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of Riemann-Finsler metrics

By Csaba Vincze (Debrecen)

Abstract. The notion of C-conformality was introduced by M. Hashiguchi in [1].
He proved for some special Finsler manifolds that the existence of a C-conformal

change implies that the manifold is Riemannian (at least locally).

In this note we show that Hashiguchi’s result is valid without any extra condi-
tion. This means that the existence of a C-conformal change of the metric can be

interpreted as a new sufficient condition for a Finsler manifold to be Riemannian.

1. Preliminaries

1.1. Throughout the paper we use the terminology and conventions described in [3].
Now we briefly summarize the basic notations:

(i) M is an n(≥ 2)-dimensional, C∞, connected, paracompact manifold, C∞(M)
is the ring of real-valued smooth functions on M .

(ii) π : TM → M is the tangent bundle of M , π0 : T M → M is the bundle of
nonzero tangent vectors.

(iii) X(M) denotes the C∞(M)-module of vector fields on M .
(iv) ιX , LX (X ∈ X(M)) and d are the symbols of the insertion operator , the Lie

derivative (with respect to X) and the exterior derivative, respectively.
(v) Xv(TM) denotes the C∞(TM)-module of vertical vector fields on TM .

C ∈ Xv(TM) is the Liouville vector field , J denotes the vertical endomorphism
(for the definitions see e.g. [2]).

The vertical lift of a function α ∈ C∞(M) and of a vector field X ∈ X(M) is
denoted by αv and Xv, respectively; we recall that αv is nothing but the function
α ◦ π.

1.2 Horizontal endomorphisms.

Definition. A C∞(TM)-linear map h : X(TM) → X(TM) (i.e. a (1, 1)-tensor or a
vector 1-form on TM) is said to be a horizontal endomorphism on M if it satisfies
the following conditions:

h is smooth over T M ;(He1)

h is a projector, i.e. h2 = h;(He2)

Kerh = Xv(TM).(He3)
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Any horizontal endomorphism h determines a vector 1-form, i.e. a mapping
F : X(TM) → X(TM) such that

(1) F ◦ h = −J, F ◦ J = h.

F is called the almost complex structure associated with h. The horizontal lift of
a vector field X ∈ X(M) (with respect to h) is Xh := FXv.

1.3 Finsler manifolds.

Definition. Let a function E : TM → R be given. The pair (M,E), or simply M ,
is said to be a Finsler manifold with energy function E if the following conditions
are satisfied:

∀v ∈ T M : E(v) > 0, E(0) = 0;(F0)

E is of class C1 on TM and smooth on T M ;(F1)

CE = 2E, i.e., E is homogeneous of degree 2;(F2)

the fundamental form ω := ddJE is symplectic.(F3)

The mapping

g : Xv(T M)× Xv(T M) → C∞(T M),(2)

(JX, JY ) → g(JX, JY ) := ω(JX, Y )

is a well-defined, nondegenerate symmetric bilinear form which is called the Riemann-
Finsler metric of (M,E). If g is positive definite then we speak of a positive definite
Finsler manifold.

It is well-known that any Finsler manifold has a canonical horizontal endomor-
phism h, the so-called Barthel endomorphism. Using the prolonged metric

gh : X(T M)× X(T M) → C∞(T M)(3)

(X, Y ) → gh(X, Y ) := g(JX, JY ) + g(νX, νY ),

ν := 1− h (the “vertical projector”), the well-known first Cartan tensor C can be
defined by the formula

(4) ω(C(X, Y ), Z) =
1
2

(LJXJ∗gh) (Y,Z)

(J∗ is the adjoint operator of J ; [2]). It is easy to check that C has the following
properties:

C is semibasic;(5)

its lowered tensor C[ defined by the formula(6)

C[(X, Y, Z) := g(C(X, Y ), JZ) is totally symmetric;

∀X, Y, Z ∈ X(M) : C[(Xh, Y h, Zh) =
1
2
Xvg(Y v, Zv).(7)

Consider a smooth function ϕ : TM → R. Since the fundamental form ω is
symplectic, there exists a unique vector field grad ϕ ∈ X(T M) such that

ιgrad ϕω = dϕ;

this vector field is called the gradient of ϕ.
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2. An observation on homogeneous functions

Remark 1. Let k ∈ Z. We recall that a function f : Rn → R is called positive
homogeneous of degree k if for any vector v ∈ Rn \ {0} and positive real number t,
we have

f(tv) = tkf(v).

It is easy to check that if f : Rn → R is positive homogeneous of degree 0 and
continuous at the point 0 ∈ Rn then f is a constant function.

Proposition 1. Let us select a subspace W of dimension n − 1 and a nonzero
vector q of Rn (n ≥ 2) such that

Rn = W ⊕ {tq | t ∈ R} =: W ⊕ L(q).

Suppose that a function f : Rn → R has the following properties:
(i) it is positive homogeneous of degree 0;
(ii) it is continuous at the points q, −q;
(iii) for any point a ∈ W \ {0} and scalar t ∈ R

f(a + tq) = f(a).

Then f is constant on Rn \ {0}.
Proof. Consider the function f1 := f � W \ {0}. Let c : N → W \ {0}, n → cn be a
sequence such that

lim
n→∞

cn = 0.

Then
lim

n→∞
f1(cn) = lim

n→∞
f(cn)

(iii)
= lim

n→∞
f(cn + q) = f(q),

since f is continuous at the point q ∈ Rn \ {0}. This means that f(q) is the limit
of the function f1 at 0 ∈ W and, consequently, the extended function

f̃1 : W → R, a → f̃1(a) :=

{
f1(a) (a 6= 0)

f(q) (a = 0)

is continuous at the point 0 ∈ W and it preserves the homogenity property of the
function f . Therefore, by Remark 1, f̃1 is constant and in any point a ∈ W \ {0},

(8) f(a) = f̃1(a) = f̃1(0) = f(q).

Using the relation (8), with the choice b = a + tq, where a ∈ W \ {0}, t ∈ R, we
have

(9) f(b) = f(a + tq)
(iii)
= f(a)

(8)
= f(q).

To end the proof, it is enough to check that

(10) f(q) = f(−q).

This is almost trivial:

f(q) = lim
n→∞

f1(cn) = lim
n→∞

f(cn)
(iii)
= lim

n→∞
f(cn − q) = f(−q),

since f is continuous at the point −q ∈ Rn \ {0}. �
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3. C-conformal changes of Riemann-Finsler metrics

Definition ([3]). Let (M,E) and (M, Ẽ) be Finsler manifolds with Riemann-Finsler
metrics g and g̃, respectively; g and g̃ are said to be conformal equivalent if there
exists a positive smooth function ϕ : TM → R satisfying the condition g̃ = ϕg.

This function ϕ is called the scale function or the proportionality function.

Lemma 1 (Knebelman’s observation; [3]). The scale function between conformally
equivalent Riemann-Finsler metrics is a vertical lift, i.e. it can always be written
in the form

ϕ = exp ◦αv := exp ◦α ◦ π,

where α ∈ C∞(M).

Proposition 2 and definition ([6]). If a Finsler manifold (M,E) with the Riemann-
Finsler metric g and a function α ∈ C∞(M) are given, then g̃ := ϕg (ϕ = exp ◦αv)
is the Riemann-Finsler metric of the Finsler manifold (M, Ẽ), where Ẽ = ϕE.

In this case we speak of a conformal change of the metric g.

Definition. Consider a Finsler manifold (M,E). A conformal change g̃ = ϕg
(ϕ = exp ◦αv, α ∈ C∞(M)) is said to be C-conformal at a point p ∈ M if the
following conditions are satisfied:

(dα)p 6= 0, i.e., α is regular at the point p;(C1)

ιF grad αvC = 0,(C2)

where F is the almost complex structure associated with the Barthel endomorphism
of (M,E).

Proposition 3 ([4]). Let (M,E) be a Finsler manifold and α ∈ C∞(M). Then the
following assertions are equivalent:

(i) ιF grad αvC = 0,

(ii) gradαv is a vertical lift, i.e., there exists a vector field X ∈ X(M) such that

(11) gradαv = Xv.

Lemma 2 and definition. Consider a Finsler manifold (M,E) and let us suppose
that the change g̃ = ϕg (ϕ = exp ◦αv, α ∈ C∞(M)) is C-conformal at a point
p ∈ M . Let σ ∈ X(M) be an arbitrary vector field with the property σ(p) 6= 0 which
obviously implies that σ is nonvanishing over a connected open neighbourhood U of
p. Then the mapping

〈 , 〉 : X(U)× X(U) → C∞(U),

(Y, Z) → 〈 , 〉(Y, Z) =: 〈Y, Z〉 := g(Y v, Zv) ◦ σ

is a (pseudo-) Riemannian metric. This metric is called the osculating Riemannian
metric along σ.
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If, in addition, gradU α ∈ X(U) is the gradient of the function α with respect to
〈 , 〉 then

(12) (gradU α)v = gradαv.

Proof. Let X ∈ X(M) be the vector field determined by the formula (11). Then
for any vector field Y ∈ X(U),

〈X, Y 〉 := g(Xv, Y v) ◦ σ
(11)
= g(gradαv, Y v) ◦ σ

= ω(gradαv, Y h) ◦ σ = (Y hαv) ◦ σ

= (Y α)v ◦ σ = (Y α) ◦ π ◦ σ = Y α,

hence X = gradU α, and consequently

(gradU α)v = gradαv. �

Remark 2. In the sequel we shall fix the vector field X determined by the for-
mula (11) as σ in Lemma 2. (Note that the regularity property (C1) implies that
X(p) 6= 0.)

Therefore, the osculating Riemannian metric 〈 , 〉 will be considered as a mapping

〈 , 〉 : X(U)× X(U) → C∞(U),

(Y, Z) → 〈 , 〉(Y, Z) =: 〈Y,Z〉 := g(Y v, Zv) ◦X,

where U is a fixed connected open neighbourhood of the point p such that for any
q ∈ U , X(q) 6= 0.

Proposition 4. Consider a Finsler manifold (M,E) with the Riemann-Finsler
metric g and let us suppose that the change g̃ = ϕg (ϕ = exp ◦αv, α ∈ C∞(M)) is
C-conformal at a point p ∈ M . If W ⊂ TpM is a subspace of dimension n− 1 such
that TpM = W ⊕ L(X(p)) then for any tangent vector w ∈ W \ {0} and t ∈ R,

g(Y v, Zv)(w + tX(p)) = g(Y v, Zv)(w).

Consequently, for any vector fields Y, Z ∈ X(M), the function g(Y v, Zv) is con-
stant on TpM \ {0}.

Proof. For the sake of brevity, consider the parametric line

` : t ∈ R → `(t) := w + tX(p) ∈ TpM,

where w ∈ W \{0} is an arbitrary fixed tangent vector. Now let us define a function
Θ as follows:

Θ : t ∈ R → Θ(t) := g(Y v, Zv) ◦ `(t) ∈ R.

If (π−1(U), (xi, yi)n
i=1) is the chart induced by a chart (U, (ui)n

i=1) on M then
we have

Θ′(t) =
(

∂

∂xi

)
`(t)

(g(Y v, Zv)) · (xi ◦ `)′(t) +
(

∂

∂yi

)
`(t)

(g(Y v, Zv)) · (yi ◦ `)′(t).
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Here, for any i ∈ {1, . . . , n} and t ∈ R,

xi ◦ `(t) = ui ◦ π ◦ `(t) = ui ◦ π(w + tX(p)) = ui(p),

i.e., xi ◦ ` is constant, and so for any t ∈ R, (xi ◦ `)′(t) = 0.
On the other hand

yi ◦ `(t) = yi(w + tX(p)) = wi + tXi(p),

therefore

Θ′(t) =
(

∂

∂yi

)
`(t)

(g(Y v, Zv)) · (yi ◦ `)′(t) = Xi(p) ·
(

∂

∂yi

)
`(t)

(g(Y v, Zv))

= Xi ◦ π(`(t))
(

∂

∂yi

)
`(t)

(g(Y v, Zv)) = (Xvg(Y v, Zv)) ◦ `(t)

(7)
= 2C[(Xh, Y h, Zh) ◦ `(t) = 2C[(FXv, Y h, Zh) ◦ `(t)

(11)
= 2C[(F gradαv, Y h, Zh) ◦ `(t)

(C2)
= 0

and, consequently, Θ is also a constant function.
Thus for any real number t ∈ R,

Θ(t) = Θ(0) :⇔ g(Y v, Zv)(w + tX(p)) = g(Y v, Zv)(w).

According to Proposition 1, this means that the function g(Y v, Zv) is constant
on TpM \ {0}, namely for any tangent vector v ∈ TpM \ {0},

g(Y v, Zv)(v) = g(Y v, Zv)(X(p)) = 〈Y,Z〉(p). �

Remark 3. Without loss of generality we can obviously assume that α(p) = 0 under
a C-conformal change g̃ = ϕg (ϕ = exp ◦αv, α ∈ C∞(M)) at the point p. If,
in addition, the Finsler manifold (M,E) is positive definite, then it is natural to
consider the tangent space TpN , N := α−1(0), as the subspace W in Proposition 4.

Theorem 1. Let (M,E) be a Finsler manifold. If there exists a C-conformal
change g̃ = ϕg (ϕ = exp ◦αv, α ∈ C∞(M)) at a point p ∈ M , then (M,E) is
locally Riemannian, more precisely,

g(Y v, Zv) = 〈Y, Z〉 ◦ π = 〈Y,Z〉v,

where 〈 , 〉 is the osculating Riemannian metric defined over U .

Proof. It is enough to mention that if g̃ = ϕg is a C-conformal change at the point
p ∈ M then it is also such a change for any point q ∈ U . (Note that the assumption
X(q) 6= 0 implies the regularity property (dα)q 6= 0 for any point q ∈ U .)

Therefore, the theorem is a direct consequence of Proposition 4. �
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