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Abstract. Our aim is to show how one can find those differential
equations which have a given Lie group as their symmetry group. The
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1. Introduction

Symmetry analysis [5, 6, 22, 23] is a useful tool for finding smooth so-
lutions of differential equations. With help of symmetries, integration or
lowering of the order of differential equations could be effected successfully.
Several examples come from Physics (see [17, 24]), as well as from Biology
(see [2, 18, 19]). Also systems of equations are studied using this framework.
The Fitzhugh–Nagumo model [4, 15] and the model for the population of
Easter Island [19] can be described as a first order system of two equations.
In contrast to this, many physical systems (see. [8, 20, 21]) are based on
second order systems. One advantage for investigating systems of order one
is that any system of differential equations is equivalent to a first order sys-
tem. Their symmetry groups have infinite dimension. On the contrary, the
symmetry groups of higher order systems have finite dimension.

Following the works of Lie we consider small dimensional Lie groups such
that their canonical form is given by [14, Sections 3, 4, 5, pp. 28–78], [14,
Section 19, pp. 360–392] (see also [7], p. 341). Lie classified the ordinary
differential equations such that the groups of their symmetries are these
given groups (cf. [10, Sections X, XI, XIV, XVI]). In Section 3 we explain
his method in detail. We demonstrate this method in Section 4 to find the
ordinary differential equations which have some given Lie groups as their

1
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symmetry groups. We use the given symmetries to find the solutions of
these equations. In Section 5 we deal with first order systems of ordinary
differential equations and give necessary conditions for them admitting a
given Lie group as a subgroup of their symmetries. We illustrate these
conditions on examples. We restrict us mostly to semi-simple Lie groups.
To obtain our examples we use the REDUCE program [16].

We note two remarkable facts of our study. In Section 4.2 we take the
four different representations of the Lie algebra sl2(R) in the (x, y)-plane
and illustrate that the invariant differential equations depend strongly on
the representation of the tangential Lie algebra of their Lie symmetry group.

In Section 4.3 it is proved that there is an ordinary differential equation of
order two which is invariant under the action of the simple Lie group SO3(R)
without any 2-dimensional solvable subgroup. Since to completely solve a
second order equation it needs a two dimensional solvable Lie subgroup of
its symmetry group (cf. [22], [6]) this differential equation cannot be solved.
The considered real Lie algebras g together with their representation and
the invariant differential equations are summarized (see [3]).

(I) Example 4.4: 3-dimensional simple Lie algebra sl2(R) with genera-
tors

X1 =
∂

∂x
+

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ y2 ∂

∂y
.(1)

The differential equations

(2) y(2) + 2
(y′)2 + y′ + c (y′)3/2

x− y
= 0 c ∈ R, y′ = 0

of order ≤ 2 allow this symmetry group.
(II) Example 4.5: 3-dimensional simple Lie algebra sl2(R) with genera-

tors

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ xy

∂

∂y
.(3)

The differential equations of order ≤ 2 allowing this group of sym-
metries are

(4) y(2) =
a

y3
a ∈ R.

(III) Example 4.6: 3-dimensional simple Lie algebra sl2(R) with genera-
tors

X1 =
∂

∂y
, X2 = y

∂

∂y
, X3 = y2 ∂

∂y
.(5)
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The differential equations of order ≤ 3 allowing this group of sym-
metries are

(6) y(3) =
3
(
y(2)
)2

2y′
+ y′f(x),

where f is an arbitrary real function.
(IV) Example 4.8: 3-dimensional simple Lie algebra sl2(R) with genera-

tors

X1 =
∂

∂x
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = (x2 − y2)

∂

∂x
+ 2xy

∂

∂y
.(7)

The differential equations of order ≤ 2 allowing this group of sym-
metries are

(8) y(2) = −1 + (y′)2

y
+ d

(
1 + (y′)2

)3/2

y
d ∈ R.

(V) Example 4.9: 3-dimensional simple Lie algebra so3(R) ∼= su2(C)
with generators

X1 =
(
1 + x2

) ∂

∂x
+ xy

∂

∂y
, X2 = xy

∂

∂x
+
(
1 + y2

) ∂
∂y
,(9)

X3 = y
∂

∂x
− x ∂

∂y
.

The differential equations of order ≤ 2 permitting this group of sym-
metries are

(10) y(2) = c

(
1 + y2 − 2xyy′ +

(
1 + x2

)
(y′)2

1 + x2 + y2

)3/2

c ∈ R.

(VI) Example 4.11: The Lie algebra gα, α ≥ 0, is 3-dimensional solvable
with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = α

(
x
∂

∂x
+ y

∂

∂y

)
+ y

∂

∂x
− x ∂

∂y
.(11)

There is no differential equation of order ≤ 1 allowing this group of
symmetries.

(VII) Example 4.12: The Lie algebra gβ, 0 < |β| ≤ 1, is 3-dimensional
solvable with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ βy

∂

∂y
.(12)

The differential equation of order ≤ 1 allowing this group of symme-
tries is

y′ = 0.
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(VIII) Example 4.13: solvable Lie algebra of dimension 4 with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
, X4 = y

∂

∂x
− x ∂

∂y
.(13)

The differential equation of order ≤ 2 allowing this group of symme-
tries is

y(2) = 0.

(IX) Example 4.14: solvable Lie algebra of dimension 4 with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂y
.(14)

The differential equations of order ≤ 2 allowing this group of sym-
metries are

y′ = 0, y(2) = 0.

(X) Example 4.15: sl2(R)× R with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = x2 ∂

∂x
.(15)

The invariant differential equation of order ≤ 2 under the action of
this group of symmetries is

y′ = 0.

(XI) Example 4.16: gl2(R) with generators

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂y
, X4 = x2 ∂

∂x
+ xy

∂

∂y
.(16)

The differential equation of order ≤ 2 allowing this group of symme-
tries is

y(2) = 0.

(XII) Example 4.17: sl2(R)×L2, where L2 is the non-abelian 2-dimensional
Lie algebra, with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂y
, X5 = x2 ∂

∂x
.(17)

The differential equations of order ≤ 3 permitting this group of sym-
metries are

y′ = 0, 2y′y(3) =3
(
y(2)
)2
.(18)

(XIII) Example 4.18: sl2(R) nR2 with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
− y ∂

∂y
, X4 = y

∂

∂x
, X5 = x

∂

∂y
.(19)
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The only differential equation of order ≤ 3 allowing this group of
symmetries is

y(2) = 0.

(XIV) Example 4.1: the simple Lie algebra sl2(C) with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
− y ∂

∂x
, X4 = x

∂

∂x
+ y

∂

∂y
,(20)

X5 =
(
x2 − y2

) ∂

∂x
+ 2xy

∂

∂y
, X6 = 2xy

∂

∂x
+
(
y2 − x2

) ∂
∂y
.

The only differential equation of order ≤ 4 allowing this group of
symmetries is

(21) y(3)
(
1 + (y′)2

)
= 3y′

(
y(2)
)2
.

(XV) Example 4.2: the semi-simple Lie algebra sl2(R)× sl2(R) with gen-
erators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂y
,(22)

X4 = x
∂

∂x
, X5 = y2 ∂

∂y
, X6 = x2 ∂

∂x
.

The differential equations of order ≤ 4 allowing this group of sym-
metries are y′ = 0 and

(23) 2y′y(3) = 3
(
y(2)
)2
.

(XVI) Example 4.19: the Lie algebra gl2(R) nR2 with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
,(24)

X4 = y
∂

∂x
, X5 = x

∂

∂y
, X6 = y

∂

∂y
.

The differential equations of order ≤ 4 allowing this group of sym-
metries are

y(2) = 0, 3y(4)y(2) = 5
(
y(3)
)2
.(25)

(XVII) Example 4.3: the simple Lie algebra sl3(R) with generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
, X4 = y

∂

∂y
,(26)

X5 = x
∂

∂x
, X6 = y

∂

∂y
, X7 = x2 ∂

∂x
+ xy

∂

∂y
, X8 = xy

∂

∂x
+ y2 ∂

∂y
.
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The differential equations of order ≤ 6 which are invariant under the
action of this group of symmetries are

y(2) = 0, 9
(
y(2)
)2
y(5) = 45y(2)y(3)y(4) − 40

(
y(3)
)3
.(27)

Now we collect the considered real Lie algebras g together with their
representation in the space R3 and the invariant first order systems of dif-
ferential equations (see [3]).

(i) Example 5.2: the simple Lie algebra so3(R) ∼= su2(C) with genera-
tors

X1 = x
∂

∂y
− y ∂

∂x
, X2 = y

∂

∂z
− z ∂

∂y
, X3 = z

∂

∂x
− x ∂

∂z
.(28)

The time-dependent system allowing the Lie algebra so3(R) as the
Lie algebras of the group of symmetries is

y′ =
y

x
,(29)

z′ =
z

x
.

The time-independent invariant system is trivial:

x′ = 0,

y′ = 0,(30)

z′ = 0.

(ii) Examples 5.4 and 5.5: the semi-simple Lie algebra sl2(R) × sl2(R)
with generators

X1 =
∂

∂y
+ x

∂

∂z
, X2 = y

∂

∂y
+ z

∂

∂z
,(31)

X3 = (xy − z) ∂
∂x

+ y2 ∂

∂y
+ yz

∂

∂z
, X4 =

∂

∂x
+ y

∂

∂z
,

X5 = x
∂

∂x
+ z

∂

∂z
, X6 = x2 ∂

∂x
+ (xy − z) ∂

∂y
+ xz

∂

∂z
.

The time-independent invariant system is trivial (30), but the time-
dependent explicit invariant system of order one is missing.

(iii) Example 5.3: the simple Lie algebra sl3(R) with generators

X1 = z
∂

∂x
, X2 = z

∂

∂y
, X3 = x

∂

∂y
, X4 = x

∂

∂x
− y ∂

∂y
,(32)

X5 = y
∂

∂x
, X6 = x

∂

∂x
− z ∂

∂z
, X7 = x

∂

∂z
, X8 = y

∂

∂z
.

The time-dependent invariant system is (29). The time-independent
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system allowing the Lie algebra sl3(R) as the Lie algebras of the
group of symmetries is trivial (30).

2. Preliminaries

A map which continuously transforms a solution of a differential equation
into another solution is called a symmetry of the equation. Hence every
symmetry can be given by a vector field and its name is the infinitesimal
generator of the symmetry. The jet space is the space of the variables
x, y, y′, . . . , y(m) for ordinary differential equations of order m. The hull of
the differential equation f

(
x, y, y′, . . . , y(m)

)
= 0 is an (m+ 1)-dimensional

surface in the jet space defined by f . A continuously differentiable func-
tion ϕ(x) is called a smooth solution if the curve y = ϕ(x) with y′ =
∂ϕ(x)
∂x , . . . , y(m) = ∂mϕ(x)

∂xm is part of the hull, that is f
(
x, ϕ(x), . . . , ∂

mϕ(x)
∂xm

)
=

0 identically holds for all x. The group of symmetries of a differential equa-
tion consists of transformations of the (x, y)-plane whose prolongation to

the derivatives y′, . . . , y(m) leaves the hull of the equation invariant.

3. Method of Lie

In [10, Section X, pp. 243–248] S. Lie developed a method to find those
ordinary differential equations which allow a given Lie group G as their
symmetry group. Here we present it. The Lie algebra g of the r-dimensional
real Lie group G is determined by the vector fields

(33) Xi = φi(x, y)
∂

∂x
+ ηi(x, y)

∂

∂y
, i = 1, 2, . . . , r.

Applying the total derivative of ηi as well as of φi with respect to the variable

x we define recursively η
(k)
i , i = 1, 2, . . . , r, k = 1, 2, . . . ,m:

η
(k)
i =

dη
(k−1)
i

dx
− y(k)dφi

dx
, that is

η
(1)
i (x, y, y′) =

∂ηi
∂x

+
∂ηi
∂y

y′ − ∂φi
∂x

y′ − ∂φi
∂y

(y′)2,(34)

η
(2)
i (x, y, y′, y(2)) =

∂η
(1)
i

∂x
+
∂η

(1)
i

∂y
y′ +

∂η
(1)
i

∂y′
y(2)(35)

− ∂φi
∂x

y(2) − ∂φi
∂y

y′y(2),

η
(3)
i (x, y, y′, y(2), y(3)) =

∂η
(2)
i

∂x
+
∂η

(2)
i

∂y
y′ +

∂ + η
(2)
i

∂y′
y(2) +

∂η
(2)
i

∂y(2)
y(3)(36)

− ∂φi
∂x

y(3) − ∂φi
∂y

y′y(3),
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η
(4)
i (x, y, y′, y(2), y(3), y(4)) =

∂η
(3)
i

∂x
+
∂η

(3)
i

∂y
y′ +

∂η
(3)
i

∂y′
y(2) +

∂η
(3)
i

∂y(2)
y(3)(37)

+
∂η

(3)
i

∂y(3)
y(4) − ∂φi

∂x
y(4) − ∂φi

∂y
y′y(4), etc.

According to [10, Section X, p. 245] the mth prolonged vector fields X
(m)
i ,

i = 1, 2, . . . , r are computed by

X
(m)
i = φi(x, y)

∂

∂x
+ ηi(x, y)

∂

∂y
+ η

(1)
i (x, y, y′)

∂

∂y′
+ . . .

+ η
(m)
i

(
x, y, . . . , y(m)

) ∂

∂y(m)
.

It can be established that these vector fields depend on the variables x,
y, y′, . . . , y(m). The Lie algebra generated by them is isomorphic to g
(see [10, Section X, p. 245] or [22, Theorem 2.39, p. 117]). A differential

equation f
(
x, y, y′, . . . , y(m)

)
= 0 allows a Lie symmetry group with Lie

algebra g precisely if the following system of partial differential equations
holds whenever f

(
x, y, y′, . . . , y(m)

)
= 0 is satisfied:

(38)

φ1
∂f
∂x + η1

∂f
∂y + η

(1)
1

∂f
∂y′ + · · ·+ η

(m)
1

∂f
∂y(m) = 0,

φ2
∂f
∂x + η2

∂f
∂y + η

(1)
2

∂f
∂y′ + · · ·+ η

(m)
2

∂f
∂y(m) = 0,

...

φi
∂f
∂x + ηi

∂f
∂y + η

(1)
i

∂f
∂y′ + · · ·+ η

(m)
i

∂f
∂y(m) = 0,

...

φr
∂f
∂x + ηr

∂f
∂y + η

(1)
r

∂f
∂y′ + · · ·+ η

(m)
r

∂f
∂y(m) = 0.

This system (38) is equivalent to the following system of ‘linear equations’:

(39)
(

∂f
∂x

∂f
∂y

∂f
∂y′ . . . ∂f

∂y(m)

)
·M =

(
0 . . . 0

)
,

where ∂f
∂x , ∂f

∂y , ∂f
∂y′ , . . . ,

∂f
∂y(m) are the variables of the linear system and its

(m+ 2)× r coefficient matrix M is defined by

(40) M =


φ1 φ2 φ3 . . . φr
η1 η2 η3 . . . ηr

η
(1)
1 η

(1)
2 η

(1)
3 . . . η

(1)
r

...
. . .

...

η
(m)
1 η

(m)
2 η

(m)
3 . . . η

(m)
r

 .

The necessary and sufficient condition to find non-trivial solution of the
system (38) is

rankM < m+ 2.
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Since rankM ≤ r is always true, if r < m + 2, then the rank condition
is evidently fulfilled. In this case one solves (38) in ∂f

∂x ,
∂f
∂y , . . . ,

∂f
∂y(m) , and

checks if any solution belongs to a nontrivial differential equation f .
Now we discuss the case r ≥ m+ 2.
First, assume m+ 2 = r. Then M is an (m+ 2)× (m+ 2)-matrix. It can

be established that there exists a non-trivial solution f of the linear system
(39) of equations precisely if rankM < m+ 2. Since the determinant

(41) D =

∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 φ3 . . . φr
η1 η2 η3 . . . ηr

η
(1)
1 η

(1)
2 η

(1)
3 . . . η

(1)
r

...
. . .

...

η
(r−2)
1 η

(r−2)
2 η

(r−2)
3 . . . η

(r−2)
r

∣∣∣∣∣∣∣∣∣∣∣
of the coefficient matrix M of (39) is a polynomial of the variables x, y, y(i),
i = 1, 2, . . . , r − 2, the rank condition says that D has to be 0. In the rare
situation that D is identically 0, one solves (38) in ∂f

∂x ,
∂f
∂y , . . . ,

∂f
∂y(m) , and

also checks if any solution belongs to a nontrivial differential equation f .
However, if D is not identically 0, then the polynomial D of the variables

x, y, y(i), i = 1, 2, . . . , r − 2, has to be 0 and the factors of D provide the
only possibilities for a nontrivial differential equation f .

The reversed statement is also valid (see [13, p. 475]) and it is proved in
[11, Abh. I, No. 24, pp. 36–37].

Now, let us suppose m+2 < r. In this case the coefficient matrix M of the
linear system (39) of equations obtaining from (38) is an (m+2)×r-matrix.
The necessary condition to get a non-trivial solution of the linear system (39)
is that rankM < m+2. Therefore the determinant of every (m+2)×(m+2)
submatrix of M has to be 0. Since these subdeterminants are polynomials
of the variables x, y, y(i), i = 1, 2, . . . ,m, too, their common factors give
the only possibilities for nontrivial differential equations f leaving invariant
under the action of the group G. Summarizing our discussion we obtain.

Theorem 3.1. To obtain the differential equations f
(
x, y, y′, . . . , y(m)

)
= 0

of order m, which allow a symmetry group with a given r-dimensional real
Lie algebra g = 〈Xi = φi(x, y) ∂

∂x + ηi(x, y) ∂∂y , i = 1, 2, . . . , r〉 such that

m ≤ r−2, one has to create the matrix M defined by (40) and determine the
greatest common divisor of all its (m+ 2)× (m+ 2) subdeterminants. If this
polynomial fails to be identically 0, then its factors are the only possibilities
for the sought differential equations.
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4. Examples of differential equations allowing a given Lie
symmetry group

In this section using Lie’s method we find the ordinary differential equa-
tions admitting a symmetry Lie group such that its Lie algebra is listed in
Section 1.

4.1. Examples where m ≤ r − 2. This subsection is devoted to obtain
differential equations of order m, where m ≤ r − 2 and r is the dimension
of the Lie algebra of the given Lie group. Applying the known symmetries
we solve some of these differential equations.

Example 4.1. The Lie algebra g = sl2(C) has as generators the vector
fields given by (20). Therefore one has

(φ1, φ2, φ3, φ4, φ5, φ6) = (1, 0,−y, x, x2 − y2, 2xy),(42)

(η1, η2, η3, η4, η5, η6) = (0, 1, x, y, 2xy, y2 − x2).(43)

Using (34), (35), (36), (37) we obtain η
(1)
i , η

(2)
i , η

(3)
i , η

(4)
i , i = 1, 2, . . . , 6:

(η
(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 , η

(1)
5 , η

(1)
6 )

(44)

= (0, 0, 1 + (y′)2, 0, 2y(1 + (y′)2),−2x(1 + (y′)2)),

(η
(2)
1 , η

(2)
2 , η

(2)
3 , η

(2)
4 , η

(2)
5 , η

(2)
6 )

(45)

= (0, 0, 3y′y(2),−y(2), 2y′ − 2xy(2) + 2(y′)3 + 6yy′y(2),

− 2− 2(y′)2 − 2yy(2) − 6xy′y(2)),

(η
(3)
1 , η

(3)
2 , η

(3)
3 , η

(3)
4 , η

(3)
5 , η

(3)
6 )

(46)

= (0, 0, 3(y(2))2 + 4y′y(3),−2y(3),

12(y′)2y(2) + 6y(y(2))2 − 4xy(3) + 8yy′y(3),

− 12y′y(2) − 6x(y(2))2 − 8xy′y(3) − 4yy(3)),

(η
(4)
1 , η

(4)
2 , η

(4)
3 , η

(4)
4 , η

(4)
5 , η

(4)
6 )

(47)

= (0, 0, 10y(2)y(3) + 5y′y(4),−3y(4),

30y′(y(2))2 + 20(y′)2y(3) + 20yy(2)y(3) − 4y(3) − 6xy(4) + 10yy′y(4),

− 18(y(2))2 − 24y′y(3) − 20xy(2)y(3) − 10xy′y(4) − 6yy(4)).
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Taking into account (42)-(47) we obtain for the determinant (41)

D = 16

(
y(3) + y(3)

(
y′
)2 − 3y′

(
y(2)
)2
)2 (

1 +
(
y′
)2)

.

As 1 + (y′)2 > 0 the ordinary differential equation of order ≤ 4 having the
Lie algebra g = sl2(C) as the Lie algebra of its symmetry group is given by
(21) (cf. Theorem 3.1). Putting z := y′ into equation (21) we obtain

z(2)
(
1 + z2

)
= 3z

(
z′
)2
.

As y(3) = 0 is not an invariant differential equation belonging to the Lie
algebra sl2(C) one gets z′ 6= 0. Hence we have

z(2)

z′
=

3z

1 + z2
z′ ⇐⇒ (ln z′)′ =

(
3

2
ln(1 + z2)

)′
⇐⇒(

ln
z′

(1 + z2)
3
2

)′
= 0⇐⇒ z′

(1 + z2)
3
2

= ec, c ∈ R is a constant⇐⇒∫
dz

(1 + z2)
3
2

=

∫
ldx, l := ec is a constant⇐⇒

z√
1 + z2

= lx+ k, l, k ∈ R are constants⇐⇒

1

z2
=

1

(lx+ k)2
− 1 =

1− (lx+ k)2

(lx+ k)2
⇐⇒

y′(x) = ±

√
(lx+ k)2

1− (lx+ k)2
⇐⇒

y(x) = ±
∫ √

(lx+ k)2

1− (lx+ k)2
dx = ±1

l

√
1− (lx+ k)2 + p,

with the real constants l, k, p ∈ R.

Example 4.2. The generators of Lie algebra g = sl2(R)⊕ sl2(R) are given
by (22). Hence one has

(φ1, φ2, φ3, φ4, φ5, φ6) = (1, 0, 0, x, 0, x2),

(η1, η2, η3, η4, η5, η6) = (0, 1, y, 0, y2, 0).
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Using (34), (35), (36), (37) the functions η
(1)
i , η

(2)
i , η

(3)
i , η

(4)
i , i = 1, 2, . . . , 6,

are the following:

(η
(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 , η

(1)
5 , η

(1)
6 )

= (0, 0, y′,−y′, 2yy′,−2xy′),

(η
(2)
1 , η

(2)
2 , η

(2)
3 , η

(2)
4 , η

(2)
5 , η

(2)
6 )

= (0, 0, y(2),−2y(2), 2(yy(2) + (y′)2),−2(y′ + 2xy(2)))

(η
(3)
1 , η

(3)
2 , η

(3)
3 , η

(3)
4 , η

(3)
5 , η

(3)
6 )

= (0, 0, y(3),−3y(3), 2(yy(3) + 3y′y(2)),−6(xy(3) + y(2))),

(η
(4)
1 , η

(4)
2 , η

(4)
3 , η

(4)
4 , η

(4)
5 , η

(4)
6 )

= (0, 0, y(4),−4y(4), 2(yy(4) + 4y′y(3) + 3(y(2))2),−4(2xy(4) + 3y(3))).

Hence the determinant (41) is D = −4
(

2y′y(3) − 3
(
y(2)
)2)2

y′. It follows

from Theorem 3.1 that the ordinary differential equations of order ≤ 4 ad-
mitting the symmetry group belongimg to the Lie algebra sl2(R) ⊕ sl2(R)
are y′ = 0 and the equation given by (23).
To find the solutions of (23) we put z := y′. Hence we obtain

2zz(2) = 3(z′)2 ⇐⇒ z(2)

z′
=

3

2

z′

z
⇐⇒(

ln z′ − 3

2
(ln z)

)′
= 0⇐⇒ ln

(
z′

z
3
2

)
= c, c ∈ R is a constant⇐⇒

z′

z
3
2

= ec = k, k ∈ R is a constant⇐⇒

−2z−
1
2 = kx+ l, k, l ∈ R are constants⇐⇒ y′ =

(
−2

kx+ l

)2

⇐⇒

y(x) =

∫
4

(kx+ l)2
dx = − 4

k(kx+ l)
+ p, with the real constants k, l, p.

Example 4.3. The basis elements of the Lie algebra g = sl3(R) are given
by (26). Therefore one has

(φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) = (1, 0, 0, 0, x, y, x2, xy),

(η1, η2, η3, η4, η5, η6, η7, η8) = (0, 1, x, y, 0, 0, xy, y2).
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Using the formulas (34), (35), (36), (37) we get

(η
(1)
1 , η

(1)
2 , η

(1)
3 , η

(1)
4 , η

(1)
5 , η

(1)
6 , η

(1)
7 , η

(1)
8 )

= (0, 0, 1, y′,−y′,−(y′)2, y − xy′, yy′ − x(y′)2),

(η
(2)
1 , η

(2)
2 , η

(2)
3 , η

(2)
4 , η

(2)
5 , η

(2)
6 , η

(2)
7 , η

(2)
8 )

= (0, 0, 0, y(2),−2y(2),−3y′y(2),−3xy(2),−3xy′y(2)),

(η
(3)
1 , η

(3)
2 , η

(3)
3 , η

(3)
4 , η

(3)
5 , η

(3)
6 , η

(3)
7 , η

(3)
8 )

= (0, 0, 0, y(3),−3y(3),−3(y(2))2 − 4y′y(3),−5xy(3) − 3y(2),

− yy(3) − 3y′y(2) − 3x(y(2))2 − 4xy′y(3)),

(η
(4)
1 , η

(4)
2 , η

(4)
3 , η

(4)
4 , η

(4)
5 , η

(4)
6 , η

(4)
7 , η

(4)
8 )

= (0, 0, 0, y(4),−4y(4),−5(2y(2)y(3) + y′y(4)),−8(y(3))− 7xy(4),

− 6(y(2))2 − 8yy(3) − 10xy(2)y(3) − 5xy′y(4) − 2yy(4)).

Moreover for η
(5)
i and η

(6)
i we obtain

(η
(5)
1 , η

(5)
2 , η

(5)
3 , η

(5)
4 , η

(5)
5 , η

(5)
6 , η

(5)
7 , η

(5)
8 )

= (0, 0, 0, y(5),−5y(5),−15y(2)y(4) − 10(y(3))2 − 6y′y(5),−15y(4) − 9xy(5),

− 30y(2)y(3) − 15y′y(4) − 15xy(2)y(4) − 10x(y(3))2 − 6xy′y(5) − 3yy(5)),

(η
(6)
1 , η

(6)
2 , η

(6)
3 , η

(6)
4 , η

(6)
5 , η

(6)
6 , η

(6)
7 , η

(6)
8 )

= (0, 0, 0, y(6),−6y(6),−7(3y(2)y(5) + 5y(3)y(4) + y′y(6)),

− 24y(5) − 11xy(6),−60y(2)y(4) − 40(yy(3))2 − 24y′y(5)−

− 21xy(2)y(5) − 35xy(3)y(4) − 7xy′y(6) − 4yy(6)).

We get for the determinant (41)

D = −2

(
9
(
y(2)
)2
y(5) − 45y(2)y(3)y(4) + 40

(
y(3)
)3
)2

y(2).

By Theorem 3.1 the ordinary differential equations of order ≤ 6 admitting
the Lie algebra sl3(R) as the Lie algebra of their symmetry group are de-
termined by (27).

4.2. Examples for sl2(R). There are three representations of the Lie al-
gebra g = sl2(R) in [12, p. 501]. These belong to the imprimitive actions of
the corresponding Lie groups on the plane (cf. [7, p. 341]). We treat these
cases in Examples 4.4, 4.5, 4.6. There exists one representation of sl2(R)
describing the primitive action of the corresponding Lie group on the plane
(cf. [7, p. 341], see also [14, (16), p. 374]). This case is considered in Example
4.8.
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In this subsection we determine differential equations of order m such
that m ≤ r − 2 as well as m = r − 1, where r is the dimension of the Lie
algebra of the given Lie group. Utilizing the known symmetries we find the
solutions of some differential equations.

In Section 4.2 we illustrate that the differential equation allowing a Lie
algebra as infinitesimal generators of symmetries strongly depends on the
representation of the Lie algebra. For Examples 4.4, 4.5 and 4.8 there is
one or a family of second order ordinary differential equations allowing the
particular Lie algebra. In contrast to this, for Example 4.6 there does not
exist any second order ordinary differential equation allowing the particular
Lie algebra.

Example 4.4. Firstly we deal with the representation of the Lie algebra
g1 = sl2(R) generated by the vector fields (1). Hence one gets

(48) (φ1, φ2, φ3) = (1, x, x2), (η1, η2, η3) = (1, y, y2).

Using the formulas (34), (35) we have

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0, 0, 2(y − x)y′),(49)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0,−y(2),−2(y′ − (y′)2 + 2xy(2) − yy(2))).(50)

As the determinant (41) is D = 2y′(y−x)2, we can conclude from Theorem
3.1 that the invariant first order differential equation is y′ = 0.

To obtain the ordinary differential equations of order 2 admitting the basis
elements of the Lie algebra g1 as infinitesimal generators of their symmetries,
we suppose an explicit form:

f(x, y, y′, y(2)) = y(2) − g(x, y, y′) = 0,

and for the case m = 2, r = 3 we solve the system (38) of partial differential
equations. Substituting (48), (49), (50) into (38) we receive the following
system of partial differential equations:

∂g

∂x
+
∂g

∂y
= 0,(51)

x
∂g

∂x
+ y

∂g

∂y
+ g = 0,(52)

−x2 ∂g

∂x
− y2 ∂g

∂y
− 2(y − x)y′

∂g

∂y′
+ 2(y′)2 − 2y′ + 2(y − 2x)g = 0.(53)

Taking into consideration (51) one has g = g(x − y, y′). Introducing the

new variable u = x− y we get ∂g
∂x = ∂g

∂u , ∂g
∂y = − ∂g

∂u . Substituting these into

equation (52) we obtain g + u ∂g∂u = 0. Therefore for g one has

(54) g =
h(y′)

u
.
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Furthermore one gets

(55)
∂g

∂y′
=
h′

u
,
∂g

∂x
= − h

u2
,
∂g

∂y
=

h

u2
.

After putting (54) and (55) into (53) one has

(56) 2
(
y′
)2 − 2y′ − 3h

(
y′
)

+ 2y′h′
(
y′
)

= 0.

Substituting z := y′ 6= 0 as a new variable into (56) we obtain

(57) 2h′(z)− 3
h(z)

z
+ 2z − 2 = 0.

Solving (57) we receive h(z) = −2
(
z2 + z + cz3/2

)
with a real constant c.

Hence the second order differential equations which leave invariant under
the action of the infinitesimal generators of the Lie algebra g1 are given by
(2). (See also Table 8 in [6, p. 151]).

To solve the ordinary differential equation (2) of order 2 we take a two-
dimensional solvable subalgebra 〈X1, X2〉 with the Lie bracket [X1, X2] = X1

of g1 (see Section 2.1.2 in [6]). The differential equation (2) has the form

(58)
dy′

dx
= −2

(y′)2 + y′ + c (y′)3/2

x− y
=: ω(x, y, y′).

We denote by Y the vector field

Y =
∂

∂x
+ y′

∂

∂y
+ ω(x, y, y′)

∂

∂y′

such that the partial derivatives ∂
∂x , ∂

∂y , ∂
∂y′ have the coefficients dx

dx = 1,
dy
dx = y′, dy′

dx = ω(x, y, y′). The vector field Y transforms the equation (58)
into the linear partial differential equation

(59) Y (f) =
∂f

∂x
+ y′

∂f

∂y
+ ω(x, y, y′)

∂f

∂y′
= 0

of the variables x, y, y′. The first prolonged vector fields

X
(1)
1 = X1 =

∂

∂x
+

∂

∂y
, X

(1)
2 = X2 = x

∂

∂x
+ y

∂

∂y
,

leave invariant the equation (59). Therefore the integration of the differential
equation (2) is reduced to the integration of the equation (59) (see [12,
Kapitel 20, 4, pp. 457–464]). As the first prolonged vector fields do not

depend on the term ∂f
∂y′ , we can calculate a first integral of (59) as follows
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(see [12, Kapitel 20, 2, pp. 443–444]). The coefficient matrix for the linear
system of equations

0 =
∂f

∂x
+ y′

∂f

∂y
+ ω(x, y, y′)

∂f

∂y′

0 =
∂f

∂x
+
∂f

∂y

0 = x
∂f

∂x
+ y

∂f

∂y

of variables ∂f
∂x , ∂f

∂y , ∂f
∂y′ has determinant

D1 =

∣∣∣∣∣∣
1 y′ ω
1 1 0
x y 0

∣∣∣∣∣∣ = ω(y − x) 6= 0.

Taking into account the determinant

D2 =

∣∣∣∣∣∣
dx dy dy′

1 y′ ω
1 1 0

∣∣∣∣∣∣ ,
for a first integral of (59) one has∫

D2

D1
=

∫
ω(dy − dx) + (1− y′)dy′

ω(y − x)
=∫

dx− dy
x− y

+
(1− y′)dy′

2((y′)2 + y′ + c(y′)
3
2 )

=

∫
du

u
+

∫
(1− y′)dy′

2((y′)2 + y′ + c(y′)
3
2 )

=

ln(x− y) +
1

2
ln y′ − ln(1 + c

√
y′ + y′),

where u = x − y is an invariant of X1 (cf. [12, p. 533]). By exponentiating
this, one gets a first integral

ϕ(x, y) =
(x− y)

√
y′

1 + c
√
y′ + y′

.

By integrating it we have

ϕ =
(x− y)

√
y′

1 + c
√
y′ + y′

= constant =
1

b
.

From this we express y′ and solve the obtained equation. As a result, we
have

1

b(x− y)
=

√
y′

1 + c
√
y′ + y′

⇔

1 + (c− b(x− y))
√
y′ + y′ = 0⇔

y′ = (v +
√
v2 − 1)2 = v2 + 2v

√
v2 − 1 + v2 − 1, with v :=

b(x− y)− c
2

.
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Since dv
dx = v′ = b

2(1 − y′) we obtain v′

b = 1
2(1 − y′) = 1 − v2 − v

√
v2 − 1.

The solution v of this separable differential equation is∫
dv

1− v2 − v
√
v2 − 1

=

∫
bdx⇐⇒

1

v +
√
v2 − 1

= bx+ a⇔

2v = bx+ a+
1

bx+ a
.

Hence the solutions y(x) of (2) are

by(x) = − 1

bx+ a
− a− c,

with the real constants a, b, c.

Example 4.5. Secondly, the infinitesimal generators of the Lie algebra g2 =
sl2(R) are defined by (3). Therefore for φi, ηi, i = 1, 2, 3, we have

(60) (φ1, φ2, φ3) = (1, 2x, x2), (η1, η2, η3) = (0, y, xy).

Computing the formulas (34), (35) we get

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0,−y′, y − xy′),(61)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0,−3y(2),−3xy(2)).(62)

For the determinant (41) we have D = y2. Hence we can conclude from
Theorem 3.1 that there does not exist any first order invariant differential
equation under the action of the infinitesimal symmetries of the Lie algebra
g2.

To receive the differential equations having the form y(2) − g(x, y, y′) = 0
and admitting the Lie algebra g2 as the Lie algebra of their infinitesimal
symmetries, for the case m = 2, r = 3, f(x, y, y′, y(2)) = y(2)−g(x, y, y′) = 0
we have to determine the solution of (38). Applying (60), (61), (62) the
system (38) of partial differential equations is equivalent to

∂g

∂x
= 0(63)

−3g − y∂g
∂y
− 2x

∂g

∂x
+ y′

∂g

∂y′
= 0(64)

3xg + (y − xy′) ∂g
∂y′

+ x2 ∂g

∂x
+ xy

∂g

∂y
= 0.(65)

It can be concluded that the differential equation y(2) = 0, i.e. g(x, y, y′) = 0,
fulfills equations (63), (64), (65). We may suppose that g(x, y, y′) 6= 0. Using
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(63) we come to the conclusion that the function g is independent of the
variable x, that is g(x, y, y′) = g(y, y′). Hence equation (64) changes for

(66) −3 + y′
∂ ln g

∂y′
− y∂ ln g

∂y
= 0.

Equivalently we arrive at the following ordinary differential equation (char-
acteristic equation):

(67)
dy′

y′
=
dy

−y
=
d ln g

3
= 0.

Equation (67) provides the first integrals yy′ = c1 and g
y′3 = c2. Therefore

we get g = (y′)3 f(yy′). Using z := yy′ as a new variable for the function

f(yy′) = f(z) we obtain ∂f
∂y = y′ dfdz and ∂f

∂y′ = y dfdz . The application of these

changes equation (66) for 3f(z) + zf ′(z) = 0. This last differential equation
has the solution f(z) = az−3 with a real constant a. Hence we obtain
g = ay−3. As a result, the second order differential equations (4) allow
the Lie algebra g2 defined by (3) as the Lie algebra of their infinitesimal
symmetries. (See also Table 8 in [6], p. 151.)

After the multiplication of both sides of (4) by 2y′ the solutions of these
differential equations can be received as follows

2y′y(2) − 2ay′

y3
= 0⇐⇒ (y′)2 +

a

y2
= const. = b⇐⇒

y′ =

√
by2 − a
y

⇐⇒
∫

ydy√
by2 − a

=

∫
1 · dx⇐⇒

1

b

√
by2 − a = x+ c, where c is a constant⇐⇒

by2 = b2(x+ c)2 + a, a, b, c ∈ R.

Example 4.6. Thirdly, the infinitesimal generators of the Lie algebra g3 =
sl2(R) are defined by (5). Therefore for φi, ηi, i = 1, 2, 3, we have

(68) (φ1, φ2, φ3) = (0, 0, 0), (η1, η2, η3) = (1, y, y2).

Computing the formulas (34), (35), (36) we get

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0, y′, 2yy′),(69)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0, y(2), 2((y′)2 + yy(2))),(70)

(η
(3)
1 , η

(3)
2 , η

(3)
3 ) = (0, y(3), 2(3y′y(2) + yy(3))).(71)
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Since in this case the determinant D in (41) is identically 0, therefore we
have to find the solution the following system of partial differential equations
for f :

∂f
∂y = 0,

y ∂f∂y + y′ ∂f∂y′ = 0,

y2 ∂f
∂y + 2yy′ ∂f∂y′ = 0.

The first equation yields that f is independent of the variable y, i.e. f =
f(x, y′). Using the second equation we receive y′ ∂f∂y′ = 0, i.e. the function

f has the form f = g(x)y′, where g is an arbitrary real function. The third
equation is the same. Hence we arrive at g(x)y′ = 0. Therefore the invariant
differential equations under the action of the infinitesimal symmetries of the
Lie algebra g3 are trivial, that is y′ = 0.

Now we prove that there does not exist any second order differential equation
admitting Lie algebra g3 as the Lie algebra of their infinitesimal symmetries.
Let us assume that there is a differential equation f

(
x, y, y′, y(2)

)
= 0 which

leaves invariant under the action of the infinitesimal generators of the Lie
algebra g3. Applying (38), (68), (69), (70) the function f will fulfill the
following system of partial differential equations:

∂f

∂y
= 0(72)

y
∂f

∂y
+ y′

∂f

∂y′
+ y(2) ∂f

∂y(2)
= 0(73)

y2∂f

∂y
+ 2yy′

∂f

∂y′
+
(

2
(
y′
)2

+ 2yy(2)
) ∂f

∂y(2)
= 0.(74)

Taking into account (72) the function f does not depend on the variable y,

i.e. f = f
(
x, y′, y(2)

)
. Using this to equations (73), (74) we obtain

y′
∂f

∂y′
+ y(2) ∂f

∂y(2)
= 0(75)

yy′
∂f

∂y′
+
((
y′
)2

+ yy(2)
) ∂f

∂y(2)
= 0.(76)

We multiply equation (75) by −y and add the obtained equation to (76).
After performing this we obtain(

y′
)2 ∂f

∂y(2)
= 0.

Therefore the function f is independent of y(2), that is f = f(x, y′), which
contradicts the assumption that f is a second order differential equation.
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Now we seek the differential equations having the form y(3)−g(x, y, y′, y(2)) =
0 and admitting the Lie algebra g3 as the Lie algebra of their infinitesimal
symmetries. To receive them we need to find the solutions of the system
(38) of partial differential equations for the case f(x, y, y′, y(2), y(3)) = y(3)−
g(x, y, y′, y(2)) = 0. Utilizing (68), (69), (70) the system (38) can be reduced
to

∂g

∂y
= 0(77)

−y∂g
∂y
− y′ ∂g

∂y′
− y(2) ∂g

∂y(2)
+ g = 0(78)

−y2 ∂g

∂y
− 2yy′

∂g

∂y′
−
(

2
(
y′
)2

+ 2yy(2)
) ∂g

∂y(2)
+ 6y′y(2) + 2yg = 0.(79)

We can conclude from (77) that g = g(x, y′, y(2)). Applying this, equation
(78) is equivalent to

(80) y′
∂g

∂y′
+ y(2) ∂g

∂y(2)
= g

and furthermore equation (79) changes for

(81)
3y(2)

y′
=

∂g

∂y(2)
.

It follows from equation (81) that g =
3(y(2))

2

2y′ +h (x, y′). Replacing this form

of g into (80) we get the partial differential equation y′ ∂h(x,y′)
∂y′ = h(x, y′),

which provides that h(x, y′) = y′f(x). Hence the third-order invariant dif-
ferential equation under the action of the infinitesimal generators of the Lie
algebra g3 is given by (6) for arbitrary real function f(x). (See also Table 8
in [6, p. 151]).

To solve the differential equation (6) we introduce the new variable z(x) :=
y′(x). After replacing this into (6) we receive

z(2) − 3(z′)2

2z
− zf(x) = 0⇐⇒(82)

d

dx

(
z′

z

)
= f(x) +

1

2

(
z′

z

)2

.(83)

Substituting l(x) := z′

z the equation (83) is reduced to the Ricatti differential
equation

(84) l′ =
1

2
l2 + f(x)
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(see [9, Section 4.9, p. 21]). Let us denote v := 1
2 l. It satisfies the Ricatti

differential equation v′ = v2 + 1
2f(x). Putting v = −u′

u the function u fulfills
the linear differential equation

(85) 0 = u(2) +
1

2
uf(x).

Denoted by ũ the solutions of (85) the solutions l̃ of (84) can be expressed in

the form l̃ = −2 ũ
′

ũ . Applying the solution l̃ of (84) one gets for the solution

z̃ of (82) this form z̃ = e
∫
l̃dx. Therefore for the solution ỹ of (6) we obtain

ỹ =

∫
e
∫
l̃dxdx.

Remark 4.7. The fluid draining equation

w(3) = w−2

is discussed in [18]. It is equivalent to the Riccati equation l′ = 1
2 l

2 + x,
which is the same as (6) with the function f : x 7→ x. In [18] Nucci used
the representation of sl2(R) given in Example 4.8 to obtain the solution of
the fluid draining equation. Finally, we deal in this subsection with this
representation.

Example 4.8. Now we treat the Lie algebra g4 = sl2(R) having as infini-
tesimal generators defined in (7). Hence for φi, ηi, i = 1, 2, 3, we have

(86) (φ1, φ2, φ3) = (1, x, x2 − y2), (η1, η2, η3) = (0, y, 2xy).

Computing the formulas (34), (35), (36) we get

(87) (η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (0, 0, 2(1 + (y′)2)y),

(88) (η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (0,−y(2), 2(y′ + (y′)3 + 3yy′y(2) − xy(2))).

As the determinant (41) isD = 2(1+(y′)2)y2, we can conclude from Theorem
3.1 that there is no differential equation of order one which is invariant under
the action of the infinitesimal generators of the Lie algebra g4.

Now we seek the differential equations which have the explicit form y(2) −
g(x, y, y′) = 0 and which admit the Lie algebra g4 as the Lie algebra of their
infinitesimal symmetries. For this purpose we have to find the solutions of
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the following system of partial differential equations:

∂g

∂x
= 0(89)

x
∂g

∂x
+ y

∂g

∂y
+ g = 0(90)

−
(
x2 − y2

) ∂g
∂x
− 2xy

∂g

∂y
− 2y

(
1 +

(
y′
)2) ∂g

∂y′
(91)

+2y′ + 2
(
y′
)3

+ 6yy′g − 2xg = 0

which is created applying equations (38) for the case m = 2, r = 3,

f(x, y, y′, y(2)) = y(2) − g(x, y, y′) = 0 and using (86), (87), (88). From
(89) we can conclude that the function g is independent of the variable x,
that is g(x, y, y′) = g(y, y′). Hence equation (90) changes for

−y∂g
∂y

= g.

Therefore we may suppose that the form of the function g is g = h(y′)
y .

Substituting this form into (91) and taking into consideration that g does not
depend on x, after simplification for the function h(y′) we get the following
linear differential equation

(92) y′
(

1 +
(
y′
)2)

+ 3y′h
(
y′
)

=
(

1 +
(
y′
)2)

h′
(
y′
)
.

To solve the separable differential equation 3y′

1+(y′)2 = h′(y′)
h(y′) we obtain h(y′) =

d
(

1 + (y′)2
)3/2

with a real constant d. Making use of this the solution of

(92) is

h
(
y′
)

= −
(

1 +
(
y′
)2)

+ d
(

1 +
(
y′
)2)3/2

,

with a real constant d. Hence the invariant second order differential equa-
tions under the action of the infinitesimal symmetries of the Lie algebra g4

are given by (8).

Similarly to Example 4.4, we apply the symmetries belonging to the 2-
dimensional subalgebra 〈X1, X2〉 with the Lie bracket [X1, X2] = X1 to solve
the ordinary differential equation (8) of order 2. The form of the differential
equation (8) can be expressed in the following way

(93)
dy′

dx
= −1

y

(
1 +

(
y′
)2)(

1− d
(

1 +
(
y′
)2)1/2

)
=: ω(y, y′).

We denote by Y the vector field

Y =
∂

∂x
+ y′

∂

∂y
+ ω(y, y′)

∂

∂y′
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such that the partial derivatives ∂
∂x , ∂

∂y , ∂
∂y′ have the coefficients dx

dx = 1,
dy
dx = y′, dy′

dx = ω(y, y′). Using Y the equation (8) becomes equivalent to the
linear partial differential equation

(94) Y (f) =
∂f

∂x
+ y′

∂f

∂y
+ ω(y, y′)

∂f

∂y′
= 0

of the variables x, y, y′. The first prolonged vector fields

X
(1)
1 = X1 =

∂

∂x
, X

(1)
2 = X2 = x

∂

∂x
+ y

∂

∂y

leaves invariant the equation (94). Therefore the integration of the differ-
ential equation (8) is reduced to the integration of the equation (94) (cf.
[12, Kapitel 20, 4, pp. 457–464]). As the first prolonged vector fields do not

depend on term ∂f
∂y′ , we can calculate a first integral of (8) as follows (see

[12, Kapitel 20, 2, pp. 443–444 ]). The coefficient matrix of the linear system
of equations

0 =
∂f

∂x
+ y′

∂f

∂y
+ ω(y, y′)

∂f

∂y′

0 =
∂f

∂x

0 = x
∂f

∂x
+ y

∂f

∂y

of variables ∂f
∂x , ∂f

∂y , ∂f
∂y′ has determinant

D1 =

∣∣∣∣∣∣
1 y′ ω
1 0 0
x y 0

∣∣∣∣∣∣ = yω 6= 0.

Taking into consideration the determinant

D2 =

∣∣∣∣∣∣
dx dy dy′

1 y′ ω
1 0 0

∣∣∣∣∣∣ = ωdy − y′dy′
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for a first integral of (94) we obtain∫
D2

D1
=

∫
ωdy − y′dy′

ωy
=

∫
dy

y
+

y′dy′(
1 + (y′)2

)(
1− d

√
1 + (y′)2

)
=

∫
dy

y
+

∫
y′√

1 + (y′)2

(√
1 + (y′)2 − d

)dy′
= ln y + ln

(√
1 + (y′)2 − d

)
.

By exponentiating this, one gets a first integral

ϕ =

(√
1 + (y′)2 − d

)
y.

By integrating it we have

ϕ =

(√
1 + (y′)2 − d

)
y = constant = c.

From this we express y′ and we receive

y′ =

√(
c

y
+ d

)2

− 1,

with the constants c, d ∈ R. Hence the solutions y(x) of (8) are

√
c2 + 2cdy + (d2 − 1) y2

d2 − 1
−
cd ln

(
(d2−1)y+cd
√
d2−1

+
√
c2 + 2cdy + (d2 − 1) y2

)
(d2 − 1)

3
2

= x+ a,

with the constants a, c, d ∈ R.

4.3. Differential equations for so3(R).

Example 4.9. The generators of the Lie algebra g = so3(R) ∼= su2(C) are
given by (9). There does not exist any 2-dimensional subalgebra of so3(R).
Using the vector fields (9) we obtain

(95) (φ1, φ2, φ3) = (1 + x2, xy, y), (η1, η2, η3) = (xy, 1 + y2,−x).

Making use of formulas (34), (35) to (95) we get

(η
(1)
1 , η

(1)
2 , η

(1)
3 ) = (y − xy′, yy′ − x(y′)2,−1− (y′)2),(96)

(η
(2)
1 , η

(2)
2 , η

(2)
3 ) = (−3xy(2),−3xy′y(2),−3y′y(2)).(97)
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The ordinary differential equations of order one allowing as infinitesimal gen-
erators of their symmetries the basis elements of the Lie algebra g = so3(R)
are missing because the determinant D = −(1+x2+y2)(x2(y′)2−2xyy′+1+

y2) is different from 0, since x2(y′)2−2xyy′+1+y2 = x2
((
y′ − y

x

)2
+ 1

x2

)
>

0.

Now we seek the ordinary differential equations which have the explicit form
y(2)− g(x, y, y′) = 0 and which admit the Lie algebra g = so3(R) as the Lie
algebra of their infinitesimal symmetries. To obtain them we need to find
the solutions of the system (38) of partial differential equations when m = 2,

r = 3, f(x, y, y′, y(2)) = y(2) − g(x, y, y′) = 0. Substituting (95), (96), (97)
into (38) we receive the following system of partial differential equations:

(
1 + x2

) ∂g
∂x

+ xy
∂g

∂y
+
(
y − xy′

) ∂g
∂y′

+ 3xg = 0(98)

xy
∂g

∂x
+
(
1 + y2

) ∂g
∂y

+
(
yy′ − x

(
y′
)2) ∂g

∂y′
+ 3xy′g = 0(99)

−y ∂g
∂x

+ x
∂g

∂y
+
(

1 +
(
y′
)2) ∂g

∂y′
− 3y′g = 0.(100)

If g = 0, then the partial differential equations (98), (99), (100) hold. There-

fore we can conclude that the differential equation y(2) = 0 admits the sym-
metry group belonging to the Lie algebra g = so3(R). We may suppose that
g 6= 0. The multiplication of (98) by y′ and the subtraction of (99) from the
new equation give

(101)
((

1 + x2
)
y′ − xy

) ∂g
∂x

+
(
xyy′ −

(
1 + y2

)) ∂g
∂y

= 0.

The multiplication of (100) by x and the addition of the new equation to
(99) yield

(102) (1 + x2 + y2)
∂g

∂y
+ (x+ yy′)

∂g

∂y′
= 0.

The substitution of the expressions

∂g

∂y
= − (x+ yy′)

(1 + x2 + y2)

∂g

∂y′
,

∂g

∂x
=

((
1 + y2

)
− xyy′

)
((1 + x2) y′ − xy)

∂g

∂y
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into (100) results in(
1 + y2 − 2xyy′ +

(
1 + x2

) (
y′
)2) ∂g

∂y′
= 3

((
1 + x2

)
y′ − xy

)
g ⇐⇒

1

g

∂g

∂y′
=

3

2

∂ ln
(

1 + y2 − 2xyy′ +
(
1 + x2

)
(y′)2

)
∂y′

⇐⇒

∂ ln

(
g

(1+y2−2xyy′+(1+x2)(y′)2)
3/2

)
∂y′

= 0⇐⇒

g = K(x, y)
(

1 + y2 − 2xyy′ +
(
1 + x2

) (
y′
)2)3/2

.(103)

Putting (103) into (102) and simplifying the obtained equation we receive

1

K(x, y)

∂K(x, y)

∂y
= − 3y

(1 + x2 + y2)
⇐⇒

∂ ln
(
K(x, y)

(
1 + x2 + y2

)3/2)
∂y

= 0⇐⇒

K(x, y) =
U(x)

(1 + x2 + y2)3/2
, or equivalently

g = U(x)

(
1 + y2 − 2xyy′ +

(
1 + x2

)
(y′)2

1 + x2 + y2

)3/2

.(104)

Inserting (104) into (101) and making some computations we have

U ′(x)
1 + y2 − 2xyy′ + (1 + x2)(y′)2

1 + x2 + y2
= 0.

Hence we come to the conclusion that U(x) = c with a real constant c. As
a result, the invariant differential equations of order two under the action of
the infinitesimal generators of the Lie algebra g = so3(R) are given by (10).
(See also Table 8 in [6, p. 151]).

Remark 4.10. Taking into account that (10) is an ordinary differential
equation of order two it is necessary to use a two dimensional solvable Lie
subalgebra of the Lie algebra of its symmetry group to be capable of finding
its solution (see e.g. [22], Section 2.1.2 in [6]). Since two dimensional subal-
gebras of so3(R) are missing, we cannot use the infinitesimal generators of
so3(R) to solve equation (10) in full extent.

4.4. Further examples. In this subsection Lie’s method can be used for
r-dimensional Lie transformation groups which are non semi-simple and act
on the plane R2. Here we deal with those ordinary differential equations
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which have order m ≤ r − 2 and which are invariant under the action of
these Lie groups.

Example 4.11. The generators of the solvable Lie algebra gα are defined
by (11). (See [7, p. 341], Table 1, Case 1). It can be established that the

determinant (41) is D = −
(

1 + (y′)2
)

which is never 0. Hence we cannot

find any ordinary differential equation of order one which admits the Lie
algebra gα as the Lie algebra of its symmetry group.

Example 4.12. The basis elements of the Lie algebra gβ are defined by
(12). (See [7, p. 341], Table 1, Case 12). Therefore the determinant (41)
is D = (β − 1) y′. It follows from Theorem 3.1 that the unique differential
equation which allows the Lie algebra gβ as the Lie algebra of its symmetry
group is y′ = 0.

Example 4.13. According to [7, p. 341], Table 1, Case 4, we consider the
4-dimensional solvable Lie algebra g whose generators are defined by (13).

The equation y(2) = 0 is the unique ordinary differential equation of order
≤ 2 which is invariant under the action of the symmetry group belonging to
the Lie algebra g because of D = −y(2)((y′)2 + 1).

Example 4.14. According to [7, p. 341], Table 1, Case 13, we deal with the
4-dimensional solvable Lie algebra g whose generators are defined by (14).

Then for the determinant (41) we have D = y′y(2). Therefore the ordinary
differential equations of order ≤ 2 which are invariant under the action of
the infinitesimal generators of the Lie algebra g are y(2) = 0 and y′ = 0 (see
Theorem 3.1).

Example 4.15. The basis elements of the Lie algebra sl2(R)×R are defined
by (15). (See [7, p. 341], Table 1, Case 14). As the determinant (41) is

equal to D = 2 (y′)2, the equation y′ = 0 is the unique ordinary differential
equation of order ≤ 2 which is invariant under the action of the infinitesimal
generators of the Lie algebra sl2(R)× R (see Theorem 3.1).

Example 4.16. The basis elements of the Lie algebra g = gl2(R) are the
vector fields given by (16). (See [7, p. 341], Table 1, Case 19). As the

determinant (41) is equal to D = −2y2y(2), we can conclude from Theorem
3.1 that the equation y′ = 0 is the unique ordinary differential equation of
order ≤ 2 which is invariant under the action of the infinitesimal generators
of the Lie algebra gl2(R).

Example 4.17. The generators of the Lie algebra sl2(R) × L2, where L2

denotes the non-abelian 2-dimensional Lie algebra, are given by (17). (See
[7, p. 341], Table 1, Case 15). Since the determinant (41) is equal to

D = 2y′
(

2y′y(3) − 3
(
y(2)
)2)

, it can be established from Theorem 3.1 that
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the equations given by (18) are precisely the invariant ordinary differential
equations of order ≤ 3 under the action of the infinitesimal generators of
the Lie algebra sl2(R)× L2.

Example 4.18. According to [7, p. 341], Table 1, Case 5, the basis elements
of the Lie algebra g = sl2(R)nR2 are defined by (19). Since the determinant

(41) is equal to D = 9
(
y(2)
)3

, the equation y(2) = 0 is the unique ordinary
differential equation of order ≤ 3 which is invariant under the action of the
infinitesimal generators of the Lie algebra sl2(R) nR2.

Example 4.19. According to [7, p. 341], Table 1, Case 6, the generators
of the Lie algebra g = gl2(R) n R2 are determined by (24). As for the

determinant (41) we have D = −2
(

3y(4)y(2) − 5
(
y(3)
)2) (

y(2)
)2

, the equa-

tions in (25) are precisely the invariant ordinary differential equations of
order ≤ 4 under the action of the infinitesimal generators of the Lie algebra
gl2(R) nR2 (see Theorem 3.1).

5. First order systems of ordinary differential equations that
admit a given Lie group as their symmetry group

In this chapter, we propose a method for receiving systems of first order
differential equations that allow a specific Lie group as their symmetry group
based on Lie’s initial concept in Section 3. Assume that the real Lie group
G has dimension r. We begin by considering the situation in which the Lie
algebra g of G is the direct sum of infinitesimal generators of trivial and
time-preserving symmetries with non-trivial direct factors.

5.1. Time-dependent symmetries. Introducing the notation y′ = dy
dx

and z′ = dz
dx we investigate the following first order system of ordinary

differential equations, which is time-dependent:

f1(x, y, z, y′, z′) = 0,(105)

f2(x, y, z, y′, z′) = 0.

The following vector fields in R3 serve as basis elements for the Lie algebra
g of G:

Xi(x, y, z) = φi(x, y, z)
∂

∂x
+ ηi(x, y, z)

∂

∂y
+ αi(x, y, z)

∂

∂z
, i = 1, 2, . . . , r.

With respect to the variable x the first prolonged vector field of Xi(x, y, z),
i = 1, 2, . . . , r, can be written into the form:

X
(1)
i (x, y, z, y′, z′) = Xi + η

(1)
i (x, y, z, y′, z′)

∂

∂y′
+ α

(1)
i (x, y, z, y′, z′)

∂

∂z′
,
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where

η
(1)
i =

∂ηi
∂x

+
∂ηi
∂y

y′ +
∂ηi
∂z

z′ − y′
(
∂φi
∂x

+
∂φi
∂y

y′ +
∂φi
∂z

z′
)
,(106)

α
(1)
i =

∂αi
∂x

+
∂αi
∂y

y′ +
∂αi
∂z

z′ − z′
(
∂φi
∂x

+
∂φi
∂y

y′ +
∂φi
∂z

z′
)
.(107)

The necessary and sufficient condition for the time-dependent system (105)
in order that it could admit the given group G as its symmetries is that
the functions fj , j = 1, 2 need to satisfy the following system of partial
differential equations

(108)

φ1
∂fj
∂x + η1

∂fj
∂y + α1

∂fj
∂z + η

(1)
1

∂fj
∂y′ + α

(1)
1

∂fj
∂z′ = 0,

φ2
∂fj
∂x + η2

∂fj
∂y + α2

∂fj
∂z + η

(1)
2

∂fj
∂y′ + α

(1)
2

∂fj
∂z′ = 0,

...

φi
∂fj
∂x + ηi

∂fj
∂y + αi

∂fj
∂z + η

(1)
i

∂fj
∂y′ + α

(1)
i

∂fj
∂z′ = 0,

...

φr
∂fj
∂x + ηr

∂fj
∂y + αr

∂fj
∂z + η

(1)
r

∂fj
∂y′ + α

(1)
r

∂fj
∂z′ = 0.

We denote by M the 5× r-matrix

M =


φ1 φ2 φ3 . . . φr
η1 η2 η3 . . . ηr
α1 α2 α3 . . . αr

η
(1)
1 η

(1)
2 η

(1)
3 . . . η

(1)
r

α
(1)
1 α

(1)
2 α

(1)
3 . . . α

(1)
r

 .

The system of partial differential equations provided by (108) can therefore

be considered as the system of ’linear equations’ in the variables
∂fj
∂x ,

∂fj
∂y ,

∂fj
∂z ,

∂fj
∂y′ ,

∂fj
∂z′ :(

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂y′

∂f1
∂z′

)
·M =

(
0 . . . 0

)
,(

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂y′

∂f2
∂z′

)
·M =

(
0 . . . 0

)
.

As a result, the rank of the matrix M must be at most 5 in order to
get non-trivial solutions fj , j = 1, 2, of the system of equations provided
by (108). If rankM = 4, however, the received solutions for the vectors(
∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂y′

∂f1
∂z′

)
and

(
∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂y′

∂f2
∂z′

)
are linearly de-

pendent, i.e., the obtained system of differential equations contains only one
equation instead of two equations for the two dependent variables y and z.
Hence rankM < 4 is a more usable criterion.

The condition rankM ≤ r is always true. Arising from this if r < 4, then
the requirement for the rank is obviously fulfilled. In this case one solves
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(108) in
∂fj
∂x ,

∂fj
∂y ,

∂fj
∂z ,

∂fj
∂y′ ,

∂fj
∂z′ , and checks if any solution yields a nontrivial

system of differential equations f1, f2. Now we assume that r ≥ 4. In this
case each 4 × 4-subdeterminant of M has to be zero to satisfy the rank
criterion.

If we suppose that the functions f1, f2 have the reduced explicit form

f1(x, y, z, y′, z′) = y′ − g1(x, y, z) = 0,(109)

f2(x, y, z, y′, z′) = z′ − g2(x, y, z) = 0,

then f1 is independent of z′ and f2 does not depend on y′. Hence the
coefficient matrix of the linear system of equations received from (108) for
the function f1, respectively f2 is

M1 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

η
(1)
1 . . . η

(1)
r

 and M2 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

α
(1)
1 . . . α

(1)
r

 ,

respectively. A nontrivial system consisting of f1, f2 exists if the require-
ments rankM1 < 4 and rankM2 < 4 have to be simultaneously satisfied.
Hence to find non-trivial solutions f1, respectively f2 of the system (108),
each 4× 4-subdeterminant of the 4× r-matrix M1, respectively M2 needs to
be zero.

Remark 5.1. We represent the basis vectors of each Lie algebra g in Sec-
tion 5.1 in the 3-dimensional space using coordinates (x, y, z). Since every
coordinate can be chosen as the time we have 3 different issues for finding
the systems of ordinary differential equations which are invariant under the
action of the infinitesimal generators of the Lie algebra g. In this section we
always suppose that the ‘x’ coordinate represents the time.

Example 5.2. The infinitesimal generators of the Lie algebra g = so3(R) ∼=
su2(C) in the 3-dimensional space are given by (28). Therefore one has

(110) φi = (−y, 0, z), ηi = (x,−z, 0), αi = (0, y,−x).

Using the formulas (106), (107) for (110) we compute

η
(1)
i = (1 + (y′)2,−z′,−y′z′), α(1)

i = (y′z′, y′,−(1 + (z′)2)).

Hence the matrix M can be written into the form

M =


−y 0 z
x −z 0
0 y −x

1 + (y′)2 −z′ −y′z′

y′z′ y′ −
(

1 + (z′)2
)

 .
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If we multiply the third column of M with y and the first column of M with
z and we add the obtained new columns, then the matrix M is transformed
to a matrix M1. The matrix M1 is converted to

M2 =


−y 0 0
x −z 0
0 y 0

1 + (y′)2 −z′ −y′z′y + z
(

1 + (y′)2
)
− xz′

y′z′ y′ −y
(

1 + (z′)2
)

+ zy′z′ + xy′


after the multiplication of the second column of M1 with x and the addition
of this new column to the third column of M1. Hence the function f1 and
f2 fulfil the system (108) precisely if for f1 and f2 the following system of
partial differential equations

−y ∂f1∂x + x∂f1∂y + 1 + (y′)2 = 0,

−z ∂f1∂y + y ∂f1∂z − z
′ = 0,

−y′z′y + z
(

1 + (y′)2
)
− xz′ = 0,

−y ∂f2∂x + x∂f2∂y + y′z′ = 0,

−z ∂f2∂y + y ∂f2∂z + y′ = 0,

−y
(

1 + (z′)2
)

+ zy′z′ + xy′ = 0

holds. We consider the third and the sixth equations

z + z(y′)2 = xz′ + yy′z′

y + y(z′)2 = xy′ + zy′z′.

It follows from the first equation that z′ = z(1+(y′)2)
x+yy′ . Substituting this into

the second equation and simplifying the obtained equation we have(
y′
)3 (

xy2 + xz2
)

+
(
y′
)2 (

2x2y − yz2 − y3
)

+ y′
(
x3 + xz2 − 2xy2

)
−
(
yx2 + yz2

)
= 0.

Since the last equation has the solution y′ = y
x and therefore z′ = z

x the
unique first order system of ordinary differential equations which leaves in-
variant under the action of the infinitesimal generators of the Lie algebra
g = so3(R) is determined by (29).

Example 5.3. Here we treat the infinitesimal generators in the (x, y, z)-
space of the Lie algebra g = sl3(R). They are defined by (32). Since the
group SL3(R) contains as a maximal compact subgroup the group SO3(R),
we cannot predict any more systems to be invariant than those which are
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received in Example 5.2. From (32) we get

φi = (z, 0, 0, x, y, x, 0, 0),

ηi = (0, z, x,−y, 0, 0, 0, 0),(111)

αi = (0, 0, 0, 0, 0,−z, x, y).

Applying (106), (107) to (111) we calculate

η
(1)
i = (−y′z′, z′, 1,−2y′,−(y′)2,−y′, 0, 0),

α
(1)
i = (−(z′)2, 0, 0,−z′,−y′z′,−2z′, 1, y′).

Hence the linear system of equations derived from the system (108) has the
coefficient matrix as follows

M =


z 0 0 x y x 0 0
0 z x −y 0 0 0 0
0 0 0 0 0 −z x y
−y′z′ z′ 1 −2y′ −(y′)2 −y′ 0 0
−(z′)2 0 0 −z′ −y′z′ −2z′ 1 y′

 .

The necessary condition to find non-trivial solutions f1, f2 of the system
given by (108) is that each 5 × 5-subdeterminant of M has to be equal to
zero. Taking into account that

D5,1 =

∣∣∣∣∣∣∣∣∣∣
0 0 x 0 0
z x −y 0 0
0 0 0 x y
z′ 1 −2y′ 0 0
0 0 −z′ 1 y′

∣∣∣∣∣∣∣∣∣∣
= (−z + xz′)(y′x− y)x

is equal to zero if either z′ = z
x or y′ = y

x and the function f1 is independent
of the variable z′, to receive non-trivial solution f1 of the system (108) it is
required that every 4× 4-subdeterminant of the matrix

M1 =


φi
ηi
αi

η
(1)
i

 =


z 0 0 x y x 0 0
0 z x −y 0 0 0 0
0 0 0 0 0 −z x y
−y′z′ z′ 1 −2y′ −(y′)2 −y′ 0 0


has to be zero. The subdeterminants of M1

D4,1 =

∣∣∣∣∣∣∣∣
0 0 x 0
z x −y 0
0 0 0 x
z′ 1 −2y′ 0

∣∣∣∣∣∣∣∣ = (z′x− z)x2
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D4,2 =

∣∣∣∣∣∣∣∣
0 x x 0
x −y 0 0
0 0 −z x
1 −2y′ −y′ 0

∣∣∣∣∣∣∣∣ = (y′x− y)x2

are equal to zero if y′ = y
x and z′ = z

x simultaneously hold. Since the
functions f1 = y′ − y

x and f2 = z′ − z
x satisfy the system (108) of partial

differential equations we can arrive at a conclusion that the unique first order
system of differential equations which admits the Lie algebra g = sl3(R) as
the Lie algebra of its symmetry group is determined by (29).

Example 5.4. Here we consider the infinitesimal generators in the (x, y, z)-
space of the Lie algebra g = sl2(R) ⊕ sl2(R) given by (31) (see [7] in [13,
p. 134, 140]). We can conclude from (31) that

φi = (0, 0, xy − z, 1, x, x2),

ηi = (1, y, y2, 0, 0, xy − z),(112)

αi = (x, z, yz, y, z, xz).

Utilizing (106), (107) for (112) we compute

η
(1)
i = (0, y′, yy′ − x(y′)2 + y′z′, 0,−y′, y − xy′ − z′),

α
(1)
i = (1, z′, zy′ − xy′z′ + (z′)2, y′, 0, z − xz′).

Hence for the coefficient matrix M of the linear system of equations received
from (108) we get

M =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 y′ yy′ − x(y′)2 + y′z′ 0 −y′ y − xy′ − z′
1 z′ zy′ − xy′z′ + (z′)2 y′ 0 z − xz′

 .

Determining the 5× 5-subdeterminants of M we obtain that they have(
y′
)2
x2 − 2xyy′ − 2xy′z′ + y2 − 2z′y +

(
z′
)2

+ 4zy′

as the greatest common divisor factor. This factor is equal to zero precisely
if

(113) z′ = xy′ + y ± 2
√
y′(xy − z).

As the function f1 does not depend on the variable z′, to find non-trivial
solution f1 of the system (108) it is required that every 4×4-subdeterminant
of the matrix

M1 =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 y′ yy′ − x(y′)2 + y′z′ 0 −y′ y − xy′ − z′
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has to be equal to zero. Using (113) we obtain

D4,1 =

∣∣∣∣∣∣∣∣
0 0 xy − z 1
1 y y2 0
x z yz y
0 y′ yy′ − x(y′)2 + y′z′ 0

∣∣∣∣∣∣∣∣ = ±2(xy − z)y′
√
y′(xy − z).

Arising from this, the determinantD4,1 is 0 if y′ = 0 and therefore z′ = y. We
consider the first order time-dependent system f1 = y′ = 0, f2 = z′ − y = 0
of differential equations. Since X6(f2) = x2 ∂f2

∂x + (xy− z)∂f2∂y +xz ∂f2∂z + (z−
xy)∂f2∂z′ = 2(z − xy) 6= 0 this system f1, f2 cannot fulfill the system (108).
Therefore there is no first order time-dependent system (109) of differential
equations which admits the Lie algebra g = sl2(R)⊕ sl2(R) defined by (31)
as the Lie algebra of its symmetry group.

An analogous treatment as in Example 5.4 yields the non-existence of
any first order time-dependent system (109) of differential equations which
permits a symmetry Lie group whose Lie algebra is any one of the following
Lie algebras:

g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂x
, y

∂

∂x
, z

∂

∂x
, x

∂

∂y
, y

∂

∂y
, z

∂

∂y
, x

∂

∂z
, y

∂

∂z
, z

∂

∂z

〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂x
, y

∂

∂x
, z

∂

∂x
, x

∂

∂y
, y

∂

∂y
, z

∂

∂y
, x

∂

∂z
, y

∂

∂z
, z

∂

∂z

〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, y

∂

∂x
− x ∂

∂y
, z

∂

∂y
− y ∂

∂z
, x

∂

∂z
− z ∂

∂x

〉
,

g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, y

∂

∂x
− x ∂

∂y
, z

∂

∂y
− y ∂

∂z
, x

∂

∂z
− z ∂

∂x
, x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

〉
,

g = sl4(R) =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂x
, y

∂

∂x
, z

∂

∂x
, x

∂

∂y
, y

∂

∂y
, z

∂

∂y
, x

∂

∂z
, y

∂

∂z
, z

∂

∂z
,

x2 ∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z
, xy

∂

∂x
+ y2 ∂

∂y
+ yz

∂

∂z
, xz

∂

∂x
+ yz

∂

∂y
+ z2 ∂

∂z

〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂y
, x

∂

∂x
− y ∂

∂y
, y

∂

∂x
, z

∂

∂x
, z

∂

∂y
, z

∂

∂y
, x

∂

∂x
− z ∂

∂z
,

x
∂

∂z
, y
∂

∂

〉
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g =

〈
∂

∂x
− y ∂

∂z
,
∂

∂y
+ x

∂

∂z
,
∂

∂z
, x

∂

∂y
, x

∂

∂x
− y ∂

∂y
, y

∂

∂x
,

x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
, z

∂

∂x
− y

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
,

z
∂

∂y
+ x

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
, z

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)〉
g =

〈
∂

∂x
,
∂

∂y
,
∂

∂z
, x

∂

∂y
− y ∂

∂x
, y

∂

∂z
− z ∂

∂y
, z

∂

∂x
− x ∂

∂z
, x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

2x

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
− (x2 + y2 + z2)

∂

∂x
,

2y

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
− (x2 + y2 + z2)

∂

∂y
,

2z

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
− (x2 + y2 + z2)

∂

∂z

〉
.

5.2. Time-preserving symmetries. In this subsection we investigate the
case that the infinitesimal generators of the Lie algebra g of the given real
Lie group G are time-preserving symmetries. We deal with the following
first order system of ordinary differential equations:

f1(t, x(t), y(t), z(t), x′(t), y′(t), z′(t)) = 0,
f2(t, x(t), y(t), z(t), x′(t), y′(t), z′(t)) = 0,
f3(t, x(t), y(t), z(t), x′(t), y′(t), z′(t)) = 0,

where x′ = dx
dt , y

′ = dy
dt , z

′ = dz
dt . This system is time-independent. Let

dim(g) = r. The basis elements of g can be written as the vector fields:

Xi(x(t), y(t), z(t)) = φi(x(t), y(t), z(t))
∂

∂x
+ ηi(x(t), y(t), z(t))

∂

∂y

+ αi(x(t), y(t), z(t))
∂

∂z
,

i = 1, 2, . . . , r. The formula

X
(1)
i (x(t), y(t), z(t), x′, y′, z′) = Xi + φ

(1)
i (x(t), y(t), z(t), x′, y′, z′)

∂

∂x′
+

η
(1)
i (x(t), y(t), z(t), x′, y′, z′)

∂

∂y′
+ α

(1)
i (x(t), y(t), z(t), x′, y′, z′)

∂

∂z′
,
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with

φ
(1)
i =

∂φi
∂x

x′ +
∂φi
∂y

y′ +
∂φi
∂z

z′,

η
(1)
i =

∂ηi
∂x

x′ +
∂ηi
∂y

y′ +
∂ηi
∂z

z′,

α
(1)
i =

∂αi
∂x

x′ +
∂αi
∂y

y′ +
∂αi
∂z

z′,

defines the first prolonged vector field of Xi(x(t), y(t), z(t)), i = 1, 2, . . . , r
with respect to the variable t. The system including f1, f2, f3 admits the
given group G as its symmetry group if and only if the functions fl, l =
1, 2, 3, fulfil the following system of partial differential equations

(112)

φ1
∂fl
∂x + η1

∂fl
∂y + α1

∂fl
∂z + φ

(1)
1

∂fl
∂x′ + η

(1)
1

∂fl
∂y′ + α

(1)
1

∂fl
∂z′ = 0,

φ2
∂fl
∂x + η2

∂fl
∂y + α2

∂fl
∂z + φ

(1)
2

∂fl
∂x′ + η

(1)
2

∂fl
∂y′ + α

(1)
2

∂fl
∂z′ = 0,

...

φi
∂fl
∂x + ηi

∂fl
∂y + αi

∂fl
∂z + φ

(1)
i

∂fl
∂x′ + η

(1)
i

∂fl
∂y′ + α

(1)
i

∂fl
∂z′ = 0,

...

φr
∂fl
∂x + ηr

∂fl
∂y + αr

∂fl
∂z + φ

(1)
r

∂fl
∂x′ + η

(1)
r

∂fl
∂y′ + α

(1)
r

∂fl
∂z′ = 0.

We denote by M the 6× r-matrix

M =



φ1 . . . φr
η1 . . . ηr
α1 . . . αr

φ
(1)
1 . . . φ

(1)
r

η
(1)
1 . . . η

(1)
r

α
(1)
1 . . . α

(1)
r


.

The system (112) is equivalent to the following system of ’linear equations’

of the variables ∂fl
∂x , ∂fl

∂y , ∂fl
∂z , ∂fl

∂x′ ,
∂fl
∂y′ ,

∂fl
∂z′ :(

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂x′

∂f1
∂y′

∂f1
∂z′

)
·M =

(
0 . . . 0

)
,(

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂x′

∂f2
∂y′

∂f2
∂z′

)
·M =

(
0 . . . 0

)
,(

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂x′

∂f3
∂y′

∂f3
∂z′

)
·M =

(
0 . . . 0

)
.

To receive non-trivial solutions fl, l = 1, 2, 3, of the system defined by (112)
it is required that for the rank of the coefficient matrix M one should have
rankM < 6. Similarly to Section 5.1 the necessary condition for the vectors(
∂fl
∂x . . . ∂fl

∂z′

)
to be linearly independent is that rankM < 4. If r < 4, then

it is obviously holds. In this case we have to find the solution of the system
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(112), and check if any solution yields a nontrivial system of differential
equations f1, f2, f3. Now let us assume that r ≥ 4. In this situation the rank
condition holds if and only if each 4 × 4-subdeterminant of the coefficient
matrix M is equal to zero.
We deal with systems having the explicit form

f1(t, x(t), y(t), z(t), x′) = x′ − g1(t, x(t), y(t), z(t)) = 0,

f2(t, x(t), y(t), z(t), y′) = y′ − g2(t, x(t), y(t), z(t)) = 0,

f3(t, x(t), y(t), z(t), z′) = z′ − g3(t, x(t), y(t), z(t)) = 0,

that is the function f1, respectively f2, respectively f3 is independent of the
variables y′, z′, respectively x′, z′, respectively x′, y′. Therefore in (112) for
f1, f2, f3 we have the 4× r-coefficient matrices

M1 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

φ
(1)
1 . . . φ

(1)
r

 , M2 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

η
(1)
1 . . . η

(1)
r

 ,

M3 =


φ1 . . . φr
η1 . . . ηr
α1 . . . αr

α
(1)
1 . . . α

(1)
r

 ,

respectively. To get non-trivial solutions f1, f2, f3 of the system (112) in
the above explicit form it is required that for all i = 1, 2, 3 one should have
rankMi < 4, or equivalently every 4× 4-subdeterminant of the matrices Mi,
i = 1, 2, 3, should be zero. We demonstrate the above method for the Lie
algebra g discussed in Example 5.4.

Example 5.5. The Lie algebra g = sl2(R) ⊕ sl2(R) has the infinitesimal
generators defined by (31). We compute from (31) that

φi = (0, 0, x(t)y(t)− z(t), 1, x(t), x(t)2),

ηi = (1, y(t), y(t)2, 0, 0, x(t)y(t)− z(t)),
αi = (x(t), z(t), y(t)z(t), y(t), z(t), x(t)z(t)).

Hence we calculate

φ
(1)
i = (0, 0, y(t)x′ + x(t)y′ − z′, 0, x′, 2x(t)x′),

η
(1)
i = (0, y′, 2y(t)y′, 0, 0, y(t)x′ + x(t)y′ − z′),

α
(1)
i = (x′, z′, z(t)y′ + y(t)z′, y′, z′, z(t)x′ + x(t)z′).
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Therefore the coefficient matrix M of the linear system of equations is

M =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 0 yx′ + xy′ − z′ 0 x′ 2xx′

0 y′ 2yy′ 0 0 xy′ + x′y − z′
x′ z′ zy′ + yz′ y′ z′ zx′ + xz′

 .

The matrix M has determinant 0. To receive non-trivial solution f1 of the
system (112) in explicit form it is required that every 4× 4-subdeterminant
of the matrix

M1 =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 0 yx′ + xy′ − z′ 0 x′ 2xx′



has to be equal to 0. Since D1 =

∣∣∣∣∣∣∣∣
0 0 1 x
1 y 0 0
x z y z
0 0 0 x′

∣∣∣∣∣∣∣∣ = (z − xy)x′ is 0 if x′ = 0

we obtain f1 = x′ = 0. Applying this,

D2 =

∣∣∣∣∣∣∣∣
0 0 1 xy − z
1 y 0 y2

x z y yz
0 0 0 xy′ − z′

∣∣∣∣∣∣∣∣ = (z′ − xy′)(xy − z)

is 0 if z′ = xy′. To find non-trivial solution f2 of the system (112) in explicit
form it is required that each 4× 4-subdeterminant of the matrix

M2 =


0 0 xy − z 1 x x2

1 y y2 0 0 xy − z
x z yz y z xz
0 0 yx′ + xy′ − z′ 0 x′ 2xx′

0 y′ 2yy′ 0 0 xy′ + x′y − z′



should be 0. As D3 =

∣∣∣∣∣∣∣∣
0 0 xy − z x
1 y y2 0
x z yz z
0 y′ 2yy′ 0

∣∣∣∣∣∣∣∣ = (xy − z)2y′ is 0 if y′ = 0

and hence z′ = 0, the time-independent system admitting the Lie algebra
g = sl2(R)⊕sl2(R) defined by (31) as the Lie algebra of its symmetry group
is trivial (cf. (30)).

Analogously to the Example 5.5 one can prove that the time-independent
systems of differential equations of order one that admit one of the following



Title of the article 39

Lie algebras so3(R), sl3(R), sl4(R) as the Lie algebra of its infinitesimal
symmetries are trivial.
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