On the existence of C-conformal changes
of Riemann-Finsler metrics

By CsaBa VINCZE (Debrecen)

ABSTRACT. The notion of C-conformality was introduced by M. HASHIGUCHI in [1].
He proved for some special Finsler manifolds that the existence of a C-conformal
change implies that the manifold is Riemannian (at least locally).

In this note we show that Hashiguchi’s result is valid without any extra condi-
tion. This means that the existence of a C-conformal change of the metric can be
interpreted as a new sufficient condition for a Finsler manifold to be Riemannian.

1. PRELIMINARIES

1.1. Throughout the paper we use the terminology and conventions described in [3].
Now we briefly summarize the basic notations:
(i) M is an n(> 2)-dimensional, C*°, connected, paracompact manifold, C*°(M)
is the ring of real-valued smooth functions on M.
(ii) m : TM — M is the tangent bundle of M, mp : TM — M is the bundle of
nonzero tangent vectors.
(iii) X(M) denotes the C°°(M)-module of vector fields on M.
(iv) tx, Lx (X € X(M)) and d are the symbols of the insertion operator, the Lie
derivative (with respect to X) and the exterior derivative, respectively.
(v) X¥(TM) denotes the C°°(T'M )-module of vertical vector fields on T'M.
C € XV (T M) is the Liouville vector field, J denotes the vertical endomorphism
(for the definitions see e.g. [2]).
The vertical lift of a function o € C°°(M) and of a vector field X € X(M) is
denoted by ¥ and XV, respectively; we recall that o’ is nothing but the function
aom.

1.2 Horizontal endomorphisms.

Definition. A C°(TM)-linear map h : X(TM) — X(TM) (i.e. a (1,1)-tensor or a
vector 1-form on TM) is said to be a horizontal endomorphism on M if it satisfies
the following conditions:

(HEl) h is smooth over 7 M;
(HE2) h is a projector, i.e. h? = h;
(HE3) Kerh = X"(TM).
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Any horizontal endomorphism h determines a vector 1-form, i.e. a mapping
F:X(TM)— X(TM) such that
(1) Foh=—-J, FolJ=h.

F ' is called the almost complex structure associated with h. The horizontal lift of
a vector field X € X(M) (with respect to h) is X" := FX?.
1.3 Finsler manifolds.
Definition. Let a function E : TM — R be given. The pair (M, E), or simply M,

is said to be a Finsler manifold with energy function E if the following conditions
are satisfied:

(FO) YveTM : E(v) >0, E(0)=0;

(F1) E is of class C* on TM and smooth on 7 M;
(F2) CFE =2F, i.e., E is homogeneous of degree 2;
(F3) the fundamental form w = dd;FE is symplectic.

The mapping
(2) g: X (TM) x X (TM) — C*(TM),
(JX,JY) — g(JX,JY) = w(JX,Y)

is a well-defined, nondegenerate symmetric bilinear form which is called the Riemann-
Finsler metric of (M, E). If g is positive definite then we speak of a positive definite
Finsler manifold.

It is well-known that any Finsler manifold has a canonical horizontal endomor-
phism h, the so-called Barthel endomorphism. Using the prolonged metric

(3) gn : X(TM) x X(TM) — C>*(TM)
(X)Y) - gn(X)Y) :=9g(JX,JY) 4+ g(vX,vY),

v:=1—h (the “vertical projector”), the well-known first Cartan tensor C can be
defined by the formula

1 .
(4) w(C(X,Y),Z) = 5 (LaxT"gn) (Y, 2)
(J* is the adjoint operator of J; [2]). It is easy to check that C has the following
properties:

(5) C is semibasic;

(6) its lowered tensor C, defined by the formula
C(X,Y,Z) :=g(C(X,Y), JZ) is totally symmetric;
(7) VX,Y,Z € X(M): C,(X", Y 2" = %X”g(Y”, Z°).
Consider a smooth function ¢ : TM — R. Since the fundamental form w is
symplectic, there exists a unique vector field grad ¢ € X(7 M) such that
lgrad oW = dp;

this vector field is called the gradient of .



2. AN OBSERVATION ON HOMOGENEOUS FUNCTIONS

Remark 1. Let k € Z. We recall that a function f : R® — R is called positive
homogeneous of degree k if for any vector v € R™ \ {0} and positive real number ¢,
we have

f(tv) =" f(v).
It is easy to check that if f : R™ — R is positive homogeneous of degree 0 and
continuous at the point 0 € R™ then f is a constant function.

Proposition 1. Let us select a subspace W of dimension n — 1 and a nonzero
vector q of R™ (n > 2) such that

R'"=Wa {tqg|t e R} =W & L(q).
Suppose that a function f:R™ — R has the following properties:

(i) it is positive homogeneous of degree 0;
(ii) it is continuous at the points q, —q;
(iii) for any point a € W\ {0} and scalar t € R

fla+tq) = f(a).
Then f is constant on R™ \ {0}.
Proof. Consider the function f; := f [ W\ {0}. Let ¢: N — W\ {0}, n — ¢,, be a

sequence such that

lim ¢, =0.
n—oo

Then
(iii)

n]LH;O f1 (Cn) = nlLH;O f(cn) = nh_{go f(cn + Q) = f(Q)v

since f is continuous at the point ¢ € R™ \ {0}. This means that f(q) is the limit
of the function f; at 0 € W and, consequently, the extended function

{f1(a) (a #0)
fla)  (a=0)

is continuous at the point 0 € W and it preserves the homogenity property of the
function f. Therefore, by Remark 1, f; is constant and in any point a € W\ {0},

(8) fa) = fi(a) = f1(0) = f(q).

Using the relation (8), with the choice b = a + tg, where a € W\ {0}, t € R, we
have

fi:W =R, a— fi(a):=

(iii) ®)

(9) f0) = fla+tq) = f(a) = f(q)
To end the proof, it is enough to check that
(10) fla) = f(=q).

This is almost trivial:
fl@) = lm_fi(e)

since f is continuous at the point —g € R™\ {0}. O

lim f(c,) W i flen —q) = f(—9),

n—oo n—oo



3. C-CONFORMAL CHANGES OF RIEMANN-FINSLER METRICS

Definition ([3]). Let (M, E) and (M, E) be Finsler manifolds with Riemann-Finsler

metrics g and g, respectively; g and g are said to be conformal equivalent if there

exists a positive smooth function ¢ : TM — R satisfying the condition g = @g.
This function ¢ is called the scale function or the proportionality function.

Lemma 1 (Knebelman’s observation; [3]). The scale function between conformally
equivalent Riemann-Finsler metrics is a vertical lift, i.e. it can always be written
in the form

@ =expoa’ :=expoa o,

where a € C*(M).

Proposition 2 and definition ([6]). If a Finsler manifold (M, E) with the Riemann-
Finsler metric g and a function o € C°°(M) are given, then g := ¢g (¢ = expoa”)
is the Riemann-Finsler metric of the Finsler manifold (M, E), where E = pE.

In this case we speak of a conformal change of the metric g.

Definition. Consider a Finsler manifold (M, FE). A conformal change § = ¢g
(¢ = expoa?, a € C*®(M)) is said to be C-conformal at a point p € M if the
following conditions are satisfied:

(C1) (da))p # 0,i.e., v is regular at the point p;

(62) LF grad avC = 0,

where F'is the almost complex structure associated with the Barthel endomorphism
of (M, E).

Proposition 3 ([4]). Let (M, E) be a Finsler manifold and oo € C*°(M). Then the

following assertions are equivalent:
(1) LF grad aC = 0,
(ii) grad a is a vertical lift, i.e., there exists a vector field X € X(M) such that

(11) grada” = X".

Lemma 2 and definition. Consider a Finsler manifold (M, E) and let us suppose
that the change § = g (p = expoa?, a € C*°(M)) is C-conformal at a point
p € M. Let o € X(M) be an arbitrary vector field with the property o(p) # 0 which
obuviously implies that o is nonvanishing over a connected open neighbourhood U of
p. Then the mapping

(,Y:X(U) x X(U) - C>*(U),
Y, Z2)—= ()WY, Z2)=(Y,Z) :=g(Y",Z") o0

is a (pseudo-) Riemannian metric. This metric is called the osculating Riemannian
metric along o.
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If, in addition, grady o € X(U) is the gradient of the function a with respect to
(,) then

(12) (grady ) = grad o”.

Proof. Let X € X(M) be the vector field determined by the formula (11). Then
for any vector field Y € X(U),

(X,Y):=¢g(X",Y") oo (L g(grada’,Y") oo
=w(grada’,Y" oo = (Y"a") oo
={Ya)’ococ=(Ya)omroo =Y,
hence X = grady; ¢, and consequently

(grady o) = grad o”. O

Remark 2. In the sequel we shall fix the vector field X determined by the for-
mula (11) as o in Lemma 2. (Note that the regularity property (C1) implies that

X(p) #0.)

Therefore, the osculating Riemannian metric (, ) will be considered as a mapping

(,Y:X(U) x X(U) = C>*(U),
Y, 2) - (,)(Y,2)=(Y,Z) :=g(Y", Z") 0 X,
where U is a fixed connected open neighbourhood of the point p such that for any
q€U, X(q) #0.

Proposition 4. Consider a Finsler manifold (M, E) with the Riemann-Finsler
metric g and let us suppose that the change § = pg (p = expoa?, a € C*°(M)) is
C-conformal at a pointp € M. If W C TpM is a subspace of dimension n—1 such
that TpM =W @ L(X (p)) then for any tangent vector w € W \ {0} and t € R,

g(Y", 2%)(w +tX(p)) = g(Y", Z2")(w).
Consequently, for any vector fields Y, Z € X(M), the function g(Y,Z") is con-
stant on TpM \ {0}.

Proof. For the sake of brevity, consider the parametric line
C:teR—Ut):=w+tX(p) € TpM,

where w € W\ {0} is an arbitrary fixed tangent vector. Now let us define a function
O as follows:
O:teR—-0O(t):=gY",Z%) o l(t) € R.
If (7=1(U), (x%,y")™,) is the chart induced by a chart (U, (u*)"_;) on M then
we have

/ _ 0 v v 7 / 0 v v i /
o0 = (5), GO 7N GO0+ () 6077w o0



Here, for any i € {1,...,n} and ¢t € R,
2o (t) = wi oo U(t) = u' o m(w + X (p)) = ui(p),

i.e., #% o £ is constant, and so for any t € R, (2% o £)'(t) = 0.
On the other hand

Y ol(t) =y (w+tX(p) = w' +tX"(p),

therefore

/ _ a v v 7 / _ 7 8 v v
o0 = (g),, 007N W B =X (5) 7

= Xtonltt) (a?,)a (0 7) = (g, 2 o 10

D oc, (X", Y, 2" 0 0(t) = 26,(FX?, Y™, Z") o £(1)

() 20, (F grad a®, Y™, Z") o 4(t) @

0
and, consequently, © is also a constant function.
Thus for any real number t € R,

O(t) = 6(0) & g(Y", 2%)(w + tX(p)) = g(Y", Z")(w).

According to Proposition 1, this means that the function g(Y'¥, Z") is constant
on TpM \ {0}, namely for any tangent vector v € TpM \ {0},

g(Y", Z2°)(v) = g(Y*", 2")(X(p)) = (¥, Z)(p)- =

Remark 8. Without loss of generality we can obviously assume that a(p) = 0 under
a C-conformal change § = g (p = expoa?, a € C*°(M)) at the point p. If,
in addition, the Finsler manifold (M, E) is positive definite, then it is natural to
consider the tangent space TpN, N := a~1(0), as the subspace W in Proposition 4.

Theorem 1. Let (M, E) be a Finsler manifold. If there exists a C-conformal
change g = pg (p = expoa?, a € C®(M)) at a point p € M, then (M, E) is
locally Riemannian, more precisely,

g(¥*,2") =Y, Z) o = (Y, 2)",

where (, ) is the osculating Riemannian metric defined over U.

Proof. Tt is enough to mention that if g = g is a C-conformal change at the point

p € M then it is also such a change for any point ¢ € U. (Note that the assumption

X(g) # 0 implies the regularity property (da), # 0 for any point ¢ € U.)
Therefore, the theorem is a direct consequence of Proposition 4. O
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