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Finsler manifolds some of whose characteristic tensors are direction indepen-
dent provide stimulation for current research. In this paper we show that the
direction independence of the Landsberg and the stretch tensor implies the
vanishing of these tensors.
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1. Basic constructions

Throughout this paper, M will be an n-dimensional smooth manifold.

C∞(M) denotes the ring of real-valued smooth functions on M . TpM is the

tangent space to M at p ∈M , TM :=
⋃
p∈M

TpM is the tangent bundle of M,

τ : TM →M is the natural projection.
◦
TM denotes the open subset of the

nonzero tangent vectors to M ,
◦
τ := τ ↾

◦
TM . X(M) is the C∞(M)-module

of (smooth) vector fields on M . Capitals X,Y, . . . will denote vector fields

on M, while, usually, Greek letters ξ, η, ζ, . . . will stand for vector fields on

TM . iξ is the substitution operator induced by ξ ∈ X(TM), d denotes the

operator of the exterior derivative.

All of our considerations will be purely of local character, so we may

assume without loss of generality that our base manifold M admits a global

coordinate system
(
ui
)n
i=1

; this assumption simplifies a little the notation.

Then

(
xi, yi

)n
i=1

; xi := ui ◦ τ, yi := dui
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is a coordinate system for TM . These coordinate systems yield the bases
(

∂

∂ui

)n

i=1

and

(
∂

∂xi
,
∂

∂yi

)n

i=1

=:
(
∂i, ∂̇i

)n
i=1

of X(M) and X(TM), respectively.

Let T rsM :=
⋃
p∈M

T rs (TpM) be the bundle of type
(
r
s

)
tensors over M ,

and let τrs : T rsM −→M be the natural projection. Following Z. I. Szabó,9

by a type
(
r
s

)
Finsler tensor field over M we mean a smooth map

Ã :
◦
TM −→ T rsM such that τrs ◦ Ã =

◦
τ .

These tensor fields form a C∞(
◦
TM)-module, which will be denoted by

T r
s

(◦
τ
)

. In particular, X
(◦
τ
)

:= T 1
0

(◦
τ
)

is the module of Finsler vector

fields, and X∗
(◦
τ
)

is its dual. In what follows, Finsler tensor fields will

simply be mentioned as tensors, or, for obvious reasons, tensors along the

projection
◦
τ . Evidently, the construction also works on the whole TM ,

and leads to the C∞(TM)-modules T r
s (τ). Via restrictions, T r

s (τ) may be

interpreted as a submodule of T r
s

(◦
τ
)

; we shall use this harmless inclusion

in what follows.

If X is a vector field on M , then X̂ := X ◦ τ is a Finsler vector field,

called a basic vector field along τ . In particular,
(

∂̂
∂ui

)n
i=1

is a base for the

module X(τ). Besides the class of basic vector fields, a distinguished role

is played by the canonical Finsler vector field δ := 1TM , called classically

support element. In coordinates, δ = yi
(

∂̂
∂ui

)
(with sum convention in

force).

We have a canonical C∞(TM)-linear injection i : X(τ) −→ X(TM) and

a surjection j : X(TM) −→ X(τ) such that

i

(
∂̂

∂ui

)
=

∂

∂yi
; j

(
∂

∂xi

)
=

∂̂

∂ui
, j

(
∂

∂yi

)
= 0; i ∈ {1, . . . , n} .

(For an intrinsic construction of i and j, see e.g. Ref. 10. Xv(TM) := i (X(τ))

is the module of vertical vector fields on TM , Xv := i
(
X̂
)

is the vertical lift

of X ∈ X(M). C := i(δ) is called the Liouville vector field. In coordinates,

C = yi ∂
∂yi . J := i ◦ j is said to be the vertical endomorphism of X(TM). It

follows at once that

Im(J) = Ker(J) = Xv(TM), J2 = 0.



May 13, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in dga2007

On the direction independence of two remarkable Finsler tensors 399

We define the dJ-differential of a smooth function f on TM as the one-form

dJf := df ◦ J on TM. In coordinates, dJf = ∂f
∂yi dx

i.

The formalism can go on. Let X̃ be a Finsler vector field over M. We

define a tensor derivation ∇v
X̃

on the algebra of Finsler tensor fields by the

following requirements:

(i) On functions, ∇v
X̃
f :=

(
iX̃
)
f ; f ∈ C∞(TM).

(ii) On Finsler vector fields, ∇v
X̃
Ỹ := j

[
iX̃, η

]
, where η ∈ X(TM) is such

that j(η) = Ỹ .

(iii) If Ã ∈ T rs (τ), then ∇v
X̃
Ã is given by the product rule.

∇v
X̃

is called the (canonical) v-covariant derivative with respect to X̃ .

In coordinates: if X̃ = ξi ∂̂
∂ui , Ỹ = ηi ∂̂

∂ui , then

∇v
X̃
f = ξi

∂f

∂yi
, ∇v

X̃
Ỹ = ξi

∂ηj

∂yi
∂

∂yj
.

We see that ∇v
X̃
Ỹ is well-defined: it does not depend on the choice of the

vector field η. We have, in particular, ∇v
X̂
Ŷ = 0 for any vector fields X ,Y

on M .

As a final step, we define the vertical differential of a type
(
r
s

)
Finsler

tensor field Ã as the
(
r
s+1

)
tensor ∇vÃ which ‘collects all the v-covariant

derivatives’ of Ã. For simplicity, if r = s = 1, then

∇vÃ
(
α̃, Ỹ , X̃

)
:=
(
∇v
X̃
Ã
)(

α̃, Ỹ
)

(iii)
=

(
iX̃
)
Ã
(
α̃, Ỹ

)
− Ã

(
∇v
X̃
α̃, Ỹ

)
− Ã

(
α̃,∇v

X̃
Ỹ
)

for all X̃, Ỹ ∈ X(τ) and α̃ ∈ X∗(τ). More generally, if the components of

an
(
r
s

)
tensor Ã are

Ãi1...iri1...js
:= Ã

(
d̂ui1 , . . . , d̂uir ,

∂̂

∂uj1
, . . . ,

∂̂

∂ujs

)(
d̂ui := dui ◦ τ0

1

)
,

then the components of ∇vÃ are ∂̇jÃ
i1...ir
i1...js

; these functions will be denoted

by Ãi1...iri1...js·j . We recognize that in components ’vertical differentiation re-

duces to partial differentiation with respect to the fibre coordinates’. Notice

that ∇vf and dJf are related by

dJf = ∇vf ◦ j , f ∈ C∞(TM) .
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2. Finsler functions. The h-Berwald derivative

By a Finsler function we mean a continuous function F : TM −→
[0,∞[, satisfying the three conditions:

(i) F is smooth on
◦
TM .

(ii) F is positive-homogeneous of degree 1, i.e., F (λv) = λF (v) for all

λ ∈ R∗
+ and v ∈ TM .

(iii) The metric tensor g := 1
2∇v∇vF 2 is pointwise non-degenerate on

◦
TM .

A manifold endowed with a Finsler function is said to be a Finsler manifold.

Quite surprisingly, under these conditions the metric tensor g is positive

definite, see Ref. 6. The components gij := g
(

∂̂
∂ui ,

∂̂
∂uj

)
of g are just the

functions 1
2 ∂̇i∂̇jF

2.

In the remainder of the paper, (M,F) will be a Finsler manifold.

We show that the Finsler function F and the metric tensor g are related

by

g (δ, δ) = F 2. (1)

Indeed, by the homogeneity of F , we have CF 2 = 2F 2, and it can easily be

checked that ∇vδ = 1X(τ). Thus

g (δ, δ) =
1

2
∇v∇vF 2 (δ, δ) =

1

2
∇vδ
(
∇vF 2

)
(δ) =

1

2

(
C
(
CF 2

)
−∇vF 2(δ)

)

=
1

2

(
4F 2 − 2F 2

)
= F 2.

In the Finslerian case the canonical vector field δ has a dual 1-form δ∗

along
◦
τ given by

δ∗
(
X̃
)

:= g
(
X̃, Ỹ

)
; X̃ ∈ X∗

(◦
τ
)
. (2)

Then δ∗(δ) = F 2 by (1). The components of δ∗ can be obtained from the

components of δ by index lowering:

yi := δ∗
(

∂̂

∂ui

)
= g

(
∂̂

∂ui
, yj

∂̂

∂uj

)
= gijy

j , i ∈ {1, . . . , n} .

It follows immediately that

yiy
i = F 2. (3)
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By the Cartan tensor of (M,F ) we mean the type
(
0
3

)
Finsler tensor

C♭ := 1
2∇vg. Its components are

Cijk := C♭

(
∂̂

∂ui
,
∂̂

∂uj
,
∂̂

∂uk

)
=

1

2
∂̇kgij =

1

4
∂̇k∂̇j ∂̇iF

2,

thus C♭ is totally symmetric. Raising an index, we get the vector-valued

Cartan tensor C , metrically equivalent to C♭. More pedantically, C is de-

fined by

g
(
C

(
X̃, Ỹ

)
, Z̃
)

= C♭

(
X̃, Ỹ , Z̃

)
; X̃, Ỹ , Z̃ ∈ X

(◦
τ
)
,

so its components are

girCjkr =: Cijk ;
(
gij
)

:= (gij)
−1.

It is a fundamental fact, that F determines a unique spray

S : TM −→ TTM via the Euler-Lagrange equation

iSddJF
2 = −dF 2.

S is called the canonical spray of the Finsler manifold. In coordinates,

S = yi∂i − 2Gi∂̇i, where

Gi =
1

4
gij
(
∂2F 2

∂xr∂yj
yr − ∂F 2

∂xj

)
, i ∈ {1, . . . , n} .

The spray coefficients Gi are of class C1 on TM , smooth on
◦
TM and are

positively homogeneous of degree 2. The canonical spray determines the

canonical Ehresmann connection H : X
(◦
τ
)
−→ X (TM) of (M,F ) by

Crampin’s construction4

X̂ ∈ X
(◦
τ
)
7−→ Xh := H

(
X̂
)

:= 1
2 (Xc + [Xv, S]) , X ∈ X(M)

(Xc denotes the complete lift of X). Xh is called the horizontal lift of X .

The horizontal lifts of the coordinate vector fields ∂
∂uj take the form

(
∂

∂uj

)h
=

∂

∂xj
− ∂Gi

∂yj
∂

∂yi
, j ∈ {1, . . . , n} ;

the functions Gij := ∂̇jG
i are said to be the Christoffel symbols of H .

The horizontal and the vertical projector associated to H are h := H ◦j
and v = 1

X

(
◦

TM

) − h, respectively. Following Berwald’s terminology,3 we

call the type
(
1
2

)
Finsler tensor R defined by
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iR
(
X̂, Ŷ

)
:= −v

[
Xh, Xv

]
; X,Y ∈ X(M)

the fundamental affine curvature of the Finsler manifold. To be in harmony

with Matsumoto’s conventions,8 we define the components Rijk of R by

Rijk
∂̂
∂ui = R

(
∂̂
∂uk ,

∂̂
∂uj

)
. If Gijk := ∂̇kG

i
j , then

Rijk =

(
∂

∂uk

)h
Gij −

(
∂

∂uj

)h
Gik =∂kG

i
j − ∂jGik +GrjG

i
rk −GrkGirj . (4)

In the spirit of Berwald’s above mentioned paper, by the affine curvature

tensor of (M,F ) we mean the type
(
1
3

)
tensor H := ∇vR. The components

of H are determined by Hi
jkl

∂̂
∂ui := H

(
∂̂
∂ul ,

∂̂
∂uk

)
∂̂
∂uj . Obviously,

Hi
jkl = ∂̇jR

i
kl = Rikl·j , (5)

We define a further important tensor, the Berwald curvature B, by

iB
(
X̂, Ŷ

)
Ẑ :=

[[
Xv, Y h

]
, Zv

]
; X,Y, Z ∈ X(M).

Its components are Gijkl := ∂̇lG
i
jk.

Following the above scheme, we construct a further tensor derivation

on the algebra of Finsler tensors, depending on the canonical Ehresmann

connection. Let X̃ ∈ X
(◦
τ
)

. Define the operator ∇h
X̃

(i) on functions by ∇h
X̃
f := (H X̃)f , f ∈ C∞(

◦
TM);

(ii) on Finsler vector fields by i∇h
X̃
Ỹ := v

[
H X̃, iỸ

]
;

(iii) on type
(
r
s

)
tensors by the product rule.

∇h
X̃

is said to be the h-Berwald derivative with respect to X̃. Its Christoffel

symbols are just the functions Gijk, i.e., we have

∇h
∂̂

∂uk

∂̂

∂uj
=: Gijk

∂̂

∂ui
.

After this the h-Berwald differential ∇h can be defined in the same way as

the vertical differential ∇v (formally: replace the canonical injection i by

the surjection H). As for the index gymnastics, if the components of Ã are

Ãi1...irj1...js
, then the components of ∇hÃ will be denoted by Ãi1...irj1...js;j . These

functions are much more complicated than the components of ∇vÃ. As an

illustration, we calculate the components of the h-Berwald differential of
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the metric tensor g:

gij;k :=∇hg
(

∂̂

∂ui
,
∂̂

∂uj
,
∂̂

∂uk

)
:=

(
∇h ∂̂

∂uk

g

)(
∂̂

∂ui
,
∂̂

∂uj

)

=

(
∂̂

∂uk

)h
gij − g

(
∇h ∂̂

∂uk

∂̂

∂ui
∂̂

∂uj

)
− g

(
∂̂

∂ui
,∇h ∂̂

∂uk

∂̂

∂uj

)

=

(
∂

∂uk

)h
gij −Grikgrj −Grjkgir.

3. Landsberg tensor depending only on the position

By the Landsberg tensor of a Finsler manifold (M,F ) we mean the type(
0
3

)
tensor

P := − 1
2∇hg

along
◦
τ . Its components are

Pijk = − 1
2gij;k ,

where the functions gij;k have just been calculated. The Landsberg tensor

and the Cartan tensor C♭ are related by

P = ∇hδC♭. (6)

In components,

Pijk = Cijk;ly
l, (7)

which may easily be shown. A coordinate-free proof of (6) needs a little

more effort, see Ref. 10, section 3.11.

Now we are in a position to show that the property ∇vP = 0 implies a

drastic consequence.

Proposition 3.1. If the Landsberg tensor of a Finsler manifold depends

only on the position, then it vanishes identically.

Proof. Keeping the notation introduced above, suppose that ∂̇lPijk =

Pijk·l = 0. Then differentiation of relation (7) with respect to ∂̇l leads

to

Cijk;l + Cijk;r·ly
r = 0. (8)
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Now we use the Ricci identity (Ref. 8, 2.5.5) for the h-Berwald derivative

and the vertical derivative. Then we obtain

Cijk;r·l − Cijk·l;r = −CsjkGsilr − CiskGsjlr − CijsGsklr (9)

(recall that Gijkl = ∂̇lG
i
jk are the components of the Berwald tensor). Since

the functions Gijk are positively homogeneous of degree 0, we have Gijkly
l =

0. Thus, transvection of (9) with yr leads to

Cijk;r·lyr = Cijk·l;ryr.

Hence (8) takes the form

Cijk;l + Cijk·l;ry
r = 0. (10)

Interchanging indices k and l, we obtain

Cijl;k + Cijl·k;ry
r = 0. (11)

Since Cijk·l = Cijl·k , if we subtract (11) from (10) we find that

Cijk;l − Cijl;k = 0. (12)

But transvection of (12) with yl yields

Cijk;ly
l = 0, (13)

since Cijly
l = 1

2
∂gij

∂yl y
l = 0 by the 0+-homogenity of the functions gij , and

by the commutation of contractions and covariant derivatives.

Relations (13) and (7) imply our assertion P = 0.

4. Stretch tensor depending only on the position

Inspired by a manuscript of L. Kozma,5 we define the stretch tensor Σ

of a Finsler manifold (M,F ) by

1

2
Σ
(
X̃, Ỹ , Z̃, Ũ

)
:= ∇hP

(
X̃, Ỹ , Z̃, Ũ

)
−∇hP

(
X̃, Ỹ , Ũ , Z̃

)
, (14)

where P is the Landsberg tensor discussed above, and X̃, Ỹ , Z̃, Ũ are arbi-

trary Finsler vector fields. Since the components of ∇hP are

Pijk;l =

(
∂̂

∂ul

)h
Pijk −GrilPrjk −GrjlPirk −GrklPijr ,

it follows that the components of Σ are

Σijkl = 2 (Pijk;l − Pijl;k) . (15)
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This is just the formula obtained by M. Matsumoto for the stretch tensor

in Ref. 7. Notice that the stretch tensor was discovered by L. Berwald.1

He also found an important relation between the affine curvature and the

stretch tensor, which may be formulated as follows:

Σ
(
X̃, Ỹ , Z̃, Ũ

)
= −δ∗

(
∇vH

(
Z̃, Ũ , X̃, Ỹ

))
, X̃, Ỹ , Z̃, Ũ ∈ X

(◦
τ
)
. (16)

In terms of tensor components, (16) leads to

Σijkl = −yr∂̇jHr
ikl, (17)

this is just formula (14) of Berwald’s paper.2 From (5) and (17) it follows

that we also have

Σijkl = −yr∂̇j ∂̇iRrkl. (18)

Relations (16) and (18) imply that the stretch tensor vanishes, if the

fundamental affine curvature, or, equivalently, the affine curvature tensor

of the Finsler manifold depends only on the position. Now we shall show

that this conclusion is also true, if Σ itself has this property.

Proposition 4.1. If the stretch tensor of a Finsler manifold depends only

on the position, then it vanishes identically.

Proof. We use the same tactics as in the previous proof. By our condition,

Σijkl·m = ∂̇mΣijkl = 0 ,

so from (15) we get for the Landsberg tensor

Pijk;l·m − Pijl;k·m = 0. (19)

Using the Ricci identity for Pijk;l·m we get

Pijk;l·m = Pijk·m;l − PrjkGriml − PirkGrjml − PijrGrkml. (20)

Transvection of (20) with yi leads to

Pijk;l·my
i = Pijk·m;ly

i (21)

because of Pijky
i (7)

= Cijk;ly
iyl = 0. In the same way we obtain

Pijl;k·my
i = Pijl·m;ky

i. (22)

Relations (19), (21) and (22) imply that

Pijk·m;ly
i = Pijl·m;ky

i. (23)

On the other hand, from the identity Prjky
r = 0 we obtain by repeated

covariant differentiation
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0 = (Prjky
r)·i;l = Pijk;l + Prjk·i;lyr .

Interchanging indices k and l, we get

Pijl;k + Prjl·i;kyr = 0 .

(23) and the last two relations imply that Pijk;l − Pijl;k = 0. Hence, by

(15), Σijkl = 0.
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1. L. Berwald, Über Parallelübertragung in Räumen mit allgemeiner Massbes-
timmung, Jber. Deutsch Math.-Verein 34 (1926) 213–220.
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