,
j = 1, 2, fulfil the following system of partial differential equations

(108)

φ1
∂fj
∂x + η1

∂fj
∂y + α1

∂fj
∂z + η

(1)
1

∂fj
∂y′ + α

(1)
1

∂fj
∂z′ = 0,

φ2
∂fj
∂x + η2

∂fj
∂y + α2

∂fj
∂z + η

(1)
2

∂fj
∂y′ + α

(1)
2

∂fj
∂z′ = 0,

...

φi
∂fj
∂x + ηi

∂fj
∂y + αi

∂fj
∂z + η

(1)
i

∂fj
∂y′ + α

(1)
i

∂fj
∂z′ = 0,

...

φr
∂fj
∂x + ηr

∂fj
∂y + αr

∂fj
∂z + η

(1)
r

∂fj
∂y′ + α

(1)
r

∂fj
∂z′ = 0.

Let

M =


φ1 φ2 φ3 . . . φr
η1 η2 η3 . . . ηr
α1 α2 α3 . . . αr

η
(1)
1 η

(1)
2 η

(1)
3 . . . η

(1)
r

α
(1)
1 α

(1)
2 α

(1)
3 . . . α

(1)
r

 .

Then the system of partial differential equations given by (108) can be

treated as the following system of ‘linear equations’ in the variables
∂fj
∂x ,

∂fj
∂y ,

∂fj
∂z ,

∂fj
∂y′ ,

∂fj
∂z′ :(
∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂y′

∂f1
∂z′

)
·M =

(
0 . . . 0

)
,(

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂y′

∂f2
∂z′

)
·M =

(
0 . . . 0

)
.

Here, the coefficient matrix M is an 5 × r matrix. Thus, to obtain non-
trivial solutions fj (j = 1, 2) of the system of equations given by (108) it is
necessary that the rank of the matrix M is at most 5. However, if rankM =

4, then the obtained solutions for the vectors
(
∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂y′

∂f1
∂z′

)
and

(
∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂y′

∂f2
∂z′

)
are linearly dependent, that is the obtained

system of differential equations consist of only one equation rather than two
for the two dependent variables y and z. Therefore rankM < 4 is a more
useful requirement.

Now, rankM ≤ r always holds, hence if r < 4, then the rank condition is

automatically satisfied. In such a situation one needs to solve (108) in
∂fj
∂x ,

∂fj
∂y ,

∂fj
∂z ,

∂fj
∂y′ ,

∂fj
∂z′ , and see if any solution corresponds to a nontrivial system

of differential equations f1, f2. In the following we consider the case r ≥ 4,
where the rank condition is equivalent to that every 4 × 4 subdeterminant
of M is zero.
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Now, if we reduce ourselves to systems of the form

f1(x, y, z, y′, z′) = y′ − g1(x, y, z) = 0,(109)

f2(x, y, z, y′, z′) = z′ − g2(x, y, z) = 0,

then the function f1 does not depend on z′ and the function f2 is independent
of y′. Thus for the function f1, respectively f2 the system of linear equations
obtained from (108) has the coefficient matrix

M1 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

η
(1)
1 . . . η

(1)
r

 and M2 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

α
(1)
1 . . . α

(1)
r

 ,

respectively. Now, for having a nontrivial system f1, f2, both rankM1 < 4
and rankM2 < 4 has to hold. That is, to obtain non-trivial functions f1,
respectively f2 as a solution of the system (108), it is necessary that all 4×4
subdeterminants of the 4× r-matrix M1, respectively M2 are zero.

Remark 5.1. Let the Lie algebra g be represented in the n-dimensional
space. In Section 5.1 every Lie algebra is represented in the 3-dimensional
space with coordinates (x, y, z). If we want to determine the systems of
ODEs for which g is a subalgebra of the tangential Lie algebra of the Lie
symmetry group, then we really have n different problems at hand depending
on which coordinate represents the time. In the following, we consistently
assume everywhere that the time is the ‘x’ coordinate.

Example 5.2. The Lie algebra g = so3(R) ∼= su2(C) is generated by the
vector fields (28) in the 3-dimensional space. Hence one gets

(110) φi = (−y, 0, z), ηi = (x,−z, 0), αi = (0, y,−x).

Applying the formulas (106), (107) to (110) we obtain

η
(1)
i = (1 + (y′)2,−z′,−y′z′), α(1)

i = (y′z′, y′,−(1 + (z′)2)).

Therefore the matrix M has the form

M =


−y 0 z
x −z 0
0 y −x

1 + (y′)2 −z′ −y′z′

y′z′ y′ −
(

1 + (z′)2
)

 .

Multiplying the first column of M with z and the third column of M with
y and adding the new first column to the new third column the matrix M
transforms to a matrix M1. Multiplying the second column of M1 with x
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and adding this new column to the third column the matrix M1 changes
into

M2 =


−y 0 0
x −z 0
0 y 0

1 + (y′)2 −z′ −y′z′y + z
(

1 + (y′)2
)
− xz′

y′z′ y′ −y
(

1 + (z′)2
)

+ zy′z′ + xy′

 .

Therefore the function f1 and f2 fulfil the system (108) of partial differen-
tial equations precisely if f1 and f2 satisfy the following system of partial
differential equations

−y ∂f1∂x + x∂f1∂y + 1 + (y′)2 = 0,

−z ∂f1∂y + y ∂f1∂z − z
′ = 0,

−y′z′y + z
(

1 + (y′)2
)
− xz′ = 0,

−y ∂f2∂x + x∂f2∂y + y′z′ = 0,

−z ∂f2∂y + y ∂f2∂z + y′ = 0,

−y
(

1 + (z′)2
)

+ zy′z′ + xy′ = 0.

To solve the equations

z + z(y′)2 − xz′ − yy′z′ = 0

−y − y(z′)2 + xy′ + zy′z′ = 0

the first equation gives z′ = z(1+(y′)2)
x+yy′ . Putting this into the second equation,

after simplification we obtain(
y′
)3 (

xy2 + xz2
)

+
(
y′
)2 (

2x2y − yz2 − y3
)

+ y′
(
x3 + xz2 − 2xy2

)
−
(
yx2 + yz2

)
= 0.

The solution of the last equation is y′ = y
x and hence z′ = z

x . Therefore
only the system (29) of first order ordinary differential equations allows the
group of symmetries corresponding to the Lie algebra g = so3(R).

Example 5.3. The Lie algebra g = sl3(R) is generated by the vector fields
(32) in the 3-dimensional space. Each maximal compact subgroup of the
group SL3(R) is isomorphic to the group SO3(R), therefore we cannot ex-
pect any more systems to be invariant than those already obtained in Ex-
ample 5.2. Using (32) one has

φi = (z, 0, 0, x, y, x, 0, 0),

ηi = (0, z, x,−y, 0, 0, 0, 0),(111)

αi = (0, 0, 0, 0, 0,−z, x, y).
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Applying (106), (107) to (111) we have

η
(1)
i = (−y′z′, z′, 1,−2y′,−(y′)2,−y′, 0, 0),

α
(1)
i = (−(z′)2, 0, 0,−z′,−y′z′,−2z′, 1, y′).

Therefore the coefficient matrix M of the system of linear equations arising
from the system (108) of partial differential equations is

M =


z 0 0 x y x 0 0
0 z x −y 0 0 0 0
0 0 0 0 0 −z x y
−y′z′ z′ 1 −2y′ −(y′)2 −y′ 0 0
−(z′)2 0 0 −z′ −y′z′ −2z′ 1 y′

 .

To get non-trivial solutions f1, f2 of the system of equations given by (108),
it is necessary that all 5× 5 subdeterminants of M are zero. The subdeter-
minant

D5,1 =

∣∣∣∣∣∣∣∣∣∣
0 0 x 0 0
z x −y 0 0
0 0 0 x y
z′ 1 −2y′ 0 0
0 0 −z′ 1 y′

∣∣∣∣∣∣∣∣∣∣
= x(−z + xz′)(y′x− y)

is zero if either z′ = z
x or y′ = y

x . Since the function f1 does not depend
on z′ to obtain non-trivial function f1 as a solution of the system (108) it is
necessary that all 4× 4 subdeterminants of the matrix

M1 =


φi
ηi
αi

η
(1)
i

 =


z 0 0 x y x 0 0
0 z x −y 0 0 0 0
0 0 0 0 0 −z x y
−y′z′ z′ 1 −2y′ −(y′)2 −y′ 0 0


are zero. Consider the following subdeterminants of M1

D4,1 =

∣∣∣∣∣∣∣∣
0 0 x 0
z x −y 0
0 0 0 x
z′ 1 −2y′ 0

∣∣∣∣∣∣∣∣ = x2(z′x− z)

D4,2 =

∣∣∣∣∣∣∣∣
0 x x 0
x −y 0 0
0 0 −z x
1 −2y′ −y′ 0

∣∣∣∣∣∣∣∣ = −x2(y − y′x).

These are zero if y′ = y
x and z′ = z

x are both satisfied. As the functions
f1 = y′− y

x and f2 = z′− z
x fulfil the system of partial differential equations

given by (108), we obtain that only the system (29) of first order ordinary
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differential equations is invariant under the action of the symmetries belong-
ing to the Lie algebra g = sl3(R).

Example 5.4. According to [7] in [12, p. 134, 140] the infinitesimal gener-
ators which form a 6-dimensional Lie algebra isomorphic to g = sl2(R) ⊕
sl2(R) such that the corresponding Lie group acts on the 3-dimensional
non-euclidean space are given by (31). From (31) it follows that

φi = (0, 0, xy − z, 1, x, x2),

ηi = (1, y, y2, 0, 0, xy − z),(112)

αi = (x, z, yz, y, z, xz).

Applying (106), (107) to (112) we have

η
(1)
i = (0, y′, yy′ − x(y′)2 + y′z′, 0,−y′, y − xy′ − z′),

α
(1)
i = (1, z′, zy′ − xy′z′ + (z′)2, y′, 0, z − xz′).

Therefore the coefficient matrix M of the system of linear equations derived
from (108) is

M =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 y′ yy′ − x(y′)2 + y′z′ 0 −y′ y − xy′ − z′
1 z′ zy′ − xy′z′ + (z′)2 y′ 0 z − xz′

 .

There are six 5 × 5 subdeterminants of M . Their greatest common divisor
factor is

(113)
(
y′
)2
x2 − 2xyy′ − 2xy′z′ + y2 − 2z′y +

(
z′
)2

+ 4zy′.

The factor (113) is zero if and only if

(114) z′ = xy′ + y ± 2
√
y′(xy − z).

Since the function f1 is independent of z′, to obtain non-trivial function f1 as
a solution of the system (108) it is necessary that all 4× 4 subdeterminants
of the matrix

M1 =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 y′ yy′ − x(y′)2 + y′z′ 0 −y′ y − xy′ − z′


are zero. Using (114) we have

D4,1 =

∣∣∣∣∣∣∣∣
0 0 xy − z 1
1 y y2 0
x z yz y
0 y′ yy′ − x(y′)2 + y′z′ 0

∣∣∣∣∣∣∣∣ = ±2y′
√
y′(xy − z)(xy − z).
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One has D4,1 = 0 if y′ = 0 and hence z′ = y. The time-dependent system
f1 = y′ = 0, f2 = z′ − y = 0 of first order ordinary differential equations
does not satisfy the system (108) because one has X6(f2) = x2 ∂f2

∂x + (xy −
z)∂f2∂y +xz ∂f2∂z +(z−xy)∂f2∂z′ = 2(z−xy) 6= 0. Hence there does not exist any

time-dependent system (109) of first order ordinary differential equations
which allows the group of symmetries corresponding to the Lie algebra g =
sl2(R)⊕ sl2(R) given by (31).

A similar consideration as in Example 5.4 shows that there does not
exist any time-dependent system (109) of first order ordinary differential
equations which allows a Lie group of symmetries whose Lie algebra is any
one of the following Lie algebras:

g = sl4(R) =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂x
, y

∂

∂x
, z

∂

∂x
, x

∂

∂y
, y

∂

∂y
, z

∂

∂y
, x

∂

∂z
, y

∂

∂z
, z

∂

∂z
,

x2 ∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z
, xy

∂

∂x
+ y2 ∂

∂y
+ yz

∂

∂z
, xz

∂

∂x
+ yz

∂

∂y
+ z2 ∂

∂z

〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂x
, y

∂

∂x
, z

∂

∂x
, x

∂

∂y
, y

∂

∂y
, z

∂

∂y
, x

∂

∂z
, y

∂

∂z
, z

∂

∂z

〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂x
, y

∂

∂x
, z

∂

∂x
, x

∂

∂y
, y

∂

∂y
, z

∂

∂y
, x

∂

∂z
, y

∂

∂z
, z

∂

∂z

〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂y
, x

∂

∂x
− y ∂

∂y
, y

∂

∂x
, z

∂

∂x
, z

∂

∂y
, z

∂

∂y
, x

∂

∂x
− z ∂

∂z
,

x
∂

∂z
, y
∂

∂

〉
g =

〈
∂

∂x
− y ∂

∂z
,
∂

∂y
+ x

∂

∂z
,
∂

∂z
, x

∂

∂y
, x

∂

∂x
− y ∂

∂y
, y

∂

∂x
,

x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
, z

∂

∂x
− y

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
,

z
∂

∂y
+ x

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
, z

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, y

∂

∂x
− x ∂

∂y
, z

∂

∂y
− y ∂

∂z
, x

∂

∂z
− z ∂

∂x

〉
,

g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, y

∂

∂x
− x ∂

∂y
, z

∂

∂y
− y ∂

∂z
, x

∂

∂z
− z ∂

∂x
, x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

〉
,

g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂y
− y ∂

∂x
, y

∂

∂z
− z ∂

∂y
, z

∂

∂x
− x ∂

∂z
, x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

2x

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
− (x2 + y2 + z2)

∂

∂x
,
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2y

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
− (x2 + y2 + z2)

∂

∂y
,

2z

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
− (x2 + y2 + z2)

∂

∂z

〉
.

5.2. Time-preserving symmetries. Now we study the case that the Lie
algebra g of the given r-dimensional real Lie group G consists of infinitesi-
mal generators which are time-preserving symmetries. Let us introduce the
following notation x′ = dx

dt , y
′ = dy

dt , z
′ = dz

dt and consider the following
time-independent system of first order ordinary differential equations:

f1(t, x(t), y(t), z(t), x′(t), y′(t), z′(t)) =0,

f2(t, x(t), y(t), z(t), x′(t), y′(t), z′(t)) =0,

f3(t, x(t), y(t), z(t), x′(t), y′(t), z′(t)) =0.

Assume that the Lie algebra g of G has the following vector fields as basis
elements:

Xi(x(t), y(t), z(t)) = φi(x(t), y(t), z(t))
∂

∂x
+ ηi(x(t), y(t), z(t))

∂

∂y

+ αi(x(t), y(t), z(t))
∂

∂z
,

for all i = 1, 2, . . . , r. The first prolonged vector field of Xi(x(t), y(t), z(t))
(i = 1, 2, . . . , r) with respect to the variable t has the form

X
(1)
i (x(t), y(t), z(t), x′, y′, z′) = Xi + φ

(1)
i (x(t), y(t), z(t), x′, y′, z′)

∂

∂x′
+

η
(1)
i (x(t), y(t), z(t), x′, y′, z′)

∂

∂y′
+ α

(1)
i (x(t), y(t), z(t), x′, y′, z′)

∂

∂z′
,

where

φ
(1)
i =

∂φi
∂x

x′ +
∂φi
∂y

y′ +
∂φi
∂z

z′,

η
(1)
i =

∂ηi
∂x

x′ +
∂ηi
∂y

y′ +
∂ηi
∂z

z′,

α
(1)
i =

∂αi
∂x

x′ +
∂αi
∂y

y′ +
∂αi
∂z

z′.

The time-independent system of first order ordinary differential equations
allows the given group G of symmetries precisely if the functions fk, k =
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1, 2, 3, fulfil the following system of partial differential equations

φ1
∂fk
∂x + η1

∂fk
∂y + α1

∂fk
∂z + φ

(1)
1

∂fk
∂x′ + η

(1)
1

∂fk
∂y′ + α

(1)
1

∂fk
∂z′ = 0,

φ2
∂fk
∂x + η2

∂fk
∂y + α2

∂fk
∂z + φ

(1)
2

∂fk
∂x′ + η

(1)
2

∂fk
∂y′ + α

(1)
2

∂fk
∂z′ = 0,

...

φi
∂fk
∂x + ηi

∂fk
∂y + αi

∂fk
∂z + φ

(1)
i

∂fk
∂x′ + η

(1)
i

∂fk
∂y′ + α

(1)
i

∂fk
∂z′ = 0,

...

φr
∂fk
∂x + ηr

∂fk
∂y + αr

∂fk
∂z + φ

(1)
r

∂fk
∂x′ + η

(1)
r

∂fk
∂y′ + α

(1)
r

∂fk
∂z′ = 0.

Let

M =



φ1 . . . φr
η1 . . . ηr
α1 . . . αr

φ
(1)
1 . . . φ

(1)
r

η
(1)
1 . . . η

(1)
r

α
(1)
1 . . . α

(1)
r


.

The system (5.2) of partial differential equations can be seen as a system of

’linear equations’ of the variables ∂fk
∂x , ∂fk

∂y , ∂fk
∂z , ∂fk

∂x′ ,
∂fk
∂y′ , ∂fk

∂z′ :(
∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂x′

∂f1
∂y′

∂f1
∂z′

)
·M =

(
0 . . . 0

)
,(

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂x′

∂f2
∂y′

∂f2
∂z′

)
·M =

(
0 . . . 0

)
,(

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂x′

∂f3
∂y′

∂f3
∂z′

)
·M =

(
0 . . . 0

)
.

To obtain non-trivial solutions fk, k = 1, 2, 3, of the system of equations
given by (5.2) it is necessary that the rank of the 6 × r-matrix M is less
than 6. However, as in Section 5.1, if one wants the vectors

(
∂fi
∂x . . . ∂fi

∂z′

)
to be linearly independent, rankM < 4 is the necessary requirement. This
condition is automatically satisfied if r < 4, and then one can only solve
the system of partial differential equations (5.2), and see if any solution
corresponds to a nontrivial system of differential equations f1, f2, f3. In the
following we consider the case r ≥ 4, where the rank condition is equivalent
to that every 4× 4 subdeterminant of M is zero.
Now, if we reduce ourselves to systems of the form

f1(t, x(t), y(t), z(t), x′) = x′ − g1(t, x(t), y(t), z(t)) = 0,

f2(t, x(t), y(t), z(t), y′) = y′ − g2(t, x(t), y(t), z(t)) = 0,

f3(t, x(t), y(t), z(t), z′) = z′ − g3(t, x(t), y(t), z(t)) = 0,

then the function f1 does not depend on y′, z′, the function f2 is independent
of x′, z′ and the function f3 does not depend on x′, y′. Hence, for f1, f2, f3
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in (5.2), one needs to deal with the coefficient matrices

M1 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

φ
(1)
1 . . . φ

(1)
r

 , M2 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

η
(1)
1 . . . η

(1)
r

 ,

M3 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

α
(1)
1 . . . α

(1)
r

 ,

respectively. To get non-trivial functions f1, f2, f3 in explicit form as a
solution of the system (5.2) it is necessary that rankM1 < 4, rankM2 < 4,
rankM3 < 4 hold. That is, all 4 × 4-subdeterminants of the 4 × r-matrices
M1, M2, M3 have to be zero. Now we apply the above discussed method for
the Lie group G given in Example 5.4.

Example 5.5. The infinitesimal generators of the Lie algebra g = sl2(R)⊕
sl2(R) of G are given by (31). From (31) it follows that

φi = (0, 0, x(t)y(t)− z(t), 1, x(t), x(t)2),

ηi = (1, y(t), y(t)2, 0, 0, x(t)y(t)− z(t)),
αi = (x(t), z(t), y(t)z(t), y(t), z(t), x(t)z(t)).

Therefore one has

φ
(1)
i = (0, 0, y(t)x′ + x(t)y′ − z′, 0, x′, 2x(t)x′),

η
(1)
i = (0, y′, 2y(t)y′, 0, 0, y(t)x′ + x(t)y′ − z′),

α
(1)
i = (x′, z′, z(t)y′ + y(t)z′, y′, z′, z(t)x′ + x(t)z′).

Hence the coefficient matrix M of the system of linear equations is

M =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 0 yx′ + xy′ − z′ 0 x′ 2xx′

0 y′ 2yy′ 0 0 xy′ + x′y − z′
x′ z′ zy′ + yz′ y′ z′ zx′ + xz′

 .

The determinant of M is 0. To obtain non-trivial function f1 of explicit
form as a solution of the system (5.2) of partial differential equations it is
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necessary that all (4× 4) subdeterminants of the matrix

M1 =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 0 yx′ + xy′ − z′ 0 x′ 2xx′



are 0. The subdeterminant D1 =

∣∣∣∣∣∣∣∣
0 0 1 x
1 y 0 0
x z y z
0 0 0 x′

∣∣∣∣∣∣∣∣ = x′(z − xy) is 0 if x′ = 0

and hence f1 = x′ = 0. Using this, the subdeterminant

D2 =

∣∣∣∣∣∣∣∣
0 0 1 xy − z
1 y 0 y2

x z y yz
0 0 0 xy′ − z′

∣∣∣∣∣∣∣∣ = (xy − z)(z′ − xy′)

is 0 if z′ = xy′. To get non-trivial function f2 given in explicit form as a
solution of the system (5.2) of partial differential equations it is necessary
that all (4× 4) subdeterminants of the matrix

M2 =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 0 yx′ + xy′ − z′ 0 x′ 2xx′

0 y′ 2yy′ 0 0 xy′ + x′y − z′



are 0. The subdeterminant D3 =

∣∣∣∣∣∣∣∣
0 0 xy − z x
1 y y2 0
x z yz z
0 y′ 2yy′ 0

∣∣∣∣∣∣∣∣ = y′(xy − z)2 is 0 if

y′ = 0 and therefore z′ = 0. Hence the only time-independent system that
allows the Lie group G corresponding to the Lie algebra g = sl2(R)⊕sl2(R)
given by (31) as its symmetries is trivial (cf. (30)).

Similarly as in the Example 5.5, only the trivial time-independent system of
first order ordinary differential equations allows a Lie group of symmetries
whose tangential Lie algebra is one of the following simple Lie algebras:
so3(R), sl3(R), sl4(R).
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