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Preface

This book is devoted to Diophantine equations where the solutions are taken
from an integral domain of characteristic 0 that is finitely generated over Z,
that is a domain of the shape Z[z1, . . . , zr] with quotient field of characteristic
0, where the generators z1, . . . , zr may be algebraic or transcendental over
Q. For instance, the ring of integers and the rings of S-integers of a number
field are finitely generated domains where all generators are algebraic. Our
aim is to prove effective finiteness results for certain classes of Diophantine
equations, i.e., results that not only show that the equations from the said
classes have only finitely many solutions, but whose proofs provide methods
to determine the solutions in principle.

There is an extensive literature on Diophantine equations with solutions
taken from the ring of rational integers Z, or from more general domains, con-
taining theorems on the finiteness of the set of solutions of such equations.
Most of the finiteness theorems over Z, and more generally over rings of inte-
gers and S-integers of number fields are ineffective. Their proofs are mainly
based on techniques from Diophantine approximation (e.g., the Thue–Siegel–
Roth–Schmidt theory) often combined with algebra and arithmetic geometry.
These techniques yield the finiteness of the number of solutions, but do not
enable one to determine the solutions. Lang (1960) and others used certain
specialization arguments to extend several ineffective finiteness results to the
even more general case when the solutions are taken from an arbitrary integral
domain of characteristic 0 that is finitely generated over Z.

Since the 1960’s, a great number of ineffective finiteness theorems over
number fields were made effective and new theorems were obtained in ef-
fective form by means of A. Baker’s effective theory of logarithmic forms.
These results give effective upper bounds for the solutions, and thereby make
it possible, at least in principle, to find all the solutions of the equations under
consideration. Analogous theorems were established by Mason (1984) and
others over function fields of characteristic 0 as well, which provide effective
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upper bounds for the heights of the solutions, but do not imply the finiteness
of the number of solutions.

Győry (1983,1984b) initiated to extend effective Diophantine results over
number fields to the finitely generated case, and proved effective finiteness
theorems over certain restricted classes of finitely generated integral domains
over Z of zero characteristic. He developed an effective specialization method,
reducing the initial equations to the number field and function field cases,
and using the corresponding effective results over number fields and function
fields, he derived effective bounds for the solutions of the initial equations.

In the paper Evertse and Győry (2013), Győry’s specialization method
was extended to the case of arbitrary finitely generated domains of charac-
teristic 0 over Z. The crucial new tool in this extension was work of As-
chenbrenner (2004) on effective commutative algebra. Evertse’s and Győry’s
general specialization method may be viewed as a ‘machine,’ which takes
as input an effective Diophantine finiteness result concerning S-integral so-
lutions over number fields together with an effective analogue over function
fields, and produces as output a corresponding effective result over finitely
generated domains. This general specialization method lead to effective finite-
ness results for various classes of Diophantine equations over arbitrary do-
mains of characteristic 0 that are finitely generated over Z: Evertse and Győry
(2013,2014,2015), Bérczes, Evertse and Győry (2014), Bérczes (2015a,b),
Koymans (2016,2017) established general effective finiteness theorems over
finitely generated domains of characteristic 0 for several classical equations,
including unit equations in two unknowns, Thue equations, hyper- and su-
perelliptic equations and the Catalan equation. An important feature of these
results is their quantitative nature, i.e., they give upper bounds for the sizes
(suitable measures) of the solutions in terms of defining parameters for the
domain from which the solutions are taken and for the Diophantine equation
under consideration.

Our book provides the first comprehensive treatment of effective results
and methods for Diophantine equations over finitely generated domains. Sim-
ilarly to the above mentioned literature, most of the results in our book are
proved in quantitative form, giving effective bounds for the sizes of the so-
lutions. Apart from the results mentioned above, our book contains new ma-
terial, concerning decomposable form equations over finitely generated do-
mains. Here we have adapted the method of Győry (1973,1980b) and Győry
and Papp (1978) to reduce the decomposable form equations under consid-
eration to systems of unit equations in two unknowns. Here again, we give
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effective upper bounds for the sizes of the solutions, and for this purpose we
had to work out new effective procedures. As a special case, we get back the
results on discriminant equations from Evertse and Győry (2017a,b).

We believe that the results in this book do not exhaust the possibilities
of our techniques. Hopefully, they will inspire further investigations to obtain
new effective results for other classes of Diophantine equations over finitely
generated domains.

This book is aimed at anybody (graduate student and expert) with basic
knowledge of algebra (groups, commutative rings, fields, Galois theory) and
elementary algebraic number theory. No further specialized knowledge on
commutative algebra or algebraic geometry is presupposed.
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History and summary

First we give a brief historical overview on the equations treated in our book,
and then outline the contents of the book.

We start with ineffective results. Thue (1909) developed an ingenious
method for approximation of algebraic numbers by rationals. As an appli-
cation he proved that if F ∈ Z[X, Y ] is a binary form (i.e., a homogeneous
polynomial) of degree at least 3 which is irreducible over Q and δ is a non-
zero integer, then the equation

F (x, y) = δ in x, y ∈ Z (1)

(nowadays called a Thue equation) has only finitely many solutions. Thue’s
approximation result was later considerably improved and generalized by
many people including Siegel, Mahler, Dyson, Gel’fond, Roth, Schmidt, and
Schlickewei.

Thue’s finiteness theorem concerning equation (1) has many generaliza-
tions. Siegel (1921) generalized it for the number field case when the ground
ring, i.e., the ring from which the solutions are taken, is the ring of inte-
gers OK of a number field K. Mahler (1933) extended Thue’s theorem to the
case of ground rings of the form Z[(p1 · · · ps)−1], where p1, . . . , ps are primes,
while Parry (1950) gave a common generalization of the results of Siegel and
Mahler to the case where the ground ring is the ring of S-integers of a number
field.

Siegel’s theorem has the following important consequence, which was not
stated explicitly by Siegel, but was implicitly proved by him. Denote by O∗K
the group of units of OK , and let α, β be non-zero elements of the number
field K. Using the fact that O∗K is finitely generated, it is easy to deduce from
Siegel’s theorem that the equation

αx+ βy = 1 (2)
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in x, y ∈ O∗K has only finitely many solutions. Similarly, it follows from the
results of Mahler and Parry that equation (2) has finitely many solutions even
in S-units of K, these are elements of K composed of prime ideals from a
finite, possibly empty set S of prime ideals of OK . Nowadays equation (2) is
called a unit equation (when S is empty) resp. S-unit equation otherwise, or
more precisely unit equation and S-unit equation in two unknowns.

Further important equations are

f(x) = δym in x, y ∈ Z, (3)

where f ∈ Z[X] is a polynomial of degree n and δ ∈ Z\{0}. Equation (3)
is called elliptic if n = 3, m = 2, more generally hyperelliptic if n ≥ 3,
m = 2, and superelliptic if n ≥ 2, m ≥ 3. If m or n is at least 3 and f has no
multiple zero, equation (3) has only finitely many solutions. This was proved
in the elliptic case by Mordell (1922a,b,1923), in the hyperelliptic case by
Siegel (1926), and in the superelliptic case by Siegel (1929). LeVeque (1964)
considered (3) in the more general case when f may have multiple zeros, and
gave a finiteness criterion for (3) over the ring of integers of a number field.

A celebrated theorem of Siegel (1929) states that if F (X, Y ) is a poly-
nomial with coefficients in a number field K, which is irreducible over K
and the affine curve F (x, y) = 0 is of genus ≥ 1, then this curve has only
finitely many points with integral coordinates in K. This theorem implies the
above-mentioned finiteness results on Thue equations, unit equations and hy-
perelliptic/superelliptic equations over number fields.

Lang (1960) generalized Siegel’s theorem to what we call the finitely gen-
erated case, when the solutions are taken from an arbitrary integral domain
of characteristic 0 which is finitely generated as a Z-algebra, that is a domain
of the shape

Z[z1, . . . , zr] = {f(z1, . . . , zr) : f ∈ Z[X1, . . . , Xr]},

where z1, . . . , zr may be algebraic or transcendental over Q. Recall that both
the ring of integers of a number field K, and the rings of S-integers of K,
are of this shape, with z1, . . . , zr all algebraic. In his proof, Lang used a spe-
cialization argument, reducing the theorem to the case of number fields and
function fields of one variable, and then applied Siegel’s theorem (1929) and
its function field analogue from Lang (1960). As a consequence, Lang ex-
tended the earlier finiteness results concerning Thue equations, unit equations
and hyperelliptic/superelliptic equations to the finitely generated case.
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Multivariate generalizations of Thue equations that have attracted much
attention are the decomposable form equations

F (x1, . . . , xm) = δ in x1, . . . , xm ∈ Z, (4)

where δ ∈ Z\{0} and F (X1, . . . , Xm) is a decomposable form of degree
n > m in m ≥ 2 variables with coefficients in Z i.e., a homogeneous poly-
nomial which factorizes into linear forms with coefficients in the algebraic
closure Q. Further important types of decomposable form equations are norm
form equations, discriminant form equations and index form equations which
are of basic importance in algebraic number theory. Schmidt (1971,1972) de-
veloped a multidimensional generalization of Roth’s theorem on the approxi-
mation of algebraic numbers, eventually leading to his famous Subspace The-
orem, and from the latter he deduced a finiteness criterion for norm form
equations. Evertse and Győry (1988b) proved a general finiteness criterion
for decomposable form equations of the form (4). Their proof depends on the
following finiteness result on multivariate unit equations of the form

α1x1 + · · ·+ αmxm = 1 in x1, . . . , xm ∈ O∗K , (5)

where K is a number field and α1, . . . , αm are non-zero elements of K. A
solution of (5) is called degenerate if there is a vanishing subsum on the left
hand side of (5). In this case (5) has infinitely many solutions ifO∗K is infinite.
As a generalization of Siegel’s theorem on equation (2), van der Poorten and
Schlickewei (1982) and Evertse (1984) proved independently of each other
that equation (5) has only finitely many non-degenerate solutions. This the-
orem was extended by Evertse and Győry (1988a) and van der Poorten and
Schlickewei (1991) to the finitely generated case, when K is a finitely gener-
ated extension of Q and O∗K is replaced by a finitely generated multiplicative
subgroup of K∗. As a consequence, the above-mentioned general finiteness
criterion for (4) was proved in Evertse and Győry (1988b) in a more general
form, over finitely generated domains of characteristic 0.

In the 1960’s, Baker developed an effective method in transcendence the-
ory, providing non-trivial effective lower bounds for linear forms in loga-
rithms of algebraic numbers. This furnished a very powerful tool to prove
effective finiteness results for Diophantine equations over Z and more gen-
erally over number fields, that enabled one to determine, at least in princi-
ple, all solutions of the equations under consideration. Using his method,
Baker (1968b,c,1969) derived explicit upper bounds among others for the

xi



solutions of Thue equations and hyperelliptic/superelliptic equations. Győry
(1974,1979) used Baker’s theory of logarithmic forms to obtain explicit up-
per bounds for the solutions of unit equations and S-unit equations in two
unknowns. With the help of his bounds Győry proved effective finiteness the-
orems for discriminant equations for polynomials

D(f) = δ in monic polynomials f ∈ Z[X] (6)

and for elements

D(α) = δ in algebraic integers α. (7)

Here D( ) denotes the discriminant of a polynomial f resp. of an algebraic
integer α, and δ is a non-zero integer. Two monic polynomials f, f ′ ∈ Z[X]
are called strongly Z-equivalent if f ′(X) = f(X + a) for some a ∈ Z.
Similarly, two algebraic integers α, α′ are said to be strongly Z-equivalent if
α′−α ∈ Z. Clearly, strongly Z-equivalent monic polynomials resp. algebraic
integers have the same discriminant.

Győry (1973) proved that there are only finitely many pairwise Z-inequiv-
alent monic polynomials with the property (6). A similar finiteness theorem
was proved for the solutions of (7) by Birch and Merriman (1972), and in-
dependently by Győry (1973). Győry’s proofs for (6) and (7) are effective.
These results, in less precise form, were generalized in Győry (1978a) for
the number field case, and in Győry (1982) in an ineffective form, for the
finitely generated case, subject to the condition that the ground ring is inte-
grally closed. These results have many applications, among others to power
integral bases of ring extensions.

By using Győry’s bounds on the solutions of unit equations in two un-
knowns, Győry (1976,1980a) and Győry and Papp (1978) generalized Baker’s
effective theorem on Thue equations to equations in arbitrarily many un-
knowns. They derived explicit bounds for the solutions of a class of decom-
posable form equations over number fields, including discriminant form equa-
tions and certain norm form equations.

Tijdeman (1976) used Baker’s theory of logarithmic forms to give an ex-
plicit upper bound for the solutions of the Catalan equation

xm − yn = 1 in positive integers x, y,m, n with m,n > 1 and mn > 4.
(8)
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Further, when in equation (3) m is also unknown and f has at least two dis-
tinct zeros, Schinzel and Tijdeman (1976) gave an effective upper bound for
m. In this case equation (3) is now called Schinzel–Tijdeman equation. It is in-
teresting to note that the effective theorems of Tijdeman (1976) and Schinzel
and Tijdeman (1976) had no previously ineffective versions.

For Thue equations, unit equations and hyper/superelliptic equations, anal-
ogous effective results were obtained by Mason (1981,1983,1984) and others
over function fields of characteristic 0. The above-mentioned effective results
over number fields and function fields were later improved and generalized
by many people, and led to several further applications.

In Győry (1983, 1984b) the author extended the effective finiteness the-
orems concerning Thue equations, discriminant equations and a class of de-
composable form equations over number fields to similar such equations over
restricted classes of finitely generated domains of characteristic 0 which may
contain both algebraic and transcendental elements. To prove these exten-
sions, Győry developed an effective specialization method to reduce the gen-
eral equations under consideration to equations of the same type over number
fields and function fields, and then used effective results concerning these
reduced equations to derive effective bounds for the solutions of the initial
equations.

Evertse and Győry (2013) refined the method of Győry, and proved effec-
tive finiteness theorems for unit equations in two unknowns in full generality,
over arbitrary finitely generated domains of characteristic 0 over Z. In fact,
they obtained their results by combining Győry’s techniques with work of
Aschenbrenner (2004), concerning the effective resolution of systems of lin-
ear equations over polynomial rings Z[X1, . . . , Xn].

The general effective specialization method of Evertse and Győry led to
effective finiteness results over finitely generated domains for several other
classes of Diophantine equations, such as Thue equations, hyper/superelliptic
equations and the Schinzel-Tijdeman equation (Bérczes, Evertse and Győry
(2014)), a generalization of unit equations (Bérczes (2015a,b)) and the Cata-
lan equation (Koymans (2016, 2017)). Further, generalizing another method
of Győry (1973) and Győry and Papp (1978) applied over number fields, the
present authors in Evertse and Győry (2017a,b) and in Sections 2.6 and 2.8
of this book obtained effective finiteness theorems for decomposable form
equations and discriminant equations over finitely generated domains. This
other method is not based on specialization, but instead uses a reduction of
the equation under consideration to unit equations in two unknowns.
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It is important to note that with the exception of discriminant equations
and hyper- and superelliptic equations, both methods mentioned above pro-
vide quantitative results over finitely generated domains, giving effective bounds
for the solutions. This is due to the effective and quantitative feature of the
main tools from Chapters 4 to 8.

Major open problems are to make effective the general finiteness theo-
rems of Siegel (1929) on integral points of curves and of van der Poorten and
Schlickewei (1982) and Evertse (1984) on multivariate unit equations over
number fields. Such effective versions could be extended to the finitely gen-
erated case, using existing analogues over function fields and applying our
general effective specialization method.

We now outline the contents of our book. In Chapter 1, we present the
most general ineffective finiteness results over finitely generated domains for
Thue equations, unit equations in two unknowns, a generalization of unit
equations, hyper- and superelliptic equations, curves of genus≥ 1 with finitely
many integral points, decomposable form equations, multivariate unit equa-
tions and discriminant equations. Further, except for curves of genus ≥ 1 and
multivariate unit equations, we cite the most general effective versions con-
cerning the equations mentioned over number fields.

In Chapter 2, we state general effective finiteness theorems over finitely
generated domains of characteristic 0 for unit equations in two unknowns,
Thue equations, hyper- and superelliptic equations, the Schinzel-Tijdeman
equation, the Catalan equation, decomposable form equations and discrimi-
nant equations. As was mentioned above, apart from discriminant equations,
the other results give also effective bounds for the solutions.

Chapter 3 is devoted to a short explanation of our general effective meth-
ods.

In Chapters 4 and 5 those effective results are collected on the above equa-
tions over number fields and function fields that are needed in Chapters 9 and
10, in the proofs of the general effective theorems stated in Chapter 2. We
have skipped the complete proofs of the theorems in Chapters 4 and 5, which
are rather technical. Instead, we sketch the proofs in simplified forms, which
give sufficient insight in the main ideas.

Chapters 6, 7 and 8 contain further important tools. In Chapter 6 we have
collected results from effective commutative algebra, in Chapter 7 we give the
detailed treatment of our effective specialization method, and in Chapter 8 we
prove some useful results for‘degree-height estimates,’ which may be viewed
as an analogue of the naiv height estimates of algebraic numbers for elements

xiv



of the algebraic closure of a finitely generated field.
Lastly, in Chapters 9 and 10, the results and methods from Chapters 4–8

are combined to prove the general effective results presented in Chapter 2.
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Chapter 1

Ineffective results for Diophantine
equations over finitely generated
domains

This book is about Diophantine equations where the solutions are taken from
an integral domain of characteristic 0 that is finitely generated over Z, that is,
from a domain of the shape

Z[z1, . . . , zr] = {f(z1, . . . , zr) : f ∈ Z[X1, . . . , Xr]}

whose quotient field is of characteristic 0. The generators z1, . . . , zr may be
either algebraic or transcendental over Q.

For instance, let K be a number field and OK its ring of integers. Let
{ω1, . . . , ωd} be a Z-module basis of OK . Then OK = Z[ω1, . . . , ωd].

More generally, let K be a number field and with the notation introduced
in Section 4.2, let S be a finite set of places of K, consisting of all infinite
places of K and of the prime ideals p1, . . . , pt of OK . Then the ring of S-
integers of K, denoted by OS , is given by the set of all elements α of K such
that there are non-negative integers k1, . . . , kt with αpk11 · · · pktt ⊆ OK . In the
particular case that S consists only of the infinite places of K, the ring OS is
just equal to OK . We may express OS otherwise as

OS = Z[ω1, . . . , ωd, π
−1],

where again {ω1, . . . , ωd} is a Z-module basis of OK and where πOK =
(p1 · · · pt)hK with hK the class number of K. Thus, both the ring of integers
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and the rings of S-integers of a number field are domains finitely generated
over Z, with algebraic generators.

In general, we will consider Diophantine equations over integral domains
Z[z1, . . . , zr] where some of the generators, say z1, . . . , zq, are algebraically
independent over Q and the other generators are algebraic over Q(z1, . . . , zq).

In this chapter we present the most important ineffective finiteness the-
orems for integral solutions of various classes of Diophantine equations, in-
cluding Thue equations, unit equations, hyper- and superelliptic equations,
equations involving integral points on curves, decomposable form equations
and discriminant equations. We consider these classes of equations in sepa-
rate sections. For each class we state the finiteness results in their most gen-
eral form, over an arbitrary integral domain of characteristic 0 that is finitely
generated over Z, and give an account of the earlier special cases leading to
the general result. Over Z or more generally over the rings of integers or S-
integers of number fields, these results were proved mostly by the powerful
Thue-Siegel-Roth-Schmidt method, while in the finitely generated case the
equations are reduced either to the number field and function field cases by
means of some specialization arguments or to such equations for which the
finiteness of the number of solutions is already proved; see e.g. Lang (1960),
Győry (1982), Evertse and Győry (1988a,1988b) and van der Poorten and
Schlickewei (1991). At the end of each section, we make a mention to the
corresponding effective results over Z or over number fields whose general
versions over finitely generated domains will be presented in Chapter 2.

The above mentioned equations have been studied very extensively and
they have many important generalizations, analogues and applications. For
details, we refer e.g. to the books Lang (1962,1978,1983), Borevich and Sha-
farevich (1967), Mordell (1969), Baker (1975), Győry (1980b), Evertse (1983),
Mason (1984), Shorey and Tijdeman (1986), Schmidt (1991), Sprindžuk (1993),
Bombieri and Gubler (2006), Zannier (2009), Evertse and Győry (2015, 2017a),
Bugeaud (2018) and the survey papers of Evertse, Győry, Stewart and Tijde-
man (1988b) and Győry (1984a,1992,2002).

1.1 Thue equations

Let A denote an integral domain of characteristic 0 that is finitely generated
over Z. Let K denote the quotient field of A, and fix an algebraic closure K
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of K. We first consider the equation

F (x, y) = δ in x, y ∈ A (1.1.1)

over A, where F (X, Y ) is a binary form of degree n with coefficients in A
and δ ∈ A\{0}.

The following result is a consequence of the more general Theorem 1.4.1,
which will be stated below.

Theorem 1.1.1. Assume that F has at least three pairwise non-proportional
linear factors over K. Then equation (1.1.1) has only finitely many solutions.

The condition in the theorem is obviously satisfied if F has degree at least
3 and its discriminant is non-zero. This theorem cannot be extended to binary
forms F with fewer than three pairwise non-proportional linear factors; for
instance the Pell equation x2 − dy2 = 1 over Z, where d is a positive integer
not being a square, has infinitely many solutions.

In the classical case A = Z, Theorem 1.1.1 was proved by Thue (1909).
In fact Thue proved it for irreducible F , but the general case can be easily
reduced to the irreducible one. The proof of Thue’s theorem is based on his
result concerning approximations of algebraic numbers by rationals. After
Thue, equations of the shape (1.1.1) are named Thue equations.

Thue’s theorem has been generalized by many people. Siegel (1921) ex-
tended it to the case when A is the ring of integers of a number field and
Mahler (1933) to rings of the shape Z[(p1 · · · ps)−1] where p1, . . . , ps are dis-
tinct primes. Parry (1950) gave a common generalization of the results of
Siegel and Mahler to rings of S-integers of a number field. In the above gen-
eral form, Theorem 1.1.1 is due to Lang (1960).

We would like to mention another equivalent formulation of Theorem
1.1.1. First, we recall a result of Mahler (1933). Let F ∈ Z[X, Y ] be a bi-
nary form with at least three pairwise non-proportional linear factors over Q,
and let p1, . . . , ps be distinct prime numbers. Then the equation

F (x, y) = ±pz11 · · · pzss in x, y, z1, . . . , zs ∈ Z with gcd(x, y) = 1 (1.1.2)

has only finitely many solutions. If we drop the restriction gcd(x, y) = 1
we can construct infinite classes of solutions by multiplying (x, y) with prod-
ucts of powers of p1, . . . , ps. Thus, it is easily seen that Mahler’s result can
be translated as follows. Let S = {p1, . . . , ps} be a finite set of primes,
ZS = Z[(p1, . . . , ps)

−1] the corresponding ring of S-integers, and Z∗S =
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{±pz11 · · · pzss : z1, . . . , zs ∈ Z} the group of units of ZS . Then the solutions
of

F (x, y) ∈ Z∗S in (x, y) ∈ Z2
S (1.1.3)

lie in finitely many Z∗S-cosets, where a Z∗S-coset is a set of solutions of the
shape {u · (x0, y0) : u ∈ Z∗S}, with (x0, y0) ∈ Z2

S fixed.
We now generalize this last equation to arbitrary finitely generated do-

mains of characteristic 0 that are finitely generated over Z. Let A be such a
domain, denote by A∗ its unit group, i.e., group of invertible elements. Fur-
ther, let F ∈ A[X, Y ] be a binary form and δ a non-zero element of A, and
consider the following generalization of (1.1.3):

F (x, y) ∈ δA∗ in (x, y) ∈ A2. (1.1.4)

Because of its connection with (1.1.2), equation (1.1.4) is called a Thue-
Mahler equation. Just like above, we can divide the solutions (x, y) ∈ A2

of (1.1.4) into A∗-cosets A∗(x0, y0) = {u · (x0, y0) : u ∈ A∗}.
The following assertion is equivalent to Theorem 1.1.1.

Theorem 1.1.2. Assume again that F has at least three pairwise non-prop-
ortional linear factors over K. Then equation (1.1.4) has only finitely many
A∗-cosets of solutions.

Theorem 1.1.1⇒Theorem 1.1.2. Assume Theorem 1.1.1. According to a theo-
rem of Roquette (1957), the unit groupA∗ is finitely generated. Let {v1, . . . , vs}
be a set of generators for A∗, and define U := {vm1

1 · · · vmss : m1, . . . ,ms ∈
{0, . . . , n − 1}}. Then every element of A∗ can be expressed as u1u

n
2 , where

u1 ∈ U and u2 ∈ A∗. Clearly, if (x, y) ∈ A2 satisfies (1.1.4), then F (x, y) =
δu1u

n
2 for some u1 ∈ U , u2 ∈ A∗, and so F (x′, y′) = δu1 where (x′, y′) =

u−1
2 (x, y). Hence every A∗-coset of solutions of (1.1.4) contains (x′, y′) with
F (x′, y′) = δu1 with some u1 ∈ U , and Theorem 1.1.1 implies that for each
u1 ∈ U there are only finitely many possibilities for (x′, y′). This implies The-
orem 1.1.2.

Theorem 1.1.2⇒Theorem 1.1.1. Assume Theorem 1.1.2. Let A∗(x0, y0) be
one of the finitely many A∗-cosets of solutions of (1.1.4) and pick those solu-
tions from it that satisfy (1.1.1). These solutions are all of the shape u(x0, y0)
with un = F (x0, y0)/δ and there are only finitely many of those. Hence
(1.1.1) has only finitely many solutions.
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Equation (1.1.1) has many further generalizations, see e.g. equation (1.4.1)
in Section 1.4, equations (1.5.1), (1.5.2) and (1.5.4) in Section 1.5 and Evertse
and Győry (2015, Chapter 9).

In the caseA = Z the first general effective result for equation (1.1.1) was
established by Baker (1968b). He gave an explicit upper bound for the solu-
tions by means of his effective method based on lower bound for linear forms
in logarithms. Coates (1969) extended Baker’s result to the case of ground
rings of the type A = Z[(p1 · · · ps)−1], and later Kotov and Sprindzuk (1973)
to the case when A is the ring of S-integers of a number field. Győry (1983),
using his effective specialization method, generalized the above results for a
wide but special class of finitely generated domains which may contain both
algebraic and transcendental elements. In Chapter 2, Theorem 2.3.1 gives an
effective version of Theorem 1.1.1 in quantitative form over an arbitrary in-
tegral domain of characteristic 0 which is finitely generated over Z. Its proof
uses a precise effective version of Theorem 1.1.1 over rings of S-integers of
number fields, see Theorem 4.4.1 in Chapter 4, as well as an effective ver-
sion over function fields, see Theorem 5.4.1 in Chapter 5, which is a slight
variation of a result of Mason (1981, 1984).

1.2 Unit equations in two unknowns

Let again A be an integral domain of characteristic 0 which is finitely gener-
ated over Z, and K its quotient field. Further, let a, b be non-zero elements of
K. Consider the unit equation

ax+ by = 1 in x, y ∈ A∗, (1.2.1)

where A∗ denotes the unit group of A, i.e. the multiplicative group of invert-
ible elements of A.

By a theorem of Roquette (1957) the group A∗ is finitely generated. Lang
(1960) proved the following general result.

Theorem 1.2.1. Equation (1.2.1) has only finitely many solutions.

The first finiteness result for equation (1.2.1) was implicitly proved by
Siegel (1921) when K is a number field and A is the ring of integers of
K. For the case when A is of the type Z[(p1 · · · ps)−1] with distinct primes
p1, . . . , ps, the finiteness of the number of solutions was obtained by Mahler
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(1933), while a common generalization of the results of Siegel and Mahler
follows from Parry (1950).

In fact, in Lang (1960) the following more general version of Theorem
1.2.1 is established.

Theorem 1.2.2. Let K be a field of characteristic 0, a, b non-zero elements of
K and Γ a finitely generated multiplicative subgroup ofK∗. Then the equation

ax+ by = 1 in x, y ∈ Γ (1.2.2)

has only finitely many solutions.

Proof. Using an argument due to Siegel (1921), the theorem can be easily
reduced to Theorem 1.1.1. Indeed, suppose that equation (1.2.2) has infinitely
many solutions. Let n be an integer ≥ 3. Since Γ is finitely generated, the
quotient group Γ/Γn is finite. Hence there is a solution x0, y0 of (1.2.2) such
that there are infinitely many solutions x, y such that x ∈ x0Γn, y ∈ y0Γn.
Each of these solutions x, y can be written in the form x = x0u

n, y = y0v
n

with some u, v ∈ Γ. Denoting by A the ring generated by Γ over Z, it follows
that the Thue equation

(ax0)un + (by0)vn = 1

has infinitely many solutions u, v ∈ A. This contradicts Theorem 1.1.1.

We note that conversely, Thue equations can be reduced to finitely many
appropriate unit equations, see e.g. Evertse and Győry (2015). In other words,
Thue equations and unit equations in two unknowns are in fact equivalent.
This was (implicitly) pointed out by Siegel (1926).

Theorem 1.2.2 has several generalizations, see e.g. Theorem 1.5.4 in Sec-
tion 1.5, Lang (1960,1983) and Evertse and Győry (2015). Here we present
one of them.

Lang (1960) extended his result concerning equation (1.2.2) to equations
of the shape

F (x, y) = 0 in x, y ∈ Γ, (1.2.3)

where Γ is as above and F ∈ A[X, Y ] is a non-constant polynomial. He
proved the following.
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Theorem 1.2.3. Let F ∈ A[X, Y ] be a non-constant polynomial that is not
divisible by any polynomial of the shape

XmY n − α or Xm − αY n (1.2.4)

with α ∈ Γ and with non-negative integers m,n, not both zero. Then equation
(1.2.3) has only finitely many solutions.

It is easy to see that the exceptions described in Theorem 1.2.3 must be
excluded.

Lang (1965a,1965b) conjectured that Theorem 1.2.3 remains valid if one
replaces Γ by its division group Γ, which consists of those γ ∈ K∗ such that
γk ∈ Γ for some positive integer k. Hence, in this case the solutions x, y do
not necessarily belong to K. Lang’s conjecture has been proved by Liardet
(1974,1975) who obtained the following.

Theorem 1.2.4. Let F ∈ A[X, Y ] be a non-constant polynomial that is not
divisible by any polynomial of the shape (1.2.4) with α ∈ Γ and with non-
negative integers m,n, not both zero. Then equation (1.2.3) has only finitely
many solutions even in x, y ∈ Γ.

The first general effective results for equation (1.2.1) over the ring of inte-
gers of algebraic number fields were proved in Győry (1972,1973,1974,1976),
over rings of S-integers of an algebraic number field in Győry (1979), and
independently, in a less precise form, in Kotov and Trelina (1979). Using
Baker’s method concerning linear forms is logarithms, effective upper bounds
were given for the solutions. These bounds were improved later by several au-
thors, see e.g. Bugeaud and Győry (1996a), Győry and Yu (2006) and Győry
(2019).

Over algebraic number fields, Bombieri and Gubler (2006) gave an ef-
fective version of Lang’s theorem on the equation (1.2.3), which was made
explicit by Bérczes, Evertse, Győry and Pontreau (2009). These results are
proved under a slightly stronger condition than (1.2.4), with α ∈ K in place
of α ∈ Γ.

In the number field case, an effective version of Liardet’s theorem for
linear polynomials F is due to Bérczes, Evertse and Győry (2009), and for
the general case to Bérczes, Evertse, Győry and Pontreau (2009).

In Section 2.2, we present effective versions of Theorems 1.2.1 and 1.2.2
in quantitative form over arbitrary integral domain of characteristic 0 which
is finitely generated over Z, see Theorems 2.2.1 and 2.2.3. In its proof we use
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the result of Győry and Yu over number fields mentioned above, as well as
the Mason-Stothers abc-theorem for function fields (as in Mason (1984)), see
Theorem 5.2.2 in Chapter 5. Further, we formulate some effective generaliza-
tions for equation (1.2.3), due to Bérczes (2015a, 2015b), see Theorems 2.2.4,
2.2.5.

1.3 Hyper- and superelliptic equations
Now consider the equation

f(x) = δym in x, y ∈ A, (1.3.1)

where A is again an integral domain of characteristic 0 which is finitely gen-
erated over Z, f ∈ A[X] is a polynomial of degree n ≥ 2, δ ∈ A\{0} and
m ≥ 2 integer. The equation (1.3.1) is called elliptic if n = 3,m = 2, hyper-
elliptic if n ≥ 3,m = 2, and superelliptic if n ≥ 2,m ≥ 3.

The following theorem follows from the general ineffective Theorem 1.4.1
of Lang.

Theorem 1.3.1. Suppose that in (1.3.1) m or n is at least 3 and that f has no
multiple zeros. Then (1.3.1) has only finitely many solutions.

Under the assumptions of Theorem 1.3.1 the affine curve f(x)− δym = 0
has genus ≥ 1. Thus Theorem 1.3.1 is a consequence of the general Theorem
1.4.1 below on the finiteness of the number of intregral points on algebraic
curves. The example of Pell equations shows that (1.3.1) may have infinitely
many solutions if m = 2 and n = 2.

In the special case A = Z, Mordell (1922a,1922b,1923) proved the finite-
ness of the numbers of solutions of elliptic equations for which the polynomial
f has no multiple zeros. In particular, this implies that for every non-zero in-
teger k, the Mordell equation x3 + k = y2 has only finitely many solutions.
Mordell’s finiteness results were extended by Siegel (1926) to hyperelliptic
equations, by reducing such equations to unit equations. LeVeque (1964) con-
sidered (1.3.1) where f may have multiple zeros, and gave a finiteness crite-
rion for the equation (1.3.1) when A is the ring of integers of a number field.
The proofs of Mordell, Siegel and LeVeque are ineffective.

Over Z, Baker (1968b,1968c,1969) was the first to give effective upper
bounds for the solutions of (1.3.1) in the case when f has at least 3 simple
zeros if m = 2 and at least 2 simple zeros if m ≥ 3. Brindza (1984) made
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LeVeque’s theorem effective and extended it to S-integral solutions from a
number field.

Schinzel and Tijdeman (1976) considered the equation (1.3.1) in the more
general situation when m is also unknown. In the case that A = Z and that f
has at least 2 distinct zeros, they derived an effective upper bound form. Equa-
tion (1.3.1) with m also unknown is nowadays called the Schinzel-Tijdeman
equation. All the effective results mentioned above depend on Baker’s method.

In Chapter 2, we present effective versions of Theorem 1.3.1 and the
Schinzel-Tijdeman theorem in quantitative form, over an arbitrary integral
domain of characteristic 0 which is finitely generated over Z, see Theorems
2.4.1, 2.4.2. These results follow from similar effective results over num-
ber fields, see Theorems 4.5.1, 4.5.2, 4.5.3 and function fields, see Theorems
5.5.1, 5.5.2.

1.4 Curves with finitely many integral points
Let K be a finitely generated extension of Q, and A a subring of K which is
finitely generated over Z. The following finiteness theorem is of fundamental
importance in Diophantine number theory.

Theorem 1.4.1. Let F ∈ K[X, Y ] be a polynomial irreducible over K such
that the affine curve F (x, y) = 0 is of genus ≥ 1. Then this curve has only
finitely many points with coordinates in A.

In other words, under the above assumptions the equation

F (x, y) = 0 in x, y ∈ A (1.4.1)

has only finitely many solutions.
In the case when K is a number field and A its ring of integers this cel-

ebrated theorem was proved by Siegel (1929). Further, Siegel described the
cases when the curve has genus 0 and has infinitely many points with co-
ordinates in A. Mahler (1934) conjectured that a similar statement holds for
rational points with coordinates having only finitely many fixed primes in
their denominators, and proved this for curves of genus 1. In the above gen-
eral form Theorem 1.4.1 is due to Lang (1960); see also Lang (1962, 1983).
In this proof, Lang used a specialization argument, reducing Theorem 1.4.1 to
the case of number fields resp. function fields of one variable and then applied
Siegel’s theorem and its analogue over function fields from Lang (1960).
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Confirming Mordell’s (1922a) famous conjecture on rational points on
curves, Faltings (1983) proved first for number fields K and later for finitely
generated extensions K of Q, cf. Faltings and Wüstholz (1984, page 205,
Thm. 3), that if the above curve has genus ≥ 2 then it has only finitely many
points even with coordinates in K as well. Except for the genus 1 case, Falt-
ings’ theorem contains Theorem 1.4.1.

All known proofs of Theorem 1.4.1 and of Faltings’ theorem are ineffec-
tive. As was mentioned in Sections 1.1 to 1.3, Theorem 1.4.1 has been made
effective in a couple of important special cases. Further, in the case when K
is a number field, an effective version of Theorem 1.4.1 for genus 1 curves
was obtained by Baker and Coates (1970).

It is a major open problem to give an effective version of Theorem 1.4.1
in full generality.

1.5 Decomposable form equations and multivari-
ate unit equations

Let K be a finitely generated extension field of Q, and F ∈ K[X1, . . . , Xm]
a decomposable form in m ≥ 2 variables, i.e., F factorizes into linear forms
over an extension of K, which we may choose to be a given algebraic closure
K ofK. Let δ ∈ K∗ and letA be a subring ofK that is finitely generated over
Z. As a generalization of the Thue equation we consider the decomposable
form equation

F (x) = δ in x = (x1, . . . , xm) ∈ Am. (1.5.1)

Let L0 be a maximal set of pairwise linearly independent linear factors
of F . That is, we can express F as c`e11 · · · `enn , where L0 = {`1, . . . , `n},
c ∈ K∗, and e1, . . . , en are positive integers. For applications, it is convenient
to consider the following generalization of equation (1.5.1). Let L ⊇ L0 be
a finite set of pairwise linearly independent linear forms in X1, . . . , Xm with
coefficients in K, and consider now the equation

F (x) = δ in x = (x1, . . . , xm) ∈ Am with `(x) 6= 0 for all ` ∈ L. (1.5.1a)

For L = L0, equation (1.5.1a) gives (1.5.1).
To state the main results we need some definitions. Given a non-zero lin-

ear subspace V of the K-vector space Km and linear forms `1, . . . , `r in
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K[X1, . . . , Xm], we say that `1, . . . , `r are linearly dependent on V if there
are c1, . . . , cr ∈ K, not all 0, such that c1`1 + · · · + cr`r vanishes identically
on V . Otherwise, we say that `1, . . . , `r are linearly independent on V .

We say that a non-zero linear subspace V of Km is L-non-degenerate if
L contains r ≥ 3 linear forms `1, . . . , `r which are linearly dependent on V ,
while each pair `i, `j (i 6= j) is linearly independent on V . Otherwise, the
space V is called L-degenerate. That is, V is L-degenerate precisely if there
are `1, . . . , `r ∈ L such that `1, . . . , `r are linearly independent on V while
each other linear form ` ∈ L is linearly dependent on V to one of `1, . . . , `r.
In particular, V is L-degenerate if V has dimension 1.

Lastly, we call V L-admissible if no linear form in L vanishes identically
on V .

The following general finiteness criterion was proved by Evertse and Győry
(1988b).

Theorem 1.5.1. The following two statements are equivalent:

(i) Every L-admissible linear subspace of Km of dimension ≥ 2 is L0-
non-degenerate;

(ii) For every subring A of K which is finitely generated over Z and for
every δ ∈ K∗, the equation (1.5.1a) has only finitely many solutions.

For L = L0, this theorem gives a finiteness criterion for equation (1.5.1).
It relates a statement (cf. (ii)) about the finiteness of the number of solutions to
a condition (cf. (i)) which can be formulated in terms of linear algebra. It can
be shown that (i) is effectively decidable once K, L0 and L are given in some
explicit form, see Evertse and Győry (2015, Theorem 9.1.1) for an equivalent
formulation of (i) for which the effective decidability is clear.

In the case m = 2, L = L0, Theorem 1.5.1 gives immediately Theorem
1.1.1 on Thue equations. For a more general version of Theorem 1.5.1, see
Evertse and Győry (2015, Chapter 9).

Decomposable form equations are of basic importance in Diophantine
number theory. Besides Thue equations (when m = 2), important classes
of decomposable form equations are norm form equations, discriminant form
equations and index form equations.

Let us start with norm form equations. Let α1 = 1, α2, . . . , αm ∈ K and
suppose they are linearly independent overK. PutK ′ := K(α1, . . . , αm). As-
sume thatK ′ is of degree n ≥ 3 overK. Putting `(X) = α1X1 +· · ·+αmXm,
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denote by `(i)(X) = α
(i)
1 X1 + · · · + α

(i)
mXm, i = 1, . . . , n, the conjugates of

`(X) with respect to K ′/K. Then

NK′/K(α1X1 + · · ·+ αmXm) :=
n∏
i=1

`(i)(X)

is a decomposable form of degree n with coefficients in K. Such a form is
called a norm form over K (or with respect to K ′/K) and, for δ ∈ K∗,

NK′/K(α1x1 + · · ·+ αmxm) = δ in x1, . . . , xm ∈ A (1.5.2)

a norm form equation.
Let V be the K-vector space generated by α1, . . . , αm in K ′. We say that

V is degenerate if there exist a µ ∈ K ′∗ and an intermediate number field K ′′

with K ( K ′′ ( K ′ such that µK ′′ ⊆ V . The following finiteness criterion is
a consequence of Theorem 1.5.1; see Evertse and Győry (1988b).

Corollary 1.5.2. The following two statements are equivalent:

(i) V is non-degenerate;

(ii) For all δ ∈ K∗ and all subrings A of K which are finitely generated
over Z, equation (1.5.2) has only finitely many solutions.

For K = Q, A = Z, Schmidt (1971) gave a criterion for equation (1.5.2)
to have only finitely many solutions for every δ ∈ Q∗. Then Schmidt (1972)
proved that all solutions of (1.5.2) over Z belong to finitely many so-called
families of solutions. These results were later extended by Schlickewei (1977)
to the case of arbitrary finitely generated subrings A of Q, and by Laurent
(1984) to the above general case. As a generalization of Schmidt’s (1972)
result, Győry (1993) showed that all solutions of equation (1.5.1) belong to
finitely many so-called wide families of solutions.

Next consider discriminant form equations. Let againK ′ = K(α1, . . . , αm)
be an extension of degree n ≥ 3 of K, where now 1, α1, . . . , αm are K-
linearly independent elements of K ′. Let `(i)(X) = X0 + α

(i)
1 X1 + · · · +

α
(i)
mXm, i = 1, . . . , n, be the conjugates of `(X) = X0 +α1X1 + · · ·+αmXm

with respect to K ′/K. Then the decomposable form

DK′/K(α1X1 + · · ·+ αmXm) =
∏

1≤i<j≤n

(`(i)(X)− `(j)(X))2
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has its coefficients in K and is independent of X0. It is called a discriminant
form, while, for δ ∈ K∗,

DK′/K(α1x1 + · · ·+ αmxm) = δ in x1, . . . , xm ∈ A (1.5.3)

is called a discriminant form equation.
The following finiteness result is due to Győry (1982). It can be deduced

from Theorem 1.5.1 as well.

Theorem 1.5.3. Under the above assumptions, equation (1.5.3) has only finitely
many solutions.

This theorem and its various versions have several important applications,
among others to index form equations and power integral bases; for references
see e.g. Győry (1980b) and Evertse and Győry (2017a).

The above results concerning equations (1.5.1), (1.5.1a), (1.5.2) and (1.5.3)
have been extended to equations of the form

F (x) ∈ δA∗ in x = (x1, . . . , xm) ∈ Am. (1.5.4)

The set of solutions of equation (1.5.4) can be divided into A∗-cosets x0A
∗,

where x0 = (x1, . . . , xm) is a solution of (1.5.4). As was already mentioned,
by a theorem of Roquette (1957) A∗ is finitely generated. Hence (1.5.4) can
be reduced to finitely many equations of the form (1.5.1).

The proof of Theorem 1.5.1 and its variant concerning (1.5.4) depends on
the following finiteness result on multivariate unit equations of the form

a1x1 + · · ·+ amxm = 1 in x1, . . . , xm ∈ A∗ resp. in Γ, (1.5.5)

where K is a field of characteristic 0, a1, . . . , am are non-zero elements of K,
A is a subring of K that is finitely generated over Z, and Γ is a finitely gener-
ated subgroup of K∗. A solution x1, . . . , xm of (1.5.5) is called degenerate if
there is a vanishing subsum on the left hand side of (1.5.5). In this case (1.5.5)
has obviously infinitely many solutions if A∗ resp. Γ is infinite. The following
theorem was proved by van der Poorten and Schlickewei (1982) and Evertse
(1984) in the number field case, and by Evertse and Győry (1988a) and van
der Poorten and Schlickewei (1991) in the finitely generated case.

Theorem 1.5.4. Equation (1.5.5) has only finitely many non-degenerate so-
lutions.
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As is pointed out in Evertse and Győry (1988b), Theorem 1.5.4 and the
implication (i)⇒(ii) of Theorem 1.5.1 are equivalent statements; see also Ev-
ertse and Győry (2015, Chapter 9).

The above presented or mentioned results are all ineffective. In certain
important cases they have effective versions. Concerning the discriminant
form equation (1.5.3) over Z, the first effective finiteness result was obtained
by Győry (1976). This was extended to the number field case by Győry and
Papp (1977) and Győry (1981a). Győry and Papp (1978) over Z, and Győry
(1981a) over arbitrary number fields established effective finiteness theorems
for equations (1.5.1), (1.5.1a) and (1.5.2), for some classes of decomposable
forms and norm forms, including binary forms and discriminant forms. As
was mentioned in Section 1.2, the first effective finiteness results for bivariate
unit equations, i.e., equations (1.5.5) in m = 2 unknowns over number fields
were given by Győry (1972,1973,1974).

Győry (1983) extended his effective results on equations (1.5.1), (1.5.2),
(1.5.3) over number fields to a class of finitely generated ground domains over
Z which may contain both algebraic and transcendental elements over Q. In
Chapter 2, we present a further extension, in slightly more general form, to
the case of arbitraryground domains of characteristic 0 that are finitely gener-
ated over Z, see Theorem 2.6.1. However, apart from the case of general dis-
criminant form equations (1.5.3), it remains a major open problem to make
Theorem 1.5.1, Corollary 1.5.2 and Theorem 1.5.4 effective in full generality.

1.6 Discriminant equations for polynomials and
integral elements

Let again A be an integral domain of characteristic 0 which is finitely gen-
erated over Z and K its quotient field. Take a finite extension G of K. Let
n ≥ 2 be an integer, δ a non-zero element of A and consider the discriminant
equation for polynomials

D(f) = δ in monic f ∈ A[X] of degree n having all its zeros in G. (1.6.1)

Two monic polynomials f, f ′ ∈ A[X] are called strongly A-equivalent
if f ′(X) = f(X + a) for some a ∈ A. 1 In this case f and f ′ have the

1With our definitions of strong A-equivalence and A-equivalence (sec), which is consid-
ered below, we follow Győry (1982) and Evertse and Győry (2017b).
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same discriminant. Hence the solutions of (1.6.1) can be divided into strong
A-equivalence classes.

Denote by AK the integral closure of A in K.

Theorem 1.6.1. Let n ≥ 2 be an integer and A an integral domain of char-
acteristic 0, finitely generated over Z, with quotient field K such that the
quotient A-module

( 1nA ∩ AK)/A is finite. (1.6.2)

Further, let G be a finite extension of K and δ a non-zero element of A. Then
the set of monic polynomials f ∈ A[X] satisfying (1.6.1) is a union of finitely
many strong A-equivalence classes.

This was proved in Evertse and Győry (2017b) in an effective form; see
also Theorem 2.8.4 in Section 2.8.

The class of domains A with (1.6.2) contains among others all finitely
generated subrings of Q and, more generally, all finitely generated domains
over Z which are of characteristic 0 and are integrally closed. In the latter
case, Győry (1982) proved the following more precise result, without fixing
the degrees of the polynomials under consideration.

Theorem 1.6.2. Let A be an integrally closed integral domain of characteris-
tic 0 which is finitely generated over Z, andG a finite extension of the quotient
field ofA. Then the set of solutions of (1.6.1) is a union of finitely many strong
A-equivalence classes.

We don’t know if condition (1.6.2) is the weakest possible. As is pointed
out in Evertse and Győry (2017b), Theorem 1.6.1 is not true for arbitrary
finitely generated domains of characteristic 0.

We also consider discriminant equations where the unknowns are ele-
ments of orders of finite étale K-algebras. Let Ω be a finite étale K-algebra,
i.e., Ω = K[X]/(P ) = K[θ], where P ∈ K[X] is some separable polyno-
mial and θ := X (mod P ). If in particular P is irreducible over K, then
Ω is a finite extension field of K. Writing [Ω : K] := dimK Ω, we have
[Ω : K] = degP . LetK be an algebraic closure ofK. By aK-homomorphism
from Ω toK we mean a non-trivialK-algebra homomorphism. There are pre-
cisely n := [Ω : K] K-homomorphisms from Ω to K which map θ to the n
distinct zeros of P in K. We denote these by x 7→ x(i) (i = 1, . . . , n). The
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discriminant of α ∈ Ω over K is given by

DΩ/K(α) =
∏

1≤i<j≤n

(α(i) − α(j))2,

where α(i) denotes the image of α under x 7→ x(i). This is an element of K.
It is easy to see that DΩ/K(α + a) = DΩ/K(α) for α ∈ Ω, a ∈ K. Further,
DΩ/K(α) is different from zero if and only if Ω = K[α].

Consider now discriminant equations for integral elements, of the shape

DΩ/K(ξ) = δ in ξ ∈ O, (1.6.3)

where δ is a non-zero element of A, and O is an A-order of Ω, i.e., an A-
subalgebra of Ω which spans Ω as a K-vector space and which is finitely
generated as an A-module. Then O is in fact an A-subalgebra of the integral
closure of A in Ω. As was mentioned above, AΩ is finitely generated as an
A-module.

If ξ ∈ O is a solution of (1.6.3), then so is ξ + a for every a ∈ A. Thus,
the solution of (1.6.3) split into A-cosets ξ + A = {ξ + a : a ∈ A}.

The following theorem was established by Evertse and Győry (2017b) in
an effective form; see also Corollary 2.8.3.

Theorem 1.6.3. Let A be an integral domain of characteristic 0 which is
finitely generated over Z. Further, let K be the quotient field of A, Ω a finite
étale K-algebra,O an A-order in Ω, and δ a non-zero element of A. Then the
following two assertions are equivalent:

(i) The quotient A-module (O ∩K)/A is finite.

(ii) For every non-zero δ ∈ A, the set of ξ ∈ O with (1.6.3) is a union of
finitely many A-cosets.

The implication (ii)⇒(i) is obvious. Suppose (i) does not hold. Pick ξ0 ∈
O with Ω = K[ξ0] and let δ := DΩ/K(ξ0). Then δ 6= 0, the O ∩ K-coset
ξ0 +O∩K is contained in the set of solutions of (1.6.3), and thisO∩K-coset
is clearly the union of infinitely many A-cosets.

We note that O ∩K = A if A is integrally closed. Hence Theorem 1.6.3
immediately gives the following.

Corollary 1.6.4. Let A be an integrally closed integral domain of character-
istic 0 which is finitely generated over Z, K its quotient field, Ω a finite étale
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K-algebra, O an A-order in Ω, and δ a non-zero element of A. Then the set
of ξ ∈ O with (1.6.3) is a union of finitely many A-cosets.

As was mentioned above,AΩ is finitely generated as anA-module. Taking
for Ω a finite extension L of K and for O the integral closure AL of A in L,
we get the following important special case which is due to Győry (1982).

Corollary 1.6.5. Let A be an integrally closed integral domain of charac-
teristic 0 which is finitely generated over Z, K its quotient field, L a finite
extension of K and δ ∈ A\{0}. Then the set of solutions of the equation

DL/K(ξ) = δ in ξ ∈ AL (1.6.4)

is a union of finitely many A-cosets.

The following more general versions of equations (1.6.1) and (1.6.3) are
also important for applications:

D(f) ∈ δA∗ in monic f ∈ A[X] of degree n ≥ 2
having all its zeros in G, (1.6.1a)

and

DΩ/K(ξ) ∈ δA∗ in ξ ∈ O. (1.6.3a)

The solutions of (1.6.1a) can be partitioned into so-called A-equivalence
classes, where two monic polynomials f, f ′ ∈ A[X] of degree n are called A-
equivalent if f ′(X) = unf(u−1X + a) for some u ∈ A∗, a ∈ A. Combining
Theorem 1.6.1 with Roquette’s (1957) theorem that A∗ is finitely generated,
it follows that under the assumption (1.6.2) the polynomials f with (1.6.1a)
lie only in finitely many A-equivalence classes. For integrally closed A, this
finiteness result was proved by Győry (1982) in a more general form, without
fixing the degree of the polynomials f under consideration.

Similarly, the solutions of (1.6.3a) can be divided intoA-equivalence classes,
where two elements α, α′ of O are called A-equivalent if α′ = uα + a with
some u ∈ A∗, a ∈ A. Together with Roquette’s theorem, Theorem 1.6.3 im-
plies that under the condition (i) of Theorem 1.6.3, equation (1.6.3a) has only
finitely many A-equivalence classes of solutions. In case of integrally closed
A, this was obtained in Evertse and Győry (2017a, Chapter 5).
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A further important application is as follows. If

O = A[ξ] (1.6.5)

for some ξ ∈ O and ξ′ isA-equivalent to ξ then alsoO = A[ξ′]. The above re-
sult concerning (1.6.3a) implies that under the condition (i) of Theorem 1.6.3,
the set of ξ with (1.6.5) is a union of finitely many A-equivalence classes.
For integrally closed A, see Evertse and Győry (2017a, Chapter 5), and if in
addition Ω is a finite extension of K, see Győry (1982).

Over Z and more generally over number fields, the first finiteness results
concerning equation (1.6.1), (1.6.1a), (1.6.3), (1.6.3a), (1.6.5) were proved by
Győry, and in effective form. He proved in Győry (1973) forA = Z that given
a non-zero δ ∈ Z, there are only finitely many strong Z-equivalence classes of
monic f ∈ Z[X] with discriminant δ, and a full set of representatives of these
equivalence classes can be effectively determined. Here neither the degree n,
nor the splitting field G of the polynomials f is fixed. This result implied the
first effective finiteness theorem for equation (1.6.4) with A = Z. Further, in
Győry (1976) it is proved in an effective form that if L is a number field with
ring of integers OL then there are only finitely many Z-equivalence classes of
α ∈ OL with OL = Z[α].

It follows from finiteness results of Győry (1978a,1978b,1984b) that if A
is the ring of integers or S-integers of a number field then the finiteness re-
sults presented above on equations (1.6.1), (1.6.1a), (1.6.3), (1.6.3a), (1.6.5)
are valid in effective form. Moreover, these versions of Theorem 1.6.2 remain
true without fixing the number field G or the degree n of the polynomials f .
Perhaps such a finiteness result without fixing G can be extended to certain
finitely generated integral domains of low transcendence degree. But extend-
ing this to arbitrary finitely generated domains over Z seems to be very hard.

For a class of finitely generated ground domains over Z which may con-
tain both algebraic and transcendental elements over Q, effective versions of
Theorem 1.6.2 and Corollary 1.6.5 were obtained by Győry (1984b). These
were extended, in slightly more general form, by Evertse and Győry (2017b)
to the case of arbitrary finitely generated ground domains over Z. These will
be presented in Chapter 2, Section 2.8.
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Chapter 2

Effective results for Diophantine
equations over finitely generated
domains: the statements

In this chapter general effective finiteness theorems are presented for Dio-
phantine equations over finitely generated integral domains of characteristic
0, including unit equations, Thue equations, hyper- and superelliptic equa-
tions, the Schinzel–Tijdeman equation, the Catalan equation, decomposable
form equations and discriminant equations. Apart from discriminant equa-
tions, the other theorems are established in quantitative form, providing ef-
fective bounds for the solutions. The results presented make it possible to
solve, at least in principle, the equations under consideration. Their proofs are
given in Chapters 9 and 10.

2.1 Notation and preliminaries
To make sense of statements such as that a particular Diophantine equation
can be solved effectively over a given finitely generated domain, we need an
explicit representation for this domain, as well as for its elements. We start
below with the necessary definitions. A more detailed treatment can be found
in Chapter 6, and in particular in Section 6.3.

Let A = Z[z1, . . . , zr] be a finitely generated integral domain of charac-
teristic 0. Assume that r > 0 and let

I := {f ∈ Z[X1, . . . , Xr] : f(z1, . . . , zr) = 0}.
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Then I is an ideal of Z[X1, . . . , Xr] which by Hilbert’s Basis Theorem is
finitely generated, that is, we have

A ∼= Z[X1, . . . , Xr]/I, with I = (f1, . . . , fM) (2.1.1)

for some finite set of polynomials f1, . . . , fM ∈ Z[X1, . . . , Xr]. We call the
tuple (f1, . . . , fM) an ideal representation for A. Recall that a necessary and
sufficient condition for A to be a domain of characteristic 0 is that I be a
prime ideal of Z[X1, . . . , Xr] with I ∩ Z = (0). Given a set of generators
(f1, . . . , fM) for I this can be checked effectively for example using Aschen-
brenner (2004, Lemma 4.8, Corollary 4.9) and the comments in Chapter 6 of
the present work.

To perform computations in A it will be necessary to be able to decide
whether for any given f ∈ Z[X1, . . . , Xr] and any given ideal I = (f1, . . . , fM)
of Z[X1, . . . , Xr] we have f ∈ I, that is, whether there exist g1, . . . , gM ∈
Z[X1, . . . , Xr] such that f = g1f1 + · · · + gMfM . An algorithm performing
this task is called an ideal membership algorithm for Z[X1, . . . , Xr]. Several
such algorithms have been developed since the 1960s; we mention only the
algorithm of Simmons (1970), and the more precise algorithm of Aschenbren-
ner (2004), which plays an important role in our work; see Corollary 6.1.6 in
Chapter 6.

Denote byK the quotient field ofA. For α ∈ A, we call f a representative
for α, or say that f represents α if f ∈ Z[X1, . . . , Xr] and α = f(z1, . . . , zr).
With the notation (2.1.1) this means that α corresponds to the residue class
f mod I. Further, for α ∈ K, we call (f, g) a pair of representatives for
α, or say that (f, g) represents α if f, g ∈ Z[X1, . . . , Xr], g 6∈ I and α =
f(z1, . . . , zr)/g(z1, . . . , zr). Note that g 6∈ I can be verified by means of an
ideal membership algorithm for Z[X1, . . . , Xr]. A representative for a tuple
(x1, . . . , xm) ∈ Am is a tuple (x̃1, . . . , x̃m) with elements from Z[X1, . . . , Xr]
such that x̃i represents xi, for i = 1, . . . ,m. Finally, a representative for a
polynomial F with coefficients in A is a polynomial F̃ with coefficients in
Z[X1, . . . , Xr] that represent the corresponding coefficients of F .

We say that the domain A is effectively given if an ideal representation as
in (2.1.1) for it is given. Further, we say that an element α of A, resp. of K, is
effectively given/computable if a representative, resp. a pair of representatives,
for α is given/can be computed.

Given (pairs of) representatives for two elements of A or K, it is clear
how to compute a (pair of) representative(s) for their sum, difference, product
or quotient. Using an ideal membership algorithm for Z[X1, . . . , Xr] we can
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decide whether two given f, f ′ ∈ Z[X1, . . . , Xr] represent the same element
of A (i.e., whether f − f ′ ∈ I) and whether two given pairs (f, g), (f ′, g′) in
Z[X1, . . . , Xr] represent the same element of K (this amounts to g · g′ 6∈ I
and fg′ − f ′g ∈ I).

Suppose we know somehow that a particular system of polynomial Dio-
phantine equations

F1(x) = 0, . . . , Fs(x) = 0 in x = (x1, . . . , xm) ∈ Am (2.1.2)

where F1, . . . , Fs ∈ A[Y1, . . . , Ym], has only finitely many solutions. Then
determining the solutions of (2.1.2) effectively means finding a finite list of
tuples x̃ = (x̃1, . . . , x̃m) ∈ Z[X1, . . . , Xr]

m that represent all the solutions
in Am of (2.1.2) and such that no two tuples in the list represent the same
solution.

Rather than merely showing that the set of solutions of (2.1.2) can be
determined effectively, it is sometimes possible to obtain more precise quan-
titative statements by estimating the sizes of the coordinates of the tuples rep-
resenting the solutions. In fact, we define the size of a non-zero polynomial
f ∈ Z[X1, . . . , Xr] by

s(f) := max(1, deg f, h(f)),

where deg f denotes the degree, that is, total degree, of f and h(f) the log-
arithmic height of f , that is the logarithm of the maximum of the absolute
values of the coefficients of f . Further, we define s(0) := 1. Clearly, there
are only finitely many polynomials in Z[X1, . . . , Xr] with size below a given
bound, and these can be determined effectively.

Proposition 2.1.1. Let the domain have ideal representation f1, . . . , fM as
in (2.1.1), and let F1, . . . , Fs ∈ A[Y1, . . . , Ym] be given by representatives
F̃1, . . . , F̃s, which are polynomials in the variables Y1, . . . , Ym with coeffi-
cients in Z[X1, . . . , Xr]. Suppose we can compute C in terms of f1, . . . , fM ,
F̃1, . . . , F̃s such that every solution of the system (2.1.2) has a representative
x̃ = (x̃1, . . . , x̃m) with

x̃i ∈ Z[X1, . . . , Xr], s(x̃i) ≤ C for i = 1, . . . ,m.

Then we can effectively determine the solutions of (2.1.2).

Proof. We enumerate allm-tuples consisting of elements in Z[X1, . . . , Xr] of
size at mostC. By means of an ideal membership algorithm for Z[X1, . . . , Xr]
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we check for each of these tuples x̃ whether F̃i(x̃) ∈ I for i = 1, . . . , s and
make a list of the tuples passing this test. This list contains at least one rep-
resentative for each solution of (2.1.2). Subsequently we check, for any two
tuples x̃1, x̃2 from this list, whether there is an index i such that the differ-
ence of their i-th coordinates is not in I. If there is not such an index i, then
x̃1, x̃2 represent the same solution of (2.1.2) so we may remove one of them
from our list. What remains is a list with precisely one representative for each
solution.

In Sections 2.2 to 2.5 we present effective finiteness results in quantita-
tive form, i.e., with bounds for the sizes for representatives of their solutions,
for unit equations, a generalization of unit equations, Thue equations, hyper-
and superelliptic equations, the Schinzel–Tijdeman equation and the Catalan
equation over finitely generated domains. These results have been proved by
means of the effective method of Evertse and Győry (2013), reducing the
equations to the number field and function field cases, applying effective spe-
cializations. As will be pointed out in Chapters 3 and 7, this is an improved
version of the effective specialization method of Győry (1983,1984b).

Sections 2.6–2.8 are devoted to effective finiteness results concerning de-
composable form equations, norm form equations and discriminant equations
over finitely generated domains. Here, following Győry’s method, the equa-
tions are reduced to unit equations and then the general effective results con-
cerning unit equations are used. The proofs use several effective results from
commutative algebra and some new, effective, so-called ’degree-height esti-
mates’ from Chapter 8 for elements of K. In Section 2.9 we mention some
Diophantine problems that can be solved effectively over number fields but
for which as yet no effective analogue over finitely generated domains could
be established. We recall that except for Section 2.5 dealing with the Catalan
equation, the earlier less general effective theorems were already mentioned
in Chapter 1, in the corresponding sections. They will be also referred to in
Chapter 4 treating effective results over number fields. Hence, apart from Sec-
tion 2.5, no mention will be made in this chapter on earlier effective results
over number fields or special finitely generated domains.

Throughout this work we shall use O(·) to denote a quantity which is an
effectively computable positive absolute contant times the expression between
the parentheses. The constant may be different at each occurence of the O-
symbol.
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2.2 Unit equations in two unknowns
In what follows, A will denote an integral domain of characteristic 0 that is
finitely generated over Z. We assume that A ∼= Z[X1, . . . , Xr]/(f1, . . . , fM),
where f1, . . . , fM are given elements of Z[X1, . . . , Xr].

We start with unit equations in two unknowns, these are equations of the
form

ax+ by = c in x, y ∈ A∗ (2.2.1)

where a, b, c are non-zero elements of A. Let ã, b̃, c̃ be representatives in
Z[X1, . . . , Xr] for a, b, c, respectively.

The effective result below was established by Evertse and Győry (2013).

Theorem 2.2.1. Assume that f1, . . . , fM and ã, b̃, c̃ all have degree at most
d and logarithmic height at most h, where d ≥ 1, h ≥ 1. Then for each
solution x,y of (2.2.1), there are representatives x̃, x̃′, ỹ, ỹ′ of x, x−1, y, y−1,
respectively, such that

s(x̃), s(x̃′), s(ỹ), s(ỹ′) ≤ exp
(

(2d)exp O(r)h
)
.

The exponential dependence of the upper bound on d and h is a conse-
quence of the use of Baker’s method in the proof of Theorem 4.3.1 on unit
equations over number fields. The bad dependence on r comes from the effec-
tive commutative algebra for polynomial rings over fields and over Z, which
is used in the specialization method of Evertse and Győry (2013); see also
Chapters 6 to 9.

We deduce the following effective version of Lang’s Theorem 1.2.1.

Corollary 2.2.2. Equation (2.2.1) has only finitely many solutions. Further, if
A and a, b, c are effectively given, then all solutions of (2.2.1) can be deter-
mined effectively.

Proof of Corollary 2.2.2. Notice that equation (2.2.1) is equivalent to the sys-
tem

ax+ by = c, x · x′ = 1, y · y′ = 1 in x, x′, y, y′ ∈ A.

Apply Proposition 2.1.1 with C the upper bound occurring in Theorem 2.2.1.

We present a variation on Theorem 2.2.1. Let γ1, . . . , γs be multiplicately
independent elements of K∗. We mention that Proposition 7.5.2 in Chapter
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7 provides a method to check whether elements γ1, . . . , γs given by pairs of
representatives are multiplicatively independent; see also Lemma 7.2 from
Evertse and Győry (2013). Let again a, b, c be non-zero elements of A and
consider the equation

aγu11 . . . γuss + bγv11 . . . γvss = c in u1, . . . , us, v1, . . . , vs ∈ Z. (2.2.2)

Theorem 2.2.3. Let ã, b̃, c̃ be representatives for a, b, c, and for i = 1, . . . , s
let (gi,1, gi,2) be a pair of representatives for γi. Suppose that f1, . . . , fM , ã, b̃, c̃
and gi,1, gi,2 (i = 1, . . . , s) all have degree at most d and logarithmic height
at most h, where d ≥ 1, h ≥ 1. Then for each solution (u1, . . . , vs) of (2.2.2)
we have

max(|u1|, . . . , |us|, |v1|, . . . , |vs|) ≤ exp
(

(2d)exp O(r+s)h
)
.

An immediate consequence of Theorem 2.2.3 is that for given f1, . . . , fM ,
a, b, c and γ1, . . . , γs, all solutions of (2.2.2) can be determined effectively.

Since the unit group A∗ is finitely generated, equation (2.2.1) may be
viewed as a special case of (2.2.2). But no general effective algorithm is
known to find a finite system of generators for A∗, hence we cannot deduce
an effective result for (2.2.1) from Theorem 2.2.3. In fact, in Chapter 9 we
shall argue reversely, and prove Theorem 2.2.3 by combining Theorem 2.2.1
with an effective result on equations of the type γu11 . . . γuss = γ0 in integers
u1, . . . , us, where γ0, γ1, . . . , γs ∈ K∗.

Finally, we mention that using the effective method of Evertse and Győry
(2013), Bérczes (2015a,2015b) made effective in full generality the results of
Lang resp. of Liardet presented in Section 1.2 on the equations

F (x, y) = 0 in x, y ∈ A∗, (2.2.3)

F (x, y) = 0 in x, y ∈ Γ (2.2.4)

where Γ is a finitely generated multiplicative subgroup of K∗, Γ is its divi-
sion group and F ∈ A[X, Y ]. In Bérczes’ results, F has to satisfy a slightly
stronger condition than in Theorems 1.2.3 and 1.2.4, that is, F ∈ A[X, Y ] is
a non-constant polynomial that is not divisible by any polynomial of the form

XmY n − α or Xm − αY n

with α ∈ K and with non-negative integers m,n, not both zero. As was
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pointed out by Bérczes, this condition can be checked effectively once pairs
of representatives for the coefficients of F are given.

Assume that f1, . . . , fM and a set of representatives for the coefficients of
F have degree at most d and logarithmic height at most h, with d > 1, h > 1.
Further, denote by N the total degree of F . Bérczes (2015a, Thm. 2.1) proved
in a more precise form the following.

Theorem 2.2.4. Under the above assumptions, there is an effectively com-
putable number C1 depending only on r, d, h and N such that for every solu-
tion x, y ∈ A∗ of (2.2.3) there are representatives x̃, x̃′, ỹ, ỹ′ of x, x−1, y, y−1,
respectively, such that

s(x̃), s(x̃′), s(ỹ), s(ỹ′) ≤ C1.

Let the generators γ1, . . . , γs of Γ be given by pairs of representatives
(g1, h1), . . . , (gs, hs). Assume now that f1, . . . , fM , g1, h1, . . . , gs, hs and a set
of representatives for the coefficients of F have degree at most d and logarith-
mic height at most h, with d, h > 1. Then Bérczes (2015b, Thm. 2.1) obtained
the following.

Theorem 2.2.5. There is an effectively computable number C2 depending
only on r, s, d, h and N such that for every solution x, y of (2.2.4) in Γ we
have

xk = γ
k1,x
1 · · · γks,xs , yk = γ

k1,y
1 · · · γks,ys ,

where k, k1,x, . . . , ks,x, k1,y, . . . , ks,y are integers with k ≥ 1 and

k, |k1,x|, . . . , |ks,x|, |k1,y|, . . . , |ks,y| ≤ C2.

Theorems 2.2.4 and 2.2.5 imply in an effective form the finiteness of the
number of solutions of equations (2.2.3) and (2.2.4). We have not included
the rather technical proofs of Theorems 2.2.4 and 2.2.5 in our book.

2.3 Thue equations

As before, A denotes an integral domain of characteristic 0 that is finitely
generated over Z, and we assume that A ∼= Z[X1, . . . , Xr]/I, where I =
(f1, . . . , fM) with f1, . . . , fM given elements of Z[X1, . . . , Xr]. We consider
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the Thue equation

F (x, y) = δ in (x, y) ∈ A2 (2.3.1)

over A, where

F (X, Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ A[X, Y ]

is a binary form of degree n ≥ 3 with non-zero discriminant DF , i.e., with
n pairwise non-proportional linear factors, and δ ∈ A\{0}. We choose repre-
sentatives

ã0, ã1, . . . , ãn, δ̃ ∈ Z[X1, . . . , Xr]

of a1, . . . , an, δ respectively, where δ̃ 6∈ I and the discriminant DF̃ of F̃ :=∑n
j=0 ãjX

n−jY j is not in I. These conditions on δ̃ and DF̃ can be checked
by means of an ideal membership algorithm for Z[X1, . . . , Xr].

The next theorem is due to Bérczes, Evertse and Győry (2014).

Theorem 2.3.1. Assume that f1, . . . , fM and ã0, . . . , ãn, δ̃ all have degree at
most d and logarithmic height at most h, where d ≥ 1, h ≥ 1. Then every
solution (x, y) of equation (2.3.1) has a representative (x̃, ỹ) such that

s(x̃), s(ỹ) ≤ exp{n!(nd)expO(r)h}. (2.3.2)

Combining Theorem 2.3.1 with Proposition 2.1.1 one immediately obtains
the following:

Corollary 2.3.2. Equation (2.3.1) has only finitely many solutions. Further, if
A, a1, . . . , an and δ are effectively given, then all solutions of (2.3.1) can be
determined effectively.

2.4 Hyper- and superelliptic equations, the Schinzel–
Tijdeman equation

We keep our notation that A is an integral domain of characteristic 0 that
is finitely generated over Z, satisfying A ∼= Z[X1, . . . , Xr]/I, where I =
(f1, . . . , fM) with f1, . . . , fM given elements of Z[X1, . . . , Xr]. We now con-
sider the equation

F (x) = δym in x, y ∈ A, (2.4.1)
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where
F (X) = a0X

n + a1X
n−1 + · · ·+ an ∈ A[X],

δ ∈ A\{0} and F has n distinct roots in an algebraic closure of the quotient
field of A, i.e., a0 as well as the discriminant of F are different from zero. We
choose representatives

ã0, ã1, . . . , ãn, δ̃ ∈ Z[X1, . . . , Xr]

for a0, a1, . . . , an, δ, respectively, where δ̃, ã0 and the discriminant of F̃ :=∑n
j=0 ãjX

n−j are not in I. We assume that

either m = 2 and n ≥ 3 or m ≥ 3 and n ≥ 2.

The following theorems are due to Bérczes, Evertse and Győry (2014).

Theorem 2.4.1. Assume that f1, . . . , fM and ã0, . . . , ãn, δ̃ have degree at most
d and logarithmic height at most h, where d ≥ 1, h ≥ 1. Then every solution
of equation (2.4.1) has representatives x̃, ỹ such that

s(x̃), s(ỹ) ≤ exp{m3(nd)exp O(r)h}. (2.4.2)

Combined with Proposition 2.1.1, this provides a method to determine ef-
fectively the solutions of (2.4.1), i.e., it provides an effective version of The-
orem 1.3.1 concerning hyperelliptic/superelliptic equations.

Our next result concerns the Schinzel-Tijdeman equation

F (x) = δym in x, y ∈ A, m ∈ Z≥2. (2.4.3)

Keeping the above notation, we have

Theorem 2.4.2. Assume that in (2.4.3) F has degree n ≥ 2 and non-zero
discriminant. Let x, y ∈ A, m ≥ 2 integer be a solution of (2.4.3). Then with
the same notation as in Theorem 2.4.1 we have

m ≤ exp{(nd)exp O(r)h}
if y ∈ Q, y 6= 0, and y is not a root of unity, (2.4.4)

m ≤ (nd)exp O(r) if y 6∈ Q. (2.4.5)
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2.5 The Catalan equation
As before, A is an integral domain of characteristic 0 that is finitely gener-
ated over Z, satisfying A ∼= Z[X1, . . . , Xr]/I, where I = (f1, . . . , fM) with
f1, . . . , fM given elements of Z[X1, . . . , Xr]. Consider the Catalan equation

xm − yn = 1 in x, y ∈ A\{0}
and m,n ∈ Z with m,n > 1 and mn > 4. (2.5.1)

In contrast with the other equations from this chapter, we cite here the
most important earlier results concerning equation (2.5.1). In the classical
case A = Z, Catalan (1844) conjectured that 32 − 23 = 1 is the only solution
of the equation in positive integers x, y,m, n with m,n > 1. In this case
Tijdeman (1976), using Baker’s method, gave an effectively computable, but
very large upper bound for the solutions of equation (2.5.1). Brindza, Győry
and Tijdeman (1986) and Brindza (1987) generalized Tijdeman’s result for
the case when x, y are integers resp. S-integers of a given number field, and
Brindza (1993) further generalized this for the case of the restricted class of
finitely generated ground domains A considered in Győry (1983,1984b).

Mihailescu (2004) used methods from pure algebraic number theory to
prove Catalan conjecture over Z.

Strengthening earlier results of Brindza (1987, 1993) on equation (2.5.1),
Koymans (2016, 2017) proved the following theorem using the method of
Evertse and Győry (2013).

Theorem 2.5.1. Assume that f1, . . . , fM have degree at most d and logarith-
mic height at mos h, where d ≥ 1, h ≥ 1. Let x, y,m, n be a solution of
(2.5.1) such that x, y are not roots of unity. Then

max(m,n) ≤ exp exp exp{(2d)exp O(r)h} if x, y ∈ Q, (2.5.2)

max(m,n) ≤ (2d)exp O(r) if x, y 6∈ Q, (2.5.3)

It is easy to see that in Theorem 2.5.1 the conditions m,n > 1,mn > 4
are necessary.

By combining Theorem 2.5.1 with Theorem 2.4.1, it follows immediately
that equation (2.5.1) has only finitely many solutions with x, y not roots of
unity and, combined with Proposition 2.1.1, we obtain that from a given ideal
representation (f1, . . . , fM), all solutions can be determined effectively.

In his master’s thesis, Koymans (2016) proved an analogue of Theorem
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2.5.1 over finitely generated domains of positive characteristic.

2.6 Decomposable form equations

Let again A be an integral domain of characteristic 0 which is finitely gener-
ated over Z such that A ∼= Z[X1, . . . , Xr]/I with I = (f1, . . . , fM) for some
given polynomials f1, . . . , fM ∈ Z[X1, . . . , Xr]. We denote byK the quotient
field of A, and by K an algebraic closure of K.

Pick linear forms

`i = αi,1X1 + · · ·+ αi,mXm ∈ K[X1, . . . , Xm] (i = 1, . . . , n) (2.6.1)

in m ≥ 2 variables. We allow that some of these linear forms are equal. Let
F = `1 · · · `n be their product, δ ∈ K∗, and consider the decomposable form
equation

F (x) = `1(x) · · · `n(x) = δ in x = (x1, . . . , xm) ∈ Am. (2.6.2)

We do not require that F have its coefficients in K. Subject to certain con-
ditions on `1, . . . , `n and x, we will formulate an effective finiteness result
on equation (2.6.2) in a quantitative form. To this end, we introduce some
notation, and explain the conditions imposed on the `i.

Let us first introduce the A-module

ZA,F = {x ∈ Am : `1(x) = · · · = `m(x) = 0}. (2.6.3)

Clearly, if x is a solution of (2.6.2), then so is x + y for every y ∈ ZA,F .
Hence the set of solutions of (2.6.2) falls apart into ZA,F -cosets x + ZA,F , 1

and we want to determine representatives for these cosets.
In case that rank {`1, . . . , `n} = m we have ZA,F = {0} and the ZA,F -

cosets are just single solutions. Had we been interested in non-effective finite-
ness results only, the generalization to the case rank {`1, . . . , `n} < m and
ZA,F 6= {0} would not have been necessary, but for certain effective applica-
tions this turned out to be of importance.

Given x = (x1, . . . , xm) ∈ Am, a representative for x is a tuple x̃ =

1IfM1,M2 are modules over a ring R withM1 ⊂ M2, then by anM1-coset inM2

we mean a set of the shape a+M1 = {a+ x : x ∈M1} with a ∈M2.
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(x̃1, . . . , x̃m) with

x̃i ∈ Z[X1, . . . , Xr], xi = x̃i(z1, . . . , zr) for i = 1, . . . ,m.

We define the size of this tuple by

s(x̃) := max(s(x̃1), . . . , s(x̃m))

= max(1, deg x̃1, h(x̃1), . . . , deg x̃m, h(x̃m)).

Slightly diverging from its usual meaning, by a representative for a ZA,F -
coset we shall mean a tuple x̃ ∈ Z[X1, . . . , Xr]

m representing any element
from this coset. Thus, in order to effectively determine a full system of repre-
sentives for the ZA,F -cosets of solutions, it suffices to compute a number C
such that each of these cosets has a representative x̃ ∈ Z[X1, . . . , Xr]

m with
s(x̃) ≤ C.

Next, we need some measures for elements of K. Let α ∈ K. We denote
by degK α the degree of α over K. A tuple of representatives for α is a tuple
(g0, . . . , gn), where n = degK α, and where g0, . . . , gn ∈ Z[X1, . . . , Xr],
g0 6∈ I, such that

Xn +
g1(z1, . . . , zr)

g0(z1, . . . , zr)
Xn−1 + · · ·+ gn(z1, . . . , zr)

g0(z1, . . . , zr)

is the monic minimal polynomial of α over K. If α ∈ K, then a tuple of
representatives for α is up to sign a pair of representatives for α, as introduced
before. We say that (g0, . . . , gn) has degree at most d and logarithmic height
at most h, if each gi (i = 0, . . . , n) has total degree at most d and logarithmic
height at most h.

In order to formulate our effective results, we adopt some terminology
from Győry and Papp (1978) and Győry (1981a, 1982a, 1983). Let L =
(`1, . . . , `n) be the system of linear forms from (2.6.1). As said before, these
linear forms need not be pairwise distinct. We define the triangular graph
G(L) of L as follows:

G(L) has vertex system L;

`i and `j with i 6= j are connected by an edge if either `i, `j
are linearly dependent over K or they are linearly independent
over K and there is q 6= i, j such that `i, `j, `q are linearly
dependent over K.


(2.6.4)
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Let L1, . . . ,Lk denote the vertex systems of the connected components of
G(L). When k = 1, we say that L or F is triangularly connected; see Győry
and Papp (1978). For j = 1, . . . , k, denote by [Lj] the K-vector space gener-
ated by the linear forms from Lj and assume that

[L1] ∩ · · · ∩ [Lk] 6= (0). (2.6.5)

This is in general a serious restriction, which is not satisfied by most systems
L. In fact, it is much stronger than the criterion from Theorem 1.5.1.

In what follows we want to consider solutions x ∈ Am of (2.6.2) such that

there is ` ∈ [L1] ∩ · · · ∩ [Lk] with `(x) 6= 0. (2.6.6)

This is the set of solutions of (2.6.2) to which our effective method can be
applied. Here the linear form ` may vary with x. We should note here that
if x ∈ Am satisfies (2.6.6), then so does every element of the ZA,F -coset
x + ZA,F .

In the case that L is triangularly connected, i.e., k = 1, we have L1 = L =
(`1, . . . , `n) hence (2.6.5) is satisfied. Further, if δ 6= 0 then every solution of
(2.6.2) automatically satisfies (2.6.6).

We are now ready to state our results. We first formulate a quantitative
result, and then a corollary giving an effective finiteness statement.

Theorem 2.6.1. Suppose the following:
- the given generators f1, . . . , fM of I have degree at most d and logarithmic
height at most h;
- δ and the coefficients of `1, . . . , `n all have tuples of representatives of degree
at most d and logarithmic height at most h;
- the coefficients of `1, . . . , `n all have degree at most ν over K;
- [L1] ∩ · · · ∩ [Lk] 6= (0).

Then every ZA,F -coset of x ∈ Am such that

F (x) = δ, there is ` ∈ [L1] ∩ · · · ∩ [Lk] with `(x) 6= 0 (2.6.7)

is represented by x̃ ∈ Z[X1, . . . , Xr]
m with

s(x̃) ≤ exp
(
(2mn · ννmnd)expO(r)h

)
. (2.6.8)

We deduce from this an effective finiteness result. Assume that A and its
quotient field K are given effectively. A finite extension G of K is said to be
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given effectively, if it is given in the formK[X]/(P ), where P is an effectively
given irreducible monic polynomial inK[X]. We note that for a given polyno-
mial P ∈ K[X] it can be decided effectively whether it is irreducible, see for
instance Theorem 6.2.3 in Section 6. We may write G = K(θ) where θ := X
(mod P ). Thus, elements of G can be expressed uniquely as

∑g−1
i=0 aiθ

i with
a0, . . . , ag−1 ∈ K, where g denotes the degree of G over K. We say that
an element of G is given/can be determined effectively if the corresponding
a0, . . . , ag−1 are given/can be determined effectively.

Corollary 2.6.2. There are only finitely many ZA,F -cosets of x ∈ Am with
(2.6.7). Moreover, if δ and the coefficients of `1, . . . , `n all belong to a finite
extension G of K and if A,K,G, δ and the coefficients of `1, . . . , `n are given
effectively, then one can determine effectively a set, consisting of precisely one
representative x̃ ∈ Z[X1, . . . , Xr]

m for each of these cosets.

The essence of the proofs of Theorem 2.6.1 and Corollary 2.6.2 is that
thanks to the condition (2.6.6), equation (2.6.7) can be reduced to a finite sys-
tem of unit equations in two unknowns, however with units from a subring
A′ ⊃ A of G that is finitely generated over Z. Then Theorem 2.6.1 and Corol-
lary 2.6.2 are deduced by applying Theorem 2.2.1 with A′ instead of A. In
the course of the proof of Theorem 2.6.1 we use so-called ’degree-height es-
timates’ for elements of K, see Chapter 8. The proofs of Theorems 2.6.1 and
Corollary 2.6.2 are given in Section 10.1.

In this generality Theorem 2.6.1 and Corollary 2.6.2 are new. The finite-
ness statement of Corollary 2.6.2 was first proved in Győry (1982), but with
slightly stronger conditions instead of (2.6.5) and (2.6.6): instead of (2.6.5)
Győry assumed that Xm ∈ [L1] ∩ · · · ∩ [Lk], and instead of (2.6.6) he as-
sumed that xm 6= 0; see also Evertse and Győry (2015, Chapter 9).

Győry (1983) established a quantitative result comparable to Theorem
2.6.1 but only for a restricted class of finitely generated integral domains A;
see also Győry (1984a). Over number fields, more precise quantitative ver-
sions were obtained in Győry (1998) and Győry and Yu (2006).

We now discuss some applications. Let F ∈ A[X, Y ] be a non-zero binary
form and δ a non-zero element of A, and consider again the Thue equation

F (x, y) = δ in (x, y) ∈ A2. (2.3.1)

We can factorize F as

F = `1 · · · `n with linear forms `i ∈ K[X, Y ].
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Assume that at least three among the linear forms `1, . . . , `n are pairwise non-
proportional over K. Then it is easily verified that L = (`1, . . . , `n) is trian-
gularly connected and that ZA,F = {0}. Further, let δ be a non-zero element
of A. Theorem 2.6.1 and Corollary 2.6.2 imply the following variation on
Theorem 2.3.1, with worse bounds.

Corollary 2.6.3. Assume that the given generators f1, . . . , fM of I have de-
gree at most d and logarithmic height at most h, and that δ and the coefficients
of F have representatives in Z[X1, . . . , Xr] of degree at most d and logarith-
mic height at most h, where d ≥ 1 and h ≥ 1.

Then each solution (x, y) ∈ A2 of (2.3.1) is represented by a pair (x̃, ỹ)
with

x̃, ỹ ∈ Z[X1, . . . , Xr], s(x̃), s(ỹ)) ≤ exp
(

(nn
2

d)expO(r)h
)
. (2.6.9)

Consequently, the solutions (x, y) ∈ A2 of (2.3.1) can be determined effec-
tively.

The next application is to a system of double Pell equations

γ1x
2
1 − γ2x

2
2 = β1,2, γ1x

2
1 − γ3x

2
3 = β1,3 in (x1, x2, x3) ∈ A3 (2.6.10)

where γ1, γ2, γ3, β1,2, β1,3 ∈ A with

γ1γ2γ3β1,2β1,3(β1,2 − β1,3) 6= 0. (2.6.11)

From the two equations in (2.6.10) it follows that

γ2x
2
2 − γ3x

2
3 = β1,3 − β1,2

and thus,

F (x1, x2, x3) = δ, (2.6.12)

where

δ = β1,2β1,3(β1,3 − β1,2) (2.6.13)
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and

F = (γ1X
2
1 − γ2X

2
2 )(γ1X

2
1 − γ3X

2
3 )(γ2X

2
2 − γ3X

2
3 )

= (
√
γ1X1 +

√
γ2X2)(

√
γ1X1 −

√
γ2X2)·

· (√γ1X1 +
√
γ3X3)(

√
γ1X1 −

√
γ3X2)·

· (√γ2X2 +
√
γ3X3)(

√
γ2X2 −

√
γ3X3) (2.6.14)

with appropriate choices for the square roots. It is easy to verify that the linear
factors of F form a triangularly connected system and that ZA,F = {0}. So
Theorem 2.6.1 can be applied. This leads to the following:

Corollary 2.6.4. Assume that the given generators f1, . . . , fM of I have de-
gree at most d and logarithmic height at most h, and that γi (i = 0, 1, 2), β1,2,
β1,3 have representatives in Z[X1, . . . , Xr] of degree at most d and logarith-
mic height at most h, where d ≥ 1, h ≥ 1. Assume (2.6.11).

Then each solution (x1, x2, x3) ∈ A3 of (2.6.10) is represented by a triple
(x̃1, x̃2, x̃3) with

x̃i ∈ Z[X1, . . . , Xr], s(x̃i) ≤ exp
(

(2d)expO(r)h
)

for i = 1, 2, 3. (2.6.15)

Consequently, the solutions (x1, x2, x3) ∈ A3 of (2.6.10) can be determined
effectively.

2.7 Norm form equations
We keep the notation that A is an integral domain of characteristic 0 which is
finitely generated over Z such thatA ∼= Z[X1, . . . , Xr]/I with I = (f1, . . . , fM)
for some given polynomials f1, . . . , fM ∈ Z[X1, . . . , Xr]. As before, we de-
note by K the quotient field of A, and by K an algebraic closure of K.

Let α1 = 1, α2, . . . , αm ∈ K (m ≥ 2) be linearly independent over K.
Consider the norm form equation

NK′/K(α1x1 + · · ·+ αmxm) = δ in (x1, . . . , xm) ∈ Am, (2.7.1)

where K ′ = K(α1, . . . , αm) and δ is a non-zero element of K. In Section
10.2 we deduce the following from Theorem 2.6.1 and Corollary 2.6.2:

Theorem 2.7.1. Let f1, . . . , fM have degree at most d and logarithmic height
at most h, and let δ, α1, . . . , αm be represented by tuples of degree at most
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d and logarithmic height at most h. Suppose that [K ′ : K] = n ≥ 3, that
α1, . . . , αm are linearly independent overK and that αm is of degree≥ 3 over
K(α1, . . . , αm−1). Then each solution x = (x1, . . . , xm) ∈ Am of (2.7.1) with
xm 6= 0 is represented by x̃ ∈ Z[X1, . . . , Xr]

m with

s(x̃) ≤ exp
(
(nmn

2

d)expO(r)h
)
.

Corollary 2.7.2. Suppose again that α1, . . . , αm are linearly independent
over K and that αm is of degree ≥ 3 over K(α1, . . . , αm−1). Then equation
(2.7.1) has only finitely many solutions with xm 6= 0. Moreover, if A,K,K ′

and α1, . . . , αm and δ are given effectively, then all solutions of (2.7.1) with
xm 6= 0 can be determined effectively.

The norm form in (2.7.1) can be expressed as

NK′/K(α1X1 + · · ·+ αmXm) = `1 · · · `n
with `i = α

(i)
1 X1 + · · ·+ α

(i)
mXm (i = 1, . . . ,m).

(2.7.2)

Let L = (`1, . . . , `n), G(L) the triangular graph of L, and L1, . . . ,Lk the ver-
tex systems of the connected components of L. The essential observation in
the deduction of Theorem 2.7.1 and Corollary 2.7.2 is that by the assumptions
on α1, . . . , αm we have Xm ∈ [L1] ∩ · · · ∩ [Lm], see Section 10.2. So the so-
lutions of (2.7.1) with xm 6= 0 satisfy (2.6.6). Further, letting F denote the
decomposable form from (2.7.2), we have ZA,F = {0} since α1, . . . , αm are
linearly independent over K.

The finiteness statement of Corollary 2.7.2 was proved by Győry (1982) in
full generality. In Győry (1983), he also established the effectivity statement
of this corollary, but only for a restricted class of integral domainsA. In Győry
(1983) it is pointed out that Corollary 2.7.2 does not remain valid in general
if we lower the bound 3 concerning the degree of αm over K(α1, . . . , αm−1).
Further, under the assumptions of Corollary 2.7.2, equation (2.7.1) may have
infinitely many solutions (x1, . . . , xm) with xm = 0.

The following result is an easy consequence of Corollary 2.7.2.

Corollary 2.7.3. Suppose that in (2.7.1) αi+1 is of degree≥ 3 overK(α1, . . . , αi)
for i = 1, . . . ,m − 1. Then (2.7.1) has only finitely many solutions. More-
over, if A,K,K ′, α1, . . . , αm and δ are given effectively, then all solutions of
(2.7.1) can be determined effectively.
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2.8 Discriminant form equations and discriminant
equations

Let Ω be a finite étale K-algebra. We represent Ω in the form K[X]/(P )
where P ∈ K[X] is monic and separable. We view K as a subfield of Ω. The
degree [Ω : K] := dimK Ω is equal to degP . We say that Ω is given effectively
if P is given effectively. The separability of P can be checked for instance by
determining the factorization of P into irreducible factors, see for instance
Theorem 6.2.3. By the choice of our representation we have Ω = K[θ], where
θ := X (mod P ). Elements of Ω can be expressed uniquely as

∑n−1
i=0 aiθ

i

with a0, . . . , an−1 ∈ K, where n = [Ω : K]. We say that an element of Ω
is given/can be determined effectively if a0, . . . , an−1 are given/can be deter-
mined effectively. Denote by G the splitting field of P over K. Then there are
precisely n K-algebra homomorphisms from Ω to G, denoted by α 7→ α(i)

for i = 1, . . . , n, mapping θ to the n distinct zeros of P in G. One can verify
that if α ∈ Ω, then

α ∈ K ⇐⇒ α(1) = · · · = α(n). (2.8.1)

Assume that [Ω : K] = n ≥ 2. Let M ⊂ Ω be a finitely generated
A-module, i.e., there are ω1, . . . , ωm ∈M such that

M =
{ m∑

i=1

biωi : b1, . . . , bm ∈ A
}
.

We do not require thatM is free over A. We say thatM is given effectively
if such ω1, . . . , ωm are given effectively. Further, we say that an element α of
M is given/can be determined effectively, if b1, . . . , bm ∈ A are given/can be
determined effectively such that α =

∑m
i=1 biωi.

We consider the discriminant equation for elements ofM

DΩ/K(ξ) =
∏

1≤i<j≤n

(ξ(i) − ξ(j))2 = δ in ξ ∈M, (2.8.2)

where δ ∈ K∗.
Assertion (2.8.1) implies that if ξ is a solution of (2.8.2), then so is ξ + η

for every η ∈ M ∩ K. Hence the set of solutions of (2.8.2) is a union of
M∩K-cosets ξ+M∩K := {ξ+η : η ∈M∩K}. Our aim is to determine
a full system of representatives for these cosets.
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We can give an equivalent formulation of (2.8.2) in terms of discriminant
form equations. Choosing a set of A-module generators {ω1, . . . , ωm} forM
(this need not be an A-basis), we can express a solution ξ ∈ M of (2.8.2) as∑m

i=1 xiωi with x1, . . . , xm ∈ A. Thus, (2.8.2) translates into the discriminant
form equation

DΩ/K(x1ω1 + · · ·+ xmωm) =
∏

1≤i<j≤n

( m∑
k=1

xk(ω
(i)
k − ω

(j)
k )
)2

= δ

in x = (x1, . . . , xm) ∈ Am, (2.8.3)

which is a decomposable form equation. Let

ZA,D :=
{
x = (x1, . . . , xm) ∈ Am :

m∑
i=1

xiωi ∈ K
}
. (2.8.4)

Then the set of solutions in Am of (2.8.3) is a union of ZA,D-cosets x+ZA,D.
By a representative for a ZA,D-coset, we mean a tuple x̃ ∈ Z[X1, . . . , Xr]

m

that is a representative for an element of this coset.
In Section 10.3, we deduce the following result from Theorem 2.6.1. The

essential observation is that DΩ/K(X1ω1 + · · · + Xmωm) is a decomposable
form whose linear factors form a triangularly connected system.

Theorem 2.8.1. Assume that f1, . . . , fM have degree at most d and loga-
rithmic height at most h and that δ and ω(j)

i (i = 1, . . . ,m, j = 1, . . . , n)
have tuples of representatives of degree at most d and logarithmic height at
most h. Then every ZA,D-coset of solutions of (2.8.3) has a representative
x̃ ∈ Z[X1, . . . , Xr]

m with

s(x̃) ≤ exp
(
(nmn

4

d)expO(r)h
)
.

Recall that a finitely generated A-module M ⊂ Ω is given effectively
once a finite set of A-module generators {ω1, . . . , ωm} for M is given ef-
fectively. According to the definitions, determining a full system of repre-
sentatives for the M ∩ K-cosets of solutions of (2.8.2) means the same as
determining a full system of representatives for the ZA,D-cosets of (2.8.3).
This leads to the following consequence.

Corollary 2.8.2. Let Ω be a finite étale K-algebra with [Ω : K] ≥ 2,M⊂ Ω
a finitely generated A-module and δ ∈ K∗. Then equation (2.8.2) has only
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finitely manyM∩K-cosets of solutions. Moreover, ifA,Ω, δ andM are given
effectively, then one can determine effectively a set, consisting of precisely one
element from each of these cosets.

We mention here that once M is given effectively and α ∈ Ω is given
effectively, then it can be decided whether α ∈M. Further, given α, α′ ∈M
one can decide whether α− α′ ∈ K, see Corollary 6.3.8.

We consider the special case thatM = O is an A-order in Ω, i.e., O is a
subring of Ω such that A ⊆ O ⊆ Ω, KO = Ω and Ω is finitely generated as
an A-module.

By an A-coset we mean a set ξ + A := {ξ + a : a ∈ A}.

Corollary 2.8.3. Let δ ∈ A\{0}, and let O be an A-order in Ω such that the
quotient A-module

(O ∩K)/A is finite. (2.8.5)

Then the set of ξ ∈ O with

DΩ/K(ξ) = δ

is a union of finitely many A-cosets. Moreover, if A, Ω, δ and O are given
effectively, then one can determine effectively a set, consisting of precisely
one element from each of these cosets.

Corollary 2.8.3 is an easy consequence of Corollary 2.8.2. It will be de-
duced in Section 10.3. In the deduction of Corollary 2.8.3 we use Corollary
6.3.9 from Chapter 6. Since for this latter result we do not have a quantitative
version at our disposal, we were not able to deduce a quantitative version of
Corollary 2.8.3 similar to Theorem 2.8.1.

We mention here that if O is given effectively then it can be decided ef-
fectively whether it is an A-order, and whether it satisfies (2.8.5), see Corol-
lary 6.3.9. Further, for any two given ξ1, ξ2 ∈ O it can be decided whether
ξ1 − ξ2 ∈ A, see Corollary 6.3.8 and Theorem 6.3.2.

Corollary 2.8.2 has further consequences, among others for index form
equations; we refer to Győry (1982) for ineffective finiteness results and Győry
(1983,1984b) for effective results over a class of finitely generated domains
over Z.

We now consider another type of discriminant equation. LetA be as above
a finitely generated integral domain over Z of characteristic 0 and with quo-
tient fieldK, let n ≥ 2 be an integer, δ a non-zero element ofA, andG a finite
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extension of K. We consider the discriminant equation for polynomials

D(f) = δ in monic polynomials f ∈ A[X]
of degree n having all their zeros in G. (2.8.6)

As in Section 1.6, two monic polynomials f, f ′ ∈ A[X] are called strongly
A-equivalent if there is a ∈ A such that f ′(X) = f(X + a). We recall that
strongly A-equivalent polynomials have the same discriminant, and so the
solutions of equation (2.8.6) split into strong A-equivalence classes.

Assuming that A is effectively given in the above sense, we say that a
polynomial with coefficients in A or K is given/can be determined effectively
if its coefficients are given/can be determined effectively.

Denote by AK the integral closure of A in K. The following theorem
is an effective version of Theorem 1.6.1. In Evertse and Győry (2017b) this
result was deduced directly from a general effective result on unit equations.
In Section 10.3 we give another proof, taking Corollary 2.6.2 as a starting
point.

Theorem 2.8.4. Let n ≥ 2 be an integer and A an integral domain of charac-
teristic 0, finitely generated over Z with quotient fieldK such that the quotient
A-module (

1
nA ∩ AK

)
/A is finite. (2.8.7)

Further, let G be a finite extension of K and δ a non-zero element of A. Then
the set of monic polynomials f ∈ A[X] with (2.8.6) is a union of finitely many
strong A-equivalence classes.

Moreover, for any effectively given n,A,G, δ as above, a set, consisting of
precisely one element from each of these classes can be determined effectively.

For any effectively given integral domain A of characteristic 0 which is
finitely generated over Z it can be decided effectively whether it satisfies
(2.8.7), see Corollary 6.3.7 or Evertse and Győry (2017b).

The proof of Theorem 2.8.4 uses both Corollary 2.6.2 and Theorem 6.3.6
and Corollary 6.3.9 from Chapter 6. Since for the latter two results we do
not have quantitative versions at our disposal, we were not able to deduce a
quantitative version of Theorem 2.8.4 with estimates for the sizes of the coef-
ficients of a polynomial solution f of (2.8.6) from each strong A-equivalent
class.
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For integrally closed domains A, Theorem 2.8.4 gives the following result
of Evertse and Győry (2017a). We note that for an effectively given domain A
of characteristic 0 which is finitely generated over Z it can be decided whether
it is integrally closed; see e.g. Theorem 10.7.17 in Evertse and Győry (2017a)
and the references given there.

Corollary 2.8.5. Let n ≥ 2 be an integer, A an integrally closed integral
domain of characteristic 0 which is finitely generated over Z and G a finite
extension of the quotient field of A. Then the solutions of (2.8.6) lie in finitely
many strong A-equivalence classes. If moreover A,G, δ are given effectively,
then a set, consisting of precisely one element from each of these classes can
be determined effectively.

The finiteness part of this corollary was proved in a more general, but
ineffective form in Győry (1982), without fixing the degree of the polynomials
under consideration; see also Theorem 1.6.2 above. For a restricted class of
integral domains A containing transcendental elements, the effective part was
proved in Győry (1984b).

2.9 Open problems
Let again A be a domain of characteristic 0 that is finitely generated over Z,
K its quotient field, and K an algebraic closure of K.

Let F ∈ A[X, Y ] be a binary form of degree n having at least three pair-
wise non-proportional linear factors overK and let δ ∈ A\{0}. In Section 1.1
it was explained that the Thue-Mahler equation

F (x, y) ∈ δA∗ in (x, y) ∈ A2 (2.9.1)

has at most finitely many A∗-cosets of solutions. As was explained there, if
{v1, . . . , vs} is a set of generators forA∗, and U = {vm1

1 · · · vmss : m1, . . . ,ms ∈
{0, . . . , n−1}}, everyA∗-coset of solutions of (2.9.1) contains a pair (x, y) ∈
A2 with

F (x, y) = δu1 for some u1 ∈ U .

By applying the known results on Thue equations to the latter, it follows that
(2.9.1) has only finitely many A∗-cosets of solutions.

Unfortunately, as yet no method is known that on input an arbitrary do-
main A of characteristic 0 that is finitely generated over Z, computes a set
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of generators for A∗. Consequently, it is therefore an open problem how to
determine effectively the A∗-cosets of solutions of (2.9.1), for arbitrary A.

It should be mentioned that for a restricted class of domains A it is pos-
sible to compute a set of generators for A∗ and thus, the A∗-cosets of so-
lutions of (2.9.1), for instance for localizations of polynomial rings A =
OS[X1, . . . , Xq, 1/g], whereOS is the ring of S-integers in a number field and
g ∈ OS[X1, . . . , Xq]\{0}, see Evertse and Győry (2017a, Lemma 10.6.2).

The same can be said about decomposable form equations in m ≥ 3 un-
knowns

F (x) ∈ δA∗ in x ∈ Am,

where F is a decomposable form of degree n. The solutions of the latter equa-
tion can be divided into A∗-cosets A∗x0 = {u · x0 : u ∈ A∗}. Completely
similarly as for Thue-Mahler equations, one can reduce the above equation to
finitely many equations of the form

F (x) = δu1 with u1 ∈ U .

Again, for arbitrary A this reduction can not be made effective since we can-
not compute a set of generators for A∗. The same applies to discriminant
equations for polynomials and integral elements,

DΩ/K(ξ) ∈ δA∗ in ξ ∈M, (2.9.2)
D(f) ∈ δA∗, (2.9.3)

respectively, where the solutions of the latter equations are monic polynomials
having their zeros in a given finite extension G of K.

Lastly, we would like to discuss some open problems related to mono-
geneity of orders. Let A, K, K be as above, Ω a finite étale K-algebra with
[Ω : K] = n ≥ 2, and O an A-order in Ω such that the quotient A-module
(O ∩K)/A is finite. Consider the ‘equation’

A[ξ] = O in ξ ∈ O. (2.9.4)

We call two elements ξ and ξ′ of O A-equivalent if ξ′ = uξ + a for some
u ∈ A∗ and a ∈ A. Clearly, the set of solutions of (2.9.4) is a union of A-
equivalence classes. It is as yet an open problem to effectively determine
these for arbitrary finitely generated domains A. Below, we will discuss some
of the obstacles. For more details we refer to Evertse and Győry (2017a,
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Chaps. 5,10).
First we observe that ξ is a solution of (2.9.4) if and only if {1, ξ, . . . , ξn−1}

is an A-basis of O. So for (2.9.4) to be solvable it is necessary that O be free.
Suppose this is the case, and let {ω1, . . . , ωn} be an A-basis forO. Define the
discriminant of this basis,

δ := DΩ/K(ω1, . . . , ωn) =
(

det(ω
(j)
i )i,j=1,...,n

)2

.

Recall that the discriminant of an A-basis of O is uniquely determined up to
multiplication with a factor from A∗ (see Evertse and Győry (2017a, subsec-
tion 5.4.4). Thus, ξ ∈ O satisfies (2.8.2) if and only if

DΩ/K(ξ) = DΩ/K(1, ξ, . . . , ξn−1) ∈ δA∗. (2.9.5)

Similarly as mentioned above, from a set of generators for A∗ we can
compute a finite set U ⊂ A∗, such that every element of A∗ can be expressed
as u1 ·un(n−1)

2 with u1 ∈ U , u2 ∈ A∗. Then for every solution ξ ∈ O of (2.9.4),
hence (2.9.5) there are u1 ∈ U , u2 ∈ A∗ such that ξ′ = u−1

2 ξ satisfies

DΩ/K(ξ′) = δu1. (2.9.6)

By Corollary 2.8.3, the solutions ξ′ ∈ O of (2.9.6) lie in finitely many A-
cosets. Hence the solutions of (2.9.4) lie in finitely manyA-equivalence classes.

As yet we do not know how to solve the following problems for arbitrary
domains A finitely generated over Z with quotient field K of characteristic
0. The first problem is to decide whether a given A-order O in a given finite
étale K-algebra Ω is a free A-module and if so, to determine an A-basis for
it. The second problem, as mentioned above, is to compute a set of generators
for A∗, needed to get the set U .

These two problems can be solved, and thus, the A-equivalence classes
of solutions of (2.9.4) can be computed, for the class of domains A men-
tioned above, i.e., those of the shape OS[X1, . . . , , Xq, g

−1], where OS is
the ring of S-integers in some number field and g is a non-zero element of
OS[X1, . . . , Xq], see Evertse and Győry (2017a, Chap. 10).
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Chapter 3

A brief explanation of our effective
methods over finitely generated
domains

There are two effective methods for solving Diophantine equations over finitely
generated integral domains over Z of characteristic 0, which may contain both
algebraic and transcendental elements over Q. The first one, reducing equa-
tions to the number field and function field cases by means of effective spe-
cializations, was introduced by Győry (1983,1984b) for a restricted class of
finitely generated integral domains over Z of characteristic 0. This can be re-
garded as an effective version of Lang’s method (1960) mentioned in Section
1.4. Győry’s method was later refined and extended by Evertse and Győry
(2013) to arbitrary finitely generated integral domains of characteristic 0; see
also Bérczes, Evertse and Győry (2014), Evertse and Győry (2015) and Chap-
ters 7 and 9 of the present book.

Over number fields, the second effective method, reducing equations in
two unknowns to unit equations, was extended by Győry to equations in an ar-
bitrary number of unknowns, including discriminant equations and important
classes of decomposable form equations; see e.g. Győry (1973,1976,1980b)
and Győry and Papp (1978). This was generalized in Győry (1982) in an inef-
fective way, and in Evertse and Győry (2017a,2017b) and Chapter 10 of this
book in an effective form to the case of arbitrary finitely generated integral
domains over Z of characteristic 0.

We note that both effective methods have quantitative versions as well
which provide effective bounds for the solutions of the equations under con-
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sideration.
In this chapter we briefly explain the two effective methods and illustrate

their applications to Diophantine equations. Detailed presentations, quantita-
tive versions and applications are given in Chapters 2 and 7 to 10.

3.1 Sketch of the effective specialization method
First we briefly outline the first method of Győry (1983,1984b) which enabled
him to obtain effective finiteness results for some important classes of Dio-
phantine equations over a class of finitely generated domains of characteristic
0. The core of the method is to reduce the equations under consideration to
equations of the same type over function fields and over number fields by
means of an effective specialization procedure, and then to apply the existing
effective results over number fields and over function fields. Győry applied
his method to discriminant equations and decomposable form equations, in-
cluding Thue equations, index form equations and some norm form equations.
Later, this method was applied by Brindza (1989) and Végső (1994) to hyper-
and superelliptic equations, and by Brindza (1993) to the Catalan equation
over the class of domains considered by Győry.

Evertse and Győry (2013) refined Győry’s method and extended it to ar-
bitrary finitely generated domains. We now present their general method and
compare it with Győry’s. For convenience, we use here the notation of Chap-
ters 7 to 10.

Let
A = Z[z1, . . . , zr]

be a finitely generated integral domain of characteristic 0 with quotient field
K of characteristic 0. Denote by q the transcendence degree of K. We con-
sider only the case that q > 0 since otherwise, K is algebraic over Q, and
no specialization argument is needed. We assume without loss of general-
ity that {z1, . . . , zq} is a transcendence basis of K over Q. Since z1, . . . , zq
may be viewed as polynomial variables, we write henceforth Xi for zi, for
i = 1, . . . , q. Let

A0 := Z[X1, . . . , Xq], K0 := Q(X1, . . . , Xq).

Then K = K0(zq+1, . . . , zr) is a finite extension of K0. Given α ∈ A0, we
denote by degα , h(α) the total degree and logarithmic height of α. Recall
that A0 is a unique factorization domain with unit group A∗0 = {±1}, hence
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any finite set a1, . . . , ar of non-zero elements of A0 has an up to sign unique
greatest common divisor gcd(a1, . . . , ar) such that every element of A0 that
divides a1, . . . , ar in fact divides their gcd.

We first describe the approach of Győry (1983,1984b). Take w ∈ A such
that K = K0(w) and w has minimal polynomial F(X) = XD + F1X

D−1 +
· · ·+FD overK0 with coefficients inA0. For every α ∈ K there are up to sign
unique Pα,0, . . . , Pα,D−1, Qα ∈ A0 such that gcd(Pα,0, . . . , Pα,D−1, Qα) = 1
and

α = Q−1
α

D−1∑
j=0

Pα,jw
j. (3.1.1)

Now define the measures

degα := max(degPα,0, . . . , degPα,D−1, degQα)

and
h(α) := max(h(Pα,0), . . . , h(Pα,D−1), h(Qα)).

Of course, there are only finitely many elements inK with bounded deg-value
and h-value and, if the bounds are given, the elements under consideration can
be effectively determined.

Next, let g be the product
∏r

i=q+1Qzi of the denominators of zq+1, . . . , zr
in their representations of the form (3.1.1). Then g ∈ A0\{0}. Suppose that

max(degF1, . . . , degFD, deg g) ≤ d0,

max(h(F1), . . . , h(FD), h(g)) ≤ h0.

Instead of the domain A, Győry (1983, 1984b) considers the solutions of the
equations under consideration in the overring B of A defined by

A ⊆ B := A0[w, g−1]

and gives explicit upper bounds for the deg-values and h-values of the so-
lutions, depending on d0, h0 and on appropriate parameters of the equations.
This implies in an effective form the finiteness of the number of solutions of
the equations with coordinates in B. What remains is to select from these the
solutions with coordinates in A. Győry was able to do this only if A is given
in a special manageable form. This is the case e.g. if A = A0, A = B with
the above B or if A is an A0-module with a given basis, say {zq+1, . . . , zr}.
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For arbitrary A, he could prove only the finiteness of the number of solutions.

We note that Győry (1983,1984b) established effective results in the so-
called relative case as well, when A is a finitely generated domain over a field
of characteristic 0 instead of Z, and he gave explicit upper bounds for the
deg-values of the solutions.

We now outline the general effective method of Evertse and Győry (2013)
which can be applied to the case of arbitrary finitely generated domains A
over Z. Further, we point out the refinements compared with Győry’s method.

Evertse and Győry (2013) use the representation for A = Z[z1, . . . , zr]
that we introduced in Section 2.1. That is, let I be the ideal

I = {f ∈ Z[X1, . . . , Xr] : f(z1, . . . , zr) = 0}.

Then I is finitely generated, and so

A ∼= Z[X1, . . . , Xr]/I, I = (f1, . . . , fM)

for certain polynomials f1, . . . , fM . We call (f1, . . . , fM) an ideal represen-
tation for A and say that A is effectively given if such a representation is
given. Further, α ∈ A is said to be effectively given/computable if a repre-
sentative of α in Z[X1, . . . , Xr], say α̃, is given/computable such that α =
α̃(z1, . . . , zr). For α ∈ K, we call (a, b) a pair of representatives for α if
a, b ∈ Z[X1, . . . , Xr], b /∈ I and α = a(z1, . . . , zr)/b(z1, . . . , zr).

We collect here in simplified form those lemmas/propositions from Chap-
ter 7 which together constitute our general specialization method, and give a
brief explanation how these can be used in Chapter 9 to prove the effective
results formulated in Chapter 2. We assume again that zi = Xi (i = 1, . . . , q)
form a transcendence basis of K and keep the notation A0 = Z[X1, . . . , Xq],
K0 = Q(X1, . . . , Xq). We recall that the notationO(r), introduced in Chapter
2, denotes any expression of the type ’effectively computable absolute con-
stant times r’, where at each occurrence ofO(r) the constant may be different.

The following lemma can be regarded as a modified and more explicit ver-
sion of Győry’s result on the overring B of A. To allow for more flexibility in
applications, we have extended Győry’s result a little bit further, and prescribe
that certain elements of K∗ are units of B. Thus, let A be a possibly empty
finite subset of K∗ and for α ∈ A, let (aα, bα) be a pair of representatives for
α.
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Let d1 ≥ d ≥ 1, h1 ≥ h ≥ 1, and assume that

deg fi ≤ d, h(fi) ≤ h for i = 1, . . . ,M,

deg aα, deg bα ≤ d1, h(aα), h(bα) ≤ h1 for α ∈ A.

}
(3.1.2)

Lemma 3.1.1. There are w, g with w ∈ A, g ∈ A0\{0} such that

A ⊆ B := A0[w, g−1], A ⊂ B∗,

such that w has minimal polynomial F(X) = XD + F1X
D−1 + · · · + FD

over K0 of degree D ≤ dr−q with

Fi ∈ A0, degFi ≤ (2d)expO(r), h(Fi) ≤ (2d)expO(r)h for i = 1, . . . , D,

and such that

deg g ≤ (k+1)(2d1)expO(r), h(g) ≤ (k+1)(2d1)expO(r)h1 where k := |A|.

Proof. This is a combination of Corollary 3.4 and Lemma 3.6 of Evertse and
Győry (2013); see also Propositions 7.2.5 and 7.2.7 from Chapter 7. One has
to take g :=

∏r
i=q+1 Qzi ·

∏
α∈AQαQα−1 .

The next lemma is new in the method of Evertse and Győry (2013). It
plays an important role in the extension of Győry’s method to the case of
arbitrary finitely generated domains.

Lemma 3.1.2. Let α ∈ A\{0}.
(i) Let α̃ ∈ Z[X1, . . . , Xr] be a representative for α. Put

d2 := max(d, deg α̃), h2 := max(h, h(α̃)).

Then
degα ≤ (2d2)expO(r), h(α) ≤ (2d2)expO(r)h2.

(ii) Put
d′2 := max(d, degα), h′2 := max(h, h(α)).

Then α has a representative α̃ ∈ Z[X1, . . . , Xr] such that

deg α̃ ≤ (2d′2)expO(r log∗ r)h′2, h(α̃) ≤ (2d′2)expO(r log∗ r)h′r+1
2 .

Proof. This is a combination of Lemmas 3.5 and 3.7 of Evertse and Győry
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(2013); see also Lemmas 7.2.6 and 7.3.1 in Chapter 7. The proofs of these
lemmas depend heavily on work of Aschenbrenner (2004).

Both Győry (1983,1984b) and Evertse and Győry (2013) embed the Dio-
phantine equations under consideration into appropriate function fields in a
fixed algebraic closure K0 of K0. The next lemma relates degα to the func-
tion field height of α in such a function field. Let α 7→ α(j) (j = 1, . . . , D)
denote the K0-isomorphic embeddings of K in K0, j = 1, . . . , D. For i =
1, . . . , q, let ki be the algebraic closure of Q(X1, . . . , Xi−1, Xi+1, . . . , Xq) in
K0, and let Li = ki(Xi, w

(1), . . . , w(D)). Thus K may be viewed as a subfield
of L1, . . . , Lq. We recall that the height of α ∈ K relative to Li/ki is defined
as

HLi(α) :=
∑

v∈MLi

max(0,−v(α)),

where MLi denotes the set of normalized discrete valuations on Li that are
trivial on ki. Put ∆i := [Li : ki(Xi)].

A slightly different version of the following lemma was implicitly proved
in Győry (1983,1984b) with dependence on d0, h0 instead of d, h. We recall
that d, h are given by (3.1.2).

Lemma 3.1.3. Let α ∈ K∗. Then

degα ≤ (2d)expO(r) + r · dr max
i,j

∆−1
i HLi(α

(j))

and
max
i,j

∆−1
i HLi(α

(j)) ≤ 2dr degα + (2d)expO(r),

where the maxima are taken over i = 1, . . . , q, j = 1, . . . , D.

Proof. The first assertion is a consequence of Lemma 4.4 of Evertse and
Győry (2013) and Lemma 3.1.1 above. The second assertion is Lemma 4.4
of Bérczes, Evertse and Győry (2014); see also Lemmas 7.3.3 and 7.3.4 in
Chapter 7.

The main idea of the specialization method is to construct ring homomor-
phisms from an overring of A to Q, with which one can reduce the equations
under consideration overA to the number field case. We use a refined version,
due to Evertse and Győry (2013), of the ring homomorphisms from Győry
(1983,1984b). Take the overring B from Lemma 3.1.1. Define

T := ∆FFD · g,
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where ∆F denotes the discriminant of F . Clearly T ∈ A0\{0} and, by
Lemma 3.1.1, the additivity of the total degree and the ’almost additivity’
of the logarithmic height for products of polynomials we have

deg T ≤ (k + 1)(2d1)expO(r), h(T ) ≤ (k + 1)(2d1)expO(r)h1,

where d1, h1 are given by (3.1.2).

Any u = (u1, . . . , uq) ∈ Zq gives rise to a ring homomorphism ϕu :
A0 = Z[X1, . . . , Xq] → Z by substituting ui for Xi for i = 1, . . . , q. We
write α(u) := ϕu(α) for α ∈ A0. The map ϕu can be extended to B in the
following way. Choose u ∈ Zq such that

T (u) 6= 0.

Let Fu := XD + F1(u)XD−1 + · · · + FD(u). By our choice of u, the
polynomial Fu has non-zero discriminant, hence it has D distinct zeros, say
w1(u), . . . , wD(u) ∈ Q, which are all non-zero since FD(u) 6= 0. Further,
g(u) 6= 0. Hence each substitution

X1 7→ u1, . . . , Xq 7→ uq, w 7→ wj(u), (j = 1, . . . , D)

defines a ring homomorphism ϕu,j : B → Q. We write αj(u) := ϕu,j(α) for
α ∈ B, j = 1, . . . , D. It follows from αi ∈ B∗ that

αi,j(u) 6= 0 for i = 1, . . . , k, j = 1, . . . , D. (3.1.3)

The image ϕu,j(B) of B is contained in the algebraic number field Ku,j :=
Q(wj(u)) with [Ku,j : Q] ≤ D ≤ dr−q.

As usual, we denote by h(ξ) the absolute logarithmic height of ξ ∈ Q.
For u = (u1, . . . , uq) ∈ Zq, we write |u| = max(|u1|, . . . , |uq|). An earlier
version of the lemma below was proved in Győry (1983,1984b) with different
bounds, which depend on d0, h0 instead of d, h.

Lemma 3.1.4. Let d, h, d1, h1 be given by (3.1.2). Then for α ∈ B\{0} we
have the following:
(i) Let u ∈ Zq with T (u) 6= 0 and let j ∈ {1, . . . , D}. Then

h(αj(u)) ≤ h(α) + (2d)expO(r)
(
h+ (degα + 1) log max(1, |u|)

)
.
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(ii) There exists u ∈ Zq, j ∈ {1, . . . , D} such that

|u| ≤ max(degα, (k + 1)(2d1)expO(r)), T (u) 6= 0,

h(α) ≤ (2d1)expO(r)((k + 1 + degα)q+5(h1 + h(αj(u))).

Proof. This is a modification of Lemmas 5.6 and 5.7 from Evertse and Győry
(2013); see also Lemmas 7.4.6 and 7.4.7 in Chapter 7.

3.2 Illustration of the application of the effective
specialization method to Diophantine equa-
tions

We briefly illustrate how to apply the specialization method to Diophantine
equations over finitely generated domains. As an example, consider the Thue
equation

F (x, y) = δ in x, y ∈ A, (3.2.1)

where F is a binary form of degree≥ 3 inA[X, Y ] with non-zero discriminant
and where δ ∈ A\{0}.

Step 1. Let x, y ∈ A be a solution of (3.2.1). Having upper bounds for the
degrees and heights of representatives of δ and the coefficients of F , Lemma
3.1.2 gives effective upper bounds for the deg-values and h-values of δ and
the coefficients of F . Then, by means of Lemma 3.1.3 one gets effective upper
bounds for theHLi-values of the conjugates of δ and the coefficients of F over
K0. Applying effective results of Schmidt (1978), Mason (1984) or Theorem
5.4.1 from Chapter 5 on Thue equations over function fields, one can derive
effective upper bounds for HLi(x

(j)), HLi(y
(j)) for all i, j and subsequently,

effective upper bounds for deg x, deg y from Lemma 3.1.3.

Step 2. Next, let the setA from Lemma 3.1.1 consist of δ and the discriminant
of F . Choose u ∈ Zq such that |u| ≤ max(d, (2d1)expO(r)), T (u) 6= 0, and
subject to these conditions, H := max(h(xj(u)), h(yj(u))) is maximal; here
d denotes the maximum of the deg-values of x, y, δ and the coefficients of F .
Let Fu,j be the binary form obtained by applying ϕu,j to the coefficients of
F . It follows from (3.1.3) and from our choice of A that δj(u) 6= 0 and the
discriminant of Fu,j is also different from zero.
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Step 3. Clearly
Fu,j(xj(u), yj(u)) = δj(u).

We can now apply the explicit result of Győry and Yu (2006) on Thue equa-
tions, see also Theorem 4.4.1 in Chapter 4 to obtain an effective upper bound
for H . Then Lemma 3.1.4, (ii) gives an effective upper bound for h(x), h(y).
Finally, Lemma 3.1.2 yields an effective upper bound C for the degrees and
heights, i.e. for the sizes of certain representatives x̃, ỹ of x, y.

Step 4. This last step makes it possible to effectively determine all the solu-
tions of equation (3.2.1). Adapting the proof of Proposition 2.1.1 from Chap-
ter 2 to equation (3.2.1), we can enumerate all pairs x̃, ỹ from Z[X1, . . . , Xr]
of size at most C. Using an ideal membership algorithm for Z[X1, . . . , Xr],
see Section 6.1, we can check for each of these pairs x̃, ỹ whether F̃ (x̃, ỹ) −
δ̃ ∈ I, where F̃ denotes a binary form with coefficients in Z[X1, . . . , Xr] that
represents the corresponding coefficients of F . Then we can make a list of all
pairs passing this test. This list contains at least one representative for each
solution of (3.2.1). Subsequently, we can check, for any two pairs x̃1, ỹ1 and
x̃2, ỹ2 from this list whether they represent the same solution of (3.2.1) by
checking if x̃1 − x̃2, ỹ1 − ỹ2 ∈ I. If this is the case, we remove one of these
pairs from our list. This finally results in a list with precisely one representa-
tive for each solution.

Remark. The above procedure applies also to unit equations, hyper- and su-
perelliptic equations, see Chapter 9, as well as to discriminant equations and
decomposable form equations, including discriminant form equations, index
form equations and some norm form equations, cf. Győry (1983,1984b), be-
cause there are effective function field and number field results for these equa-
tions. As for unit equations ax + by = c in x, y ∈ A∗ one may apply the
above method to systems of equations ax + by = c, x · x′ = 1, y · y′ = 1
in x, y, x′, y′ ∈ A. Then, in Step 4 above, the general version of Proposition
2.1.1 concerning systems of equations must be used.
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3.3 Sketch of the method reducing equations to
unit equations

Lang (1960) was the first to emphasize the importance of unit equations of
the form

ax+ by = 1 in x, y ∈ A∗ (3.3.1)

where A is a finitely generated integral domain over Z, and a, b are non-
zero elements of the quotient field K of A. Generalizing the results of Siegel
(1921) and others obtained over number fields, he proved that equation (3.3.1)
has only finitely many solutions. These results imply the finiteness of the num-
ber of solutions of some other classical equations in two unknowns; see e.g.
Lang (1962).

In the number field case when K is a number field and A the ring of inte-
gers or a ring of S-integers ofK, Győry (1974, 1979) gave explicit bounds for
the solutions of (3.3.1). He applied his results to get the first effective bounds
for the solutions of polynomial Diophantine equations in an arbitrary number
of unknowns, including discriminant equations and a wide class of decompos-
able form equations; see e.g. Győry (1974,1980a,b), Győry and Papp (1978).
For ineffective generalizations for the case of arbitrary finitely generated do-
mains over Z, see Győry (1982).

Lang’s ineffective finiteness theorem on equation (3.3.1) was made effec-
tive in quantitative form in Evertse and Győry (2013); see also Theorem 2.2.1
and Corollary 2.2.2. It is applied in an effective way to discriminant equations
in Evertse and Győry (2017a, 2017b), and to a wider class of decomposable
form equations in quantitative form, in Chapter 10 of the present book.

In this section we briefly outline the method of reducing the above-ment-
ioned equations to unit equations. In fact the equations are reduced to so-
called connected systems of unit equations. We illustrate in some special cases
and in simplified form how to apply the effective theorem of Evertse and
Győry (2013) on equation (3.3.1) to decomposable form equations and dis-
criminant equations via systems of unit equations. The general theorems con-
cerning decomposable form equations and discriminant equations and their
proofs can be found in Chapter 2 and Chapter 10, respectively. As will be
pointed out in Subsection 3.3.3, the proofs of the general, quantitative ver-
sions concerning decomposable form equations are more complicated and
need several further tools from Chapter 8.
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3.3.1 Effective finiteness result for systems of unit equations
Let A = Z[z1, . . . , zr] be a finitely generated integral domain with A ⊇ Z,
r > 0 and with quotient field K. Let n ≥ 3 be an integer, and let I1, . . . , Ik be
subsets of {1, 2, . . . , n} with

2 ≤ |Ij| ≤ 3 for j = 1, . . . , k, I1 ∪ · · · ∪ Ik = {1, . . . , n},

where |S| denotes the cardinality of a set S. Many Diophantine problems can
be reduced to systems of unit equations of the form∑

i∈I1

λ1,iδi = 0, . . . ,
∑
i∈Ik

λk,iδi = 0 in (δ1, . . . , δn) ∈ (A∗)n, (3.3.2)

where the coefficients λj,i are non-zero elements of K. For k = 1, this is a
homogeneous unit equation in at most three unknowns.

Denote by G the graph whose vertex set is {1, . . . , n} and whose edges
are the pairs {i, i′} belonging to the same set Ij , for some j with 1 ≤ j ≤ k.
The system of unit equations (3.3.2) is said to be connected if the graph G is
connected.

Over number fields resp. over finitely generated domains, various versions
of the theorem below were explicitly or implicitly used, mostly in quantitative
form, in papers of Győry, including Győry (1976,1980b,1982,1983,1984b,1990),
and Győry and Papp (1978). Theorem 3.3.1 is in fact the core of Győry’s
approach reducing certain important classes of equations to systems of unit
equations in two unknowns and then, over number fields, applying effective
results concerning unit equations.

From Corollary 2.2.2, due to Evertse and Győry (2013), we deduce the
following.

Theorem 3.3.1. Suppose that the system of equations (3.3.2) is connected.
Then up to a proportional factor from A∗, (3.3.2) has only finitely many so-
lutions. Further, if A and the coefficients λj,i in (3.3.2) are given effectively,
then all solutions can be determined effectively.

The finiteness assertion is a special case of Theorem 4 of Győry (1990)
which holds in the more general form when in (3.3.2) 2 ≤ |Ij| ≤ n holds for
j = 1, . . . , k, and only those solutions (δ1, . . . , δn) are considered for which
the equations in (3.3.2) have no proper vanishing subsums. Obviously, this
assumption is necessary for the finiteness. Over finitely generated domains,
the second assertion of Theorem 3.3.1 is new.
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We note that a quantitative variant of Theorem 3.3.1 can be obtained by
using Theorem 2.2.1 instead of Corollary 2.2.2.

Proof of Theorem 3.3.1 (sketch). Let (δ1, . . . , δn) be a solution of equation
(3.3.2). We show that for each i, i′ ∈ {1, 2, . . . , n}, δi/δi′ can take only finitely
many values from A∗ and, if A and the λi,j are effectively given, all these val-
ues can be effectively determined. This immediately implies Theorem 3.3.1.

By assumption, system (3.3.2) is connected and I1∪. . .∪Ik = {1, . . . , n}.
Hence it is easy to see that there are j1, . . . , j` in {1, . . . , k}with the following
three properties:

- Ij1 ∪ . . . ∪ Ij` = {1, . . . , n};

- for t = 1, . . . , ` the system of equations∑
i∈Ij1

λj1iδi = 0, . . . ,
∑
i∈Ijt

λjtiδi = 0 (3.3.3)

to be solved in δi ∈ A∗ for i ∈ Ij1 ∪ . . . ∪ Ijt , is connected;

- for t = 1, . . . , ` − 1, Ijt+1 has at least one element not contained in
Ij1 ∪ . . . ∪ Ijt .

Then for t = 1, . . . , ` − 1, system (3.3.3) and the jt+1-th equation have a
common unknown.

For t = 1, our claim is a consequence of Corollary 2.2.2. Then we can
proceed by induction on t, and our theorem follows.

In the next two subsections, we illustrate how to apply Theorem 3.3.1 to
decomposable form equations and discriminant equations. For convenience,
we prove our effective finiteness results in simplified, qualitative form. The
precise general, quantitative statements and their proofs can be found in Chap-
ters 2 and 10, respectively.

3.3.2 Reduction of decomposable form equations to unit equa-
tions

Consider now the decomposable form equation

F (x1, . . . , xm) = δ in x1, . . . , xm ∈ A, (3.3.4)
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where δ ∈ A\{0}, and F is a decomposable form of degree n ≥ 3 with
coefficients in A which factorizes into linear factors, say

`i = αi,1X1 + · · ·+ αi,mXm (i = 1, . . . , n).

Put L = {`1, . . . , `n}. Suppose that rank L = m and that L contains at least
three pairwise linearly independent linear forms.

For simplicity, we assume that

δ ∈ A∗, the coefficients of `1, . . . , `n all belong to A. (3.3.5)

Denote by G(L) the graph with vertex system L in which `i and `j are
connected by an edge if `i, `j are linearly dependent over K or they are lin-
early independent and there is a q /∈ {i, j} such that λi`i + λj`j + λq`q = 0
for some non-zero λi, λj, λq ∈ K.

The following proposition can be deduced from Theorem 3.3.1.

Proposition 3.3.2. Suppose that G(L) is connected. Then, under the assump-
tions (3.3.5), equation (3.3.4) has only finitely many solutions. Moreover, if
A, δ and the coefficients αi,j are effectively given, all solutions of (3.3.4) can
be effectively determined.

This is a special case of Corollary 2.6.2 on decomposable form equations.
In the proof sketch of Proposition 3.3.2 given below, we combine the main

arguments of Győry and Papp (1978) over number fields with some effective
results from Chapter 6 over finitely generated domains.

Proof (sketch). Let x = (x1, . . . , xm) ∈ Am be a solution of equation (3.3.4).
It follows from (3.3.5) that `i(x) is a unit in A, say `i(x) = δi, i = 1, . . . , n.
By assumption the graph G(L) is connected. Consider all pairs i, j for which
`i, `j are connected by an edge in G(L). Then for each such i, j we have

λiδi + λjδj = 0 or λiδi + λjδj + λqδq = 0 (3.3.6)

with non-zero elements λi, λjλq of K. Here we may assume that λi, λj, λq ∈
A\{0}.

Since G(L) is connected, the system of unit equations (3.3.6) is also con-
nected. By applying Theorem 3.3.1 to this system of equations we get

δi = εδ′i for i = 1, . . . , n,
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where ε ∈ A∗ is still an unknown and δ′i can take only finitely many values
for i = 1, . . . , n. But it follows from (3.3.4) that εn = δ/δ′1 . . . δ

′
n, whence ε,

and hence δi can take only finitely many values for each i. Finally, in view of
the assumption rankL = m, from the systems of equations

`i(x) = δi i = 1, . . . , n (3.3.7)

we obtain the finiteness of the number of solutions x.
Now assume that A, δ and the coefficients αij are effectively given. Then

appropriate values for λi, λj and λq can be determined effectively from the
coefficients of `i, `j and `q. By Theorem 3.3.1 δ′1, . . . , δ

′
n can be computed

effectively. As was seen above, ε is a zero of the polynomial Xn−δ/δ′1 . . . δ′n.
Hence it can be determined by using Theorem 6.2.3. Further, from (3.3.7) we
can determine x ∈ Km for each possible value of δ1, . . . , δn. Finally, it can
be decided by Theorem 6.3.3 whether the x so obtained is an element of An,
and can be checked if x = (x1, . . . , xm) is a solution of (3.3.4).

3.3.3 Quantitative version

As before, let A = Z[z1, . . . , zr] be an integral domain of characteristic 0,
I the ideal of polynomials in Z[X1, . . . , Xr] vanishing at (z1, . . . , zr), K the
quotient field of A, and K an algebraic closure of K.

In the previous subsection we considered the decomposable form equation
(3.3.4) over A. For simplicity, we assumed that (3.3.5) holds, i.e., that δ ∈ A∗
and that the coefficients αi,j of the linear factors of F are elements of A. Then
(3.3.4) leads to a system of unit equations over A. However, in our general
Theorem 2.6.1 and Corollary 2.6.2 this is not the case, the coefficients αi,j of
the linear factors belong to a finite extension G of K. In this case the equation
(3.3.4) can be reduced to a finite system of unit equations in two unknowns,
but with units from a subring A′ ⊃ A of G that is finitely generated over Z.
Then Theorem 2.6.1 can be deduced by using Theorem 2.2.1 with A′ instead
of A. To do so, in the proof of Theorem 2.6.1 we use so-called ‘degree-height
estimates’ for the elements of K.

As an analogue of the naive height (height of the minimal polynomial
over Z) of an algebraic number, we introduce in Chapter 8 the notion of
the ’degree-height estimate’ for the elements of K. Given a monic polyno-
mial P ∈ K[X], we call (p0, . . . , pn) a tuple of representatives for P if
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p0, . . . , pn ∈ Z[X1, . . . , Xr], p0 /∈ I and

P (X) = Xn +
p1(z1, . . . , zr)

p0(z1, . . . , zr)
Xn−1 + · · ·+ pn(z1, . . . , zr)

p0(z1, . . . , zr)
.

We write

P ≺ (d∗, h∗)

if P has a tuple of representatives (p0, . . . , pn) with total degree deg pi ≤
d∗ and logarithmic height h(pi) ≤ h∗ for i = 0, . . . , n, and call (d∗, h∗) a
degree-height estimate for P . If α ∈ K and Pα denotes the monic minimal
polynomial of α over K, we define a tuple of representatives for α to be a
tuple of representatives for Pα. We write

α ≺ (d∗, h∗) if Pα ≺ (d∗, h∗)

and call (d∗, h∗) a degree-height estimate for α.
In Chapter 8, whose results are new, we give a degree-height estimate for

β ∈ K in terms of degree-height estimates for α1, . . . , αm ∈ K, if β is related
to the αi by P (β, α1, . . . , αm) = 0 for some given P ∈ Z[X0, X1, . . . , Xm].
Such estimates can be used in the proof of Theorem 2.6.1 to construct in an
effective way a finitely generated domain A′ ⊃ A in G and certain scalar
multiples `′i of `i for i = 1, . . . , n such that `′1(x), . . . , `′n(x) are units of A′

for any solution x of (3.3.4). Then one can follow a quantitative version of
the arguments of the proof of Proposition 3.3.2 above and can use Theorem
2.2.1 with A′ instead of A as well as some estimates from Chapter 8 to prove
Theorem 2.6.1 in the case when G(L) is connected. In the general case when
G(L) is not connected, some further argument is needed from Step 4 of the
proof of Theorem 2.6.1.

3.3.4 Reduction of discriminant equations to unit equations

In the remaining part of this chapter, let again A be a finitely generated inte-
gral domain over Z. Let n ≥ 2 be an integer, δ ∈ A\{0} and consider the
discriminant equation

D(f) = δ in monic polynomials f ∈ A[X] of degree n. (3.3.8)
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We recall that the monic polynomials f, f ′ ∈ A[X] are called strongly A-
equivalent if f ′(X) = f(X + a) for some a ∈ A. Then f and f ′ have the
same degree and same discriminant.

For simplicity, here we restrict ourselves to the special situation when

δ ∈ A∗, A is integrally closed and all zeros of f belong to
the quotient field K of A (and hence to A).

}
(3.3.9)

We deduce from Theorem 3.3.1 the following proposition.

Proposition 3.3.3. Under the assumptions (3.3.9), the solutions of equations
(3.3.8) lie in finitely many strong A-equivalence classes of solutions. More-
over, if A and δ are effectively given, a full set of representatives of these
equivalence classes can be effectively determined.

This is a special case of Corollary 2.8.5.

The first proof of Proposition 3.3.3. (reducing directly to unit equations; sketch)
LetA, δ be as above and let f ∈ A[X] be a monic polynomial of degree n ≥ 2
with zeros α1, . . . , αn and with the properties (3.3.8), (3.3.9). Then we have

D(f) =
∏

1≤i<j≤n

(αi − αj)2 = δ ∈ A∗, (3.3.10)

where α1, . . . , αn are the zeros of f in A. This implies that

δi,j := αi − αj ∈ A∗ for each i, j with 1 ≤ i < j ≤ n.

First suppose that n ≥ 3. Consider the system of unit equations

δi,j + δj,q + δq,i = 0 in δi,j, δj,q, δq,i ∈ A∗

for distinct i, j, q ∈ {1, . . . , n}. We show that this system of equations is
connected. Indeed, for δi,j, δi′,j′ , with (i, j) 6= (i′, j′) and i 6= j, i′ 6= j′, we
have

δi,j + δj,i′ + δi′,i = 0, δj,i′ + δi′,j′ + δj′,j = 0

if i′ 6= j, and
δi,j + δi′,j′ + δj′,i = 0

if i′ = j. Hence by Theorem 3.3.1 we get

δij = εδ′ij for any distinct i, j (3.3.11)
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with a common factor ε ∈ A∗ and with δ′i,j ∈ A∗ which may take only finitely
many values. This is obviously true for n = 2 as well. Furthermore, if A
and δ are effectively given, by Theorem 3.3.1 the δ′i,j can also be effectively
determined.

Now (3.3.10) and (3.3.11) give

εn(n−1) = δ
∏

1≤i<j≤n

(1/δ′i,j)
2.

This implies that there are only finitely many ε, δi,j ∈ A∗ and polynomials
f ′(X) =

∏n
i=1(X − δi,1) ∈ A[X] under consideration. Further, if A and δ are

effectively given, then using Theorem 6.2.3 we can effectively determine the
zeros in A of the polynomials Xn(n−1) − θ for all θ := δ

∏
1≤i<j≤n(1/δ′i,j)

2

in question. Consequently, all ε, δi,j and f ′(X) can be effectively determined.
But f ′(X) = f(X + α1), i.e. f is strongly A-equivalent to f ′. Finally, from
among the f ′ one can easily select a maximal set of pairwise strongly A-
inequivalent polynomials f satisfying (3.3.8) and (3.3.9).

Proposition 3.3.3 can also be deduced from Proposition 3.3.2 on decom-
posable form equations, following the arguments of the proof of Theorem
4.8.1. However, we recall that the proof of Proposition 3.3.2 is also based on
effective results on unit equations.

The second proof of Proposition 3.3.3. (reducing to decomposable form equa-
tions; sketch) Let again A, δ be as above, and let f ∈ A[X] be a monic poly-
nomial of degree n ≥ 2 with zeros α1, . . . , αn and with the properties (3.3.8)
and (3.3.9). Then we have again (3.3.10). Writing now xi := αi − α1 for
i = 2, . . . , n, we have xi ∈ A for each i. Putting

F (X2, . . . , Xn) = X2 . . . Xn

∏
2≤i<j≤n

(Xi −Xj),

(3.3.10) implies

F (x2, . . . , xn) = ±δ0 in x2, . . . , xn ∈ A, (3.3.12)

where δ2
0 = δ and, if (3.3.12) is solvable, δ0 ∈ A∗ must hold. The decom-

posable form F is of degree n(n − 1)/2 and it is easily seen that for n ≥ 3,
it satisfies the assumptions of Proposition 3.3.2. Hence by Proposition 3.3.2
the equation (3.3.12) has only finitely many solutions (x2, . . . , xn). Further,
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if A and δ are effectively given, then by Theorem 6.2.3, the quantity δ0 can
also be effectively determined and Proposition 3.3.2 gives that all solutions
(x2, . . . , xn) can be effectively found. For n = 2 the same assertion holds
because in this case x2 = ±δ0. Now we can argue as in the above proof to
show that f ′(X) = f(X + α1) is strongly A-equivalent to f and is effec-
tively computable. Finally, our proof can be completed as above in the first
proof.

3.4 Comparison of our two effective methods
Comparing our effective methods over finitely generated domains over Z, it
is easy to observe that the ’unit equation’ method, reducing equations to ap-
propriate systems of unit equations, is technically less complicated, at least
in the qualitative case. The other ’effective specialization’ method, involving
effective specializations, is more complicated to apply. To some classes of
equations, for example to Thue equations, discriminant equations and decom-
posable form equations, both methods can be applied, while in case of unit
equations, hyper- and superelliptic equations, the Schinzel-Tijdeman equation
and the Catalan equation only the ’effective specialization’ method applies.

It is interesting to note that over number fields, the superelliptic equations
can be reduced to systems of unit equations via Thue equations. However,
this reduction uses Lemma 4.5.4 below (which in turn uses estimates for class
numbers, regulators and fundamental units) for which there is no analogue
over arbitrary finitely generated domains. Hence the reduction of superelliptic
equations to unit equations cannot be extended to arbitrary finitely generated
domains.

To illustrate both methods, we used above the ’effective specialization’
method for Thue equations and the ’unit equation’ method for decomposable
form equations and discriminant equations.
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Chapter 4

Effective results over number
fields

In our first general effective method, equations over finitely generated do-
mains are reduced to equations of the same type over number fields and over
function fields. Then the best known or best applicable effective results over
number fields / function fields can be applied to bound the solutions of the
initial equations over finitely generated domains.

Our second effective method reduces, if possible, equations to unit equa-
tions in two unknowns. Such equations are e.g. Thue equations, discriminant
equations and certain other decomposable form equations. Then using explicit
bounds for unit equations, one can derive explicit bounds for the solutions of
the initial equations, as well.

In Chapter 9, we apply our first method to unit equations in two unknowns,
Thue equations, hyper- and superelliptic equations, the Schinzel–Tijdeman
equation and the Catalan-equation over finitely generated domains. The sec-
ond method will be extended in Chapter 10 from the number field case to the
finitely generated situation, reducing decomposable form equations and dis-
criminant equations to unit equations in two unknowns over finitely generated
domains. We note that in the general case the results concerning decompos-
able form equations are new.

In Sections 4.3 to 4.6 of the present chapter we present the best applicable
explicit bounds for the solutions of those equations over number fields which
are considered in Chapter 9. Although in Chapter 10 we shall not need equa-
tions over number fields, for convenience of reader, in Sections 4.7 and 4.8
we have included the best explicit results for decomposable form equations
and discriminant form equations as well over number fields.

61



To avoid long and complicated computations but emphasize the role of the
ingredients, we shall sketch the proofs of less precise versions of the presented
results over number fields.

4.1 Notation and preliminaries

First we introduce some notation and recall some basic facts on number fields.
For further details we refer e.g. to Evertse and Győry (2015, Chapter 1).

Let L be an algebraic number field. Denote by d,OL,ML, DL, hL, r and
RL its degree, ring of integers, set of places, discriminant, class number, unit
rank and regulator, respectively. The setML consists of real infinite places,
these are the embeddings σ : L ↪→ R, complex infinite places, these are the
pairs of conjugate complex embeddings {σ, σ : L ↪→ C}, and finite places,
these are the prime ideals ofOL. We denote by S∞ the set of all infinite places,
i.e., both real and complex, of L. To every v ∈ML we associate a normalized
absolute value | · |v such that for α ∈ L we have

|α|v := |σ(α)| if v = σ is real;
|α|v := |σ(α)|2 = |σ(α)|2 if v = {σ, σ} is complex;
|α|v := N(p)−ordp(α) if v = p is a prime ideal of OL.

Here N(p) := |OL/p| denotes the absolute norm of p, and ordp(α) denotes
the exponent of p in the unique prime ideal factorization of [α] (i.e., the frac-
tional ideal generated by α), with ordp(0) = ∞. The absolute values defined
above satisfy the product formula∏

v∈ML

|α|v = 1 for α ∈ L∗.

If M is a finite extension of L and V, v are places of M,L, respectively,
we say that V lies above v or v below V , notation V |v, if the restriction of |·|V
to L is a power of | · |v. In case of finite places V, v this means that V = P,
v = p are prime ideals in M,L, respectively with P ⊃ p.

Given v ∈ ML, we denote by Lv the completion of L at v and by Lv an
algebraic closure of Lv. The absolute value | · |v has a unique extension to Lv
that we denote also by | · |v. If v is real, then Lv = C, and | · |v is the ordinary
absolute value on C; thus it satisfies the triangle inequality. If v is complex
then | · |v is the square of the ordinary absolute value on C and thus, | · |1/2v
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satisfies the triangle inequality. If v is finite then | · |v satisfies the ultrametric
inequality. Summarizing, for α, β ∈ Lv we have

|α + β|v ≤ |α|v + |β|v if v is real,

|α + β|1/2v ≤ |α|1/2v + |β|1/2v if v is complex,
|α + β|v ≤ max(|α|v, |β|v) if v is finite.

 (4.1.1)

From this general fact we deduce the following useful inequality. We define
the quantities s(v) (v ∈∈ML) as follows:

s(v) :=


1 if v is real,
2 if v is complex,
0 if v is finite.

(4.1.2)

Lemma 4.1.1. Let v be a place of L, m a positive integer, and α ∈ Lv such
that |α|v ≤ (2m)−s(v). Then

|(1 + α)m − 1|v ≤ (2m)s(v)|α|v.

Proof. Assume without loss of generality that α 6= 0. Then

A :=
(1 + α)m − 1

α
=

m∑
k=1

(
m
k

)
αk−1.

If v is finite then by the ultrametric inequality, |A|v ≤ 1. Assume that v is
infinite. Then | · |1/s(v) is the ordinary absolute value on C and thus, by the
triangle inequality,

|A|1/s(v)
v ≤

m∑
k=1

(
m
k

)
|α|(k−1)/s(v)

v ≤
m∑
k=1

mk|α|(k−1)/s(v)
v ≤ 2m.

The lemma follows.

Let α ∈ Q and choose a number field L such that α ∈ L. The absolute
multiplicative height of α is defined by

H(α) :=
∏
v∈ML

max(1, |α|v)1/[L:Q],
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while its absolute logarithmic height or briefly height is given by

h(α) := logH(α) = 1
[L:Q]

∑
v∈ML

log max(1, |α|v).

These notions are independent of the choice of L.
The denominator of α ∈ Q∗, denoted by denα, is defined as the smallest

positive rational integer d0 for which d0α is an algebraic integer.
The logarithmic height has the following important properties:

h(α1 · · ·αk) ≤
∑k

i=1 h(αi) for α1, . . . , αk ∈ Q;

h(α1 + · · ·+ αk) ≤ log k +
∑k

i=1 h(αi) for α1, . . . , αk ∈ Q;

h(αm) = |m|h(α) for α ∈ Q∗,m ∈ Z;

h(ζα) = h(α) for α ∈ Q and ζ a root of unity;

h(α) ≥ log denα

degα
for α ∈ Q∗.

(4.1.3)

Further, we need the following more advanced result.

Lemma 4.1.2. Let α be an algebraic number of degree d ≥ 1 which is not
equal to 0 or to a root of unity. Then

h(α) ≥ m(d) :=

{
log 2 if d = 1,

2/d(log 3d)3 if d ≥ 2.

Proof. See Voutier (1996). Asymptotically, this lower bound is not the most
optimal but it is most convenient for our purposes. See, e.g. Dobrowolski
(1979) for an estimate which is still the best in terms of d.

For a number field L and v ∈ ML, the v-adic norm of a vector x =
(x1, . . . , xn) ∈ Lv is defined by

|x|v := max(|x1|v, . . . , |xn|v).

Let x = (x1, . . . , xn) ∈ Qn
and choose an algebraic number field L such

that x ∈ Ln. Then the multiplicative height and homogeneous multiplicative
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height of x are defined by

H(x) :=

( ∏
v∈ML

max(1, |x|v)

)1/d

, Hhom(x) :=

( ∏
v∈ML

|x|v

)1/d

,

respectively, where d = [L : Q]. As in the case n = 1 above, these heights
are independent of the choice of L. We define the corresponding logarithmic
heights by

h(x) := logH(x), hhom(x) := logHhom(x),

respectively. For instance,

h(x) = log max(|x1|, . . . , |xn|), hhom(x) = log

(
max(|x1|, . . . , |xn|)

gcd(x1, . . . , xn)

)
for x = (x1, . . . , xn) ∈ Zn\{0}. (4.1.4)

From the definitions it is clear that

max
1≤i≤n

h(xi) ≤ h(x) ≤
n∑
i=1

h(xi) for x = (x1, . . . , xn) ∈ Qn
. (4.1.5)

Further,

hhom(λx) = hhom(x) for x ∈ Qn
, λ ∈ Q∗. (4.1.6)

This is shown by applying the product formula with any number field L con-
taining λ and the coordinates of x.

Let again L be a number field. For a polynomial P ∈ L[X1, . . . , Xn] and
for v ∈ML we define

|P |v := |xP |v,

where xP is a vector consisting of the non-zero coefficients of P . We will
need the following estimate.

Lemma 4.1.3. Let P1, . . . , Pq ∈ L[X1, . . . , Xn] be polynomials in n variables
and P := P1 · · ·Pq their product. Suppose that the partial degrees of P have
sum at most D. If v ∈ML we have

2−nDs(v)

q∏
j=1

|Pj|v ≤ |P |v ≤ 2nDs(v)

q∏
j=1

|Pj|v if v is infinite,
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where s(v) = 1 if v is real and s(v) = 2 if v is complex, while

|P |v =

q∏
j=1

|Pj|v if v is finite.

Proof. See Bombieri and Gubler (2006), Lemmas 1.6.11 and 1.6.3.

We deduce some consequences. For a polynomial P ∈ Q[X1, . . . , Xn] we
define

h(P ) := h(xP ), hhom(P ) := hhom(xP ).

Corollary 4.1.4. Let P1, . . . , Pq ∈ Q[X1, . . . , Xn] be non-zero polynomials
and P := P1 · · ·Pq their product. Suppose that the partial degrees of P have
sum at most D. Then∣∣∣hhom(P )−

q∑
j=1

hhom(Pj)
∣∣∣ ≤ D log 2.

Proof. Pick a number field L containing the coefficients of P1, . . . , Pq, take
the logarithms of the inequalities and identity from Lemma 4.1.3 and sum
over v ∈ML.

Corollary 4.1.5. Let P (X) = (X − α1) · · · (X − αn) ∈ Q[X]. Then

|h(P )−
n∑
i=1

h(αi)| ≤ n log 2.

Proof. Immediate consequence of Corollary 4.1.4.

We have the following estimate for the inhomogeneous heights of polyno-
mials with rational integer coefficients.

Corollary 4.1.6. Let P1, . . . , Pq ∈ Z[X1, . . . , Xn] and P := P1 · · ·Pq their
product. Suppose that the partial degrees of P have sum at most D. Then

|h(P )−
q∑
i=1

h(Pi)| ≤ D log 2.

Proof. Use that h(Q) = log |Q|∞ if Q is a polynomial with coefficients in Z
and apply Lemma 4.1.3.
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In addition to the above, we will frequently use the following simple esti-
mates for heights and lengths of polynomials with integer coefficients. Given
a polynomial Q with integer coefficients, its height H(Q) is the maximum of
the absolute values of its coefficients, while its length L(Q) is the sum of the
absolute values of its coefficients. Denote by n(Q) the number of non-zero
coefficients of Q. Then for Q ∈ Z[X1, . . . , Xm] we have

H(Q) ≤ L(Q) ≤ n(Q)H(Q) ≤
(
degQ+m

m

)
H(Q) ≤ 2degQ+mH(Q)

(4.1.7)

where as usual we denote by degQ the total degree ofQ. Further, forQ1, Q2 ∈
Z[X1, . . . , Xm] we have

L(Q1 +Q2) ≤ L(Q1) + L(Q2), L(Q1Q2) ≤ L(Q1)L(Q2) (4.1.8)

(see e.g., Waldschmidt (2000, p. 76)). From these inequalities we deduce the
following:

Lemma 4.1.7. Let P1, . . . , Pq ∈ Z[X1, . . . , Xn] and F ∈ Z[X1, . . . , Xq] be
non-zero polynomials. Then for the composed polynomialG := F (P1, . . . , Pq)
we have

degG ≤ degF · max
1≤i≤q

degPi,

L(G) ≤ L(F )
(

max
1≤i≤q

L(Pi)
)degF

,

H(G) ≤ n(F )H(F )
(

max
1≤i≤q

n(Pi)H(Pi)
)degF

.

Proof. The estimate for degG is obvious. The estimate for L(G) follows di-
rectly from (4.1.8), and then the estimate for H(G) follows from (4.1.7).

As above, L is an algebraic number field of degree d. Let S be a finite set
of places of L which contains the set S∞ of infinite places. Denote by s the
cardinality of S. We have d ≤ 2s. Recall that the ring of S-integers OS is
defined as

OS = {α ∈ L : |α|v ≤ 1 for v ∈ML\S}.

For S = S∞, this is just the ring of integers OL in L. Denote by O∗L and,
more generally, by O∗S the unit groups of OL and OS , respectively. By the
Dirichlet-Chevalley-Weil S-unit theorem, that is, the extension to S-units of
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Dirichlet’s unit theorem, the group O∗S has rank s − 1. This means that there
are ε1, . . . , εs−1 ∈ O∗S such that every ε ∈ O∗S can be expressed uniquely as

ε = ζεb11 · · · ε
bs−1

s−1 ,

where ζ is a root of unity in L and b1, . . . , bs−1 are rational integers. Such a
system {ε1, . . . , εs−1} is called a fundamental system of S-units and for S =
S∞, a fundamental system of units in L. Notice that rankO∗L = r1 +r2−1 =:
r, where r1 is the number of real places, and r2 the number of complex places
of L.

Pick s − 1 places v1, . . . , vs−1 from S, i.e., we omit one place. The S-
regulator is defined by

RS := | det(log |εi|vj)i,j=1,...,s−1|.

This quantity is non-zero, and independent of the choice of ε1, . . . , εs−1 and
of the choice v1, . . . , vs−1 from S. In the case that S = S∞, the S-regulator
RS is equal to the regulator RL of L.

If S contains finite places, i.e., prime ideals ofOL, we denote by p1, . . . , pt
the prime ideals in S, and we put

PS := max(N(p1), . . . , N(pt)), QS := N(p1 · · · pt) if S ) S∞,

PS∞ := 1, QS∞ := 1.

(4.1.9)

The S-regulator RS and the regulator RL are related by

RS = hSRL

t∏
i=1

logN(pi), (4.1.10)

where hS is a (positive) divisor of the class number hL. We have

hLRL ≤ |DL|1/2(log∗ |DL|)d−1, (4.1.11)

see Louboutin (2000) and Győry and Yu (2006), while on the other hand,

RL > 0.2052, (4.1.12)
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see Friedman (1989). From (4.1.10) and (4.1.11) we infer

RS ≤ |DL|1/2(log∗ |DL|)d−1(logPS)t, (4.1.13)

while in the opposite direction we have, by (4.1.10) and (4.1.12),

RS ≥

{
(log 2)(log 3)s−2 if K = Q, s = |S| ≥ 3,

0.2052(log 2)s−2 if K 6= Q, s ≥ 3.

For α ∈ L∗, the fractional ideal [α] generated by α can be written uniquely
as a product of two fractional ideals a1 ·a2, where a1 is composed of p1, . . . , pt
and a2 is composed solely of prime ideals different from p1, . . . , pt. The S-
norm of α is now defined as NS(α) := N(a2). Another expression for the
S-norm is

NS(α) =
∏
v∈S

|α|v.

Combining this with h(α) = d−1
∑

v∈S log max(1, |α|v) for α ∈ OS , we
derive the very useful inequality

logNS(α) ≤ dh(α) ≤ smax
v∈S

log |α|v for α ∈ OS\{0}. (4.1.14)

In case that α is an S-unit we obtain, by applying (4.1.14) to α−1,

min
v∈S

log |α|v ≤ −dsh(α) for α ∈ O∗S. (4.1.15)

In many of our estimates we need an effective version of the Dirichlet-
Chevalley-Weil S-unit theorem. We state a suitable version below. Let again
L be a number field of degree d and denote by r the rank of O∗L. Further, let
as before S be a finite set of places of L containing the infinite places and s
the cardinality of S. Define the constants

c1 :=
((s− 1)!)2

2s−2ds−1
for s ≥ 2,

c2 := 116e · ((s− 1)!)2
√
s− 2

2s
· log∗ d for s ≥ 3,
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and

c3 :=


(s− 1)!)2

2s−2 log 2
for s ≥ 2, d = 1,

(s− 1)!)2

2s−1
· (log(3d))3 for s ≥ 2, d ≥ 2,

c4 :=


0 for r = 0,
1/d for r = 1,
29e · r!r

√
r − 1 · log d for r ≥ 2.

Proposition 4.1.8. There exists a fundamental system {ε1, . . . , εs−1} of S-
units in L such that

(i)
s−1∏
i=1

h(εi) ≤ c1RS,

(ii) max
1≤i≤s−1

h(εi) ≤ c2RS if s ≥ 3,

(iii) if v1, . . . , vs−1 are any distinct places from S, then the absolute values
of the entries of the inverse matrix of (log |εi|vj)i,j=1,...,s−1 do not exceed
c3.

Proof. (i) and (iii) were proved in Bugeaud and Győry (1996a,1996b). The
inequality (ii) is an improvement, at least in terms of s, of the corresponding
statements of Bugeaud and Győry (1996a,1996b) and Bugeaud (1998). The
main tool in the proof of (i) and (iii) is Minkowski’s theorem on the successive
minima of symmetric convex bodies from the geometry of numbers. Assertion
(ii) was proved by combining (i) with a similar type of result as Lemma 4.1.2.
See also Evertse and Győry (2015), Prop. 4.3.9 for a proof of (i),(ii),(iii).

We shall also need the following lemma.

Proposition 4.1.9. For every non-zero α ∈ OS and for every integer n ≥ 1
there exists an ε ∈ O∗S such that

h(εnα) ≤ 1

d
logNS(α) + n

(
c4RL +

hL
d

logQS

)
.

Proof. See e.g. Győry and Yu (2006), Lemma 3 or Evertse and Győry (2015),
Proposition 4.3.12. The basic idea is as follows. The vectors (log |εn|v)v∈S
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(ε ∈ O∗S) form a full lattice in the vector space of (xv)v∈S ∈ Rs with
∑

v∈S xv =
0, hence every point from this vector space is within bounded distance from
a point from this lattice. The lemma follows from an explicit bound for this
distance.

We finish this section with some estimates for discriminants. As before,
we denote by DL the discriminant of a number field L.

Lemma 4.1.10. Suppose that L is the compositum of the algebraic number
fields L1, . . . , Lk. Then DL divides D[L:L1]

L1
· · ·D[L:Lk]

Lk
in Z.

Proof. See Stark (1974).

Lemma 4.1.11. Let L be a number field of degree d, let G ∈ L[X] be a
polynomial without multiple zeros which factorizes over an extension of L as
a0(X − ϑ1) · · · (X − ϑn), and let M := L(ϑ1, . . . , ϑk) with 1 ≤ k ≤ n. Then
for the discriminant of M we have the estimate

|DM | ≤ (neh(G))2knkd|DL|n
k

.

In the case that k = 1 we have the sharper estimate

|DM | ≤ n(2n−1)de(2n2−2)h(G)|DL|n.

Proof. This is Lemma 4.1 of Bérczes, Evertse and Győry (2013).

Throughout our work we shall use A �a,b,... B or B �a,b,... A to denote
that |A| is less than c times B, where c is an effectively computable positive
number, depending only on a, b, . . ., which may be different at each occur-
rence of the symbol�. Further, we define

log∗ u := max{1, log u} for u > 0, log∗ 0 := 1.

4.2 Effective estimates for linear forms in loga-
rithms

In this section we present some results from Baker’s effective theory of log-
arithmic forms that are used in Section 4.3 to 4.6. We formulate, without
proof, some consequences of the best known effective estimates for linear
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forms in logarithms, due to Matveev (2000) in the complex case and Yu (2007)
in the p-adic case.

We first give a brief introduction. For the moment, Q denotes the algebraic
closure of Q in C, and algebraic numbers are supposed to belong to Q. Here
and below log denotes any fixed determination of the logarithm.

Gel’fond (1934) and Schneider (1934) proved independently of each other
that if α and β are algebraic numbers such that α 6= 0, 1 and β is not ratio-
nal, then αβ := exp(β logα) is transcendental for any choice of logα. An
equivalent formulation of the Gel’fond-Schneider theorem is that if α1, α2

are non-zero algebraic numbers such that logα1 and logα2 are linearly in-
dependent over Q for any choice of the logarithms, then they are linearly
independent over Q. Gel’fond (1935) gave a non-trivial effective lower bound
for |β1 logα1 + β2 logα2|, where β1, β2 denote algebraic numbers, not both
0, and α1, α2 denote algebraic numbers different from 0 and 1 such that
logα1/ logα2 is not rational.

In his celebrated series of papers, Baker (1966,1967a,1967b,1968a) made
a significant breakthrough by generalizing the Gel’fond-Schneider theorem
to arbitrarily many logarithms. Baker (1966,1967b) proved that if α1, . . . , αn
denote non-zero algebraic numbers such that logα1, . . . , logαn are linearly
independent over Q, then 1, logα1, . . . , logαn are linearly independent over
Q. Further, Baker (1967a,1967b,1968a) gave non-trivial lower bounds for
|β1 logα1+· · ·+βn logαn|, where α1, . . . , αn are non-zero algebraic numbers
such that logα1, . . . , logαn are linearly independent over Q and β1, . . . , βn
are algebraic numbers, not all 0.

Baker’s general effective estimates led to significant applications in num-
ber theory. Later, many improvements, generalizations and applications were
established by Baker and others. For comprehensive accounts of Baker’s the-
ory, analogues for p-adic and elliptic logarithms and algebraic groups and ex-
tensive bibliographies, the reader can consult Baker (1975,1988), Baker and
Masser (1977), Lang (1978), Feldman and Nesterenko (1998), Waldschmidt
(2000), Wüstholz (2002), Baker and Wüstholz (2007) and Bugeaud (2018).

For applications to Diophantine equations, the effective estimates of Baker
(1968a,1968b) in which β1, . . . , βn are rational integers proved to be particu-
larly useful. Using his estimates in this special case, Baker (1968b,1968c,1969)
gave the first explicit upper bounds for the solutions of Thue equations, Mordell
equations and super- and hyperelliptic equations over Z. For further applica-
tions of Baker’s theory to Diophantine problems, we refer to Baker (1975),
Győry (1980b,2002), Sprindzuk (1982,1993), Shorey and Tijdeman (1986),
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Bilu (1995), Smart (1998), Evertse and Győry (2015,2017a), Bugeaud (2018),
and to the references given there.

Since the 1990’s, some other effective methods have also been developed
for Diophantine equations by various authors, including Bombieri (1993),
Bombieri and Cohen (1997,2003), Bugeaud (1998), Bennett and Skinner (2004),
Siksek (2013), Murty and Pasten (2013), Pasten (2017), von Känel (2014),
von Känel and Matschke (2016), Kim (2017), Poonen (2019), Le Fourn (2019),
Győry (2019), Triantafillou (2020) and Freitas, Kraus and Siksek (2020a,b).
See also Evertse and Győry (2015, Sect.4.5). However, at present Baker’s
theory is the most suitable to derive effective bounds for the solutions of our
equations over number fields.

We now state some consequences of the best known results, due to Matveev
(2000) and Yu (2007), from Baker’s theory. These are the main tools in the
next sections, in the proofs for unit equations, hyper- and superelliptic equa-
tions and the Catalan equation. We note that in the complex case Matveev
(2000) gives lower bounds for linear forms in logarithms. For applications, it
will be more convenient to consider some consequences concerning

Λ = αb11 · · ·αbnn − 1

where α1, . . . , αn (n (≥ 2) are non-zero algebraic numbers and where b1, . . . , bn
are rational integers, not all zero.

Throughout this section, L is a number field containing α1, . . . , αn, and d
denotes the degree of L. Set

B∗ := max{|b1|, . . . , |bn|}

and let A1, . . . , An be reals with

Ai ≥ max{dh(αi), π}, i = 1, . . . , n.

We state two propositions that are consequences of results of Matveev (2000).

Proposition 4.2.1. Suppose Λ 6= 0, bn = ±1 and B satisfies

B ≥ max{B∗, 2eAn max(nπ/
√

2, A1, . . . , An−1)}.

Then
log |Λ| > −c5(n, d)A1 · · ·An log(B/(

√
2An))
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where

c5(n, d) = min{1.451(30
√

2)n+4(n+ 1)5.5, π26.5n+27}d2 log(ed).

Proof. This is Proposition 4 in Győry and Yu (2006). It is an easy conse-
quence of Corollary 2.3 of Matveev (2000).

We put χ := 1 if L is real and χ := 2 otherwise. Let now

A′i := dh(αi) + π, i = 1, . . . , n.

Proposition 4.2.2. Suppose that Λ 6= 0, and that B′ satisfies

B′ ≥ max{1,max(|bi|A′i/A′n; 1 ≤ i ≤ n)}.

Then we have

log |Λ| > −c6(n, d)A′1 · · ·A′n log(e(n+ 1)B′),

where

c6(n, d) = 2πmin

{
1

χ

(
1

2
e(n+ 1)

)χ
30n+4(n+ 1)3.5, 26n+26

}
d2 log(ed).

Proof. This is Lemma 3.6 in Koymans (2017). It is easily deduced from
Corollary 2.3 of Matveev (2000).

Consider again Λ defined as above. Let B and Bn be real numbers satis-
fying

B ≥ max{|b1|, . . . , |bn|}, B ≥ Bn ≥ |bn|.

Denote by p a prime ideal in OL lying above the prime number p and by ep
and fp the ramification index and residue class degree of p, respectively. Thus
N(p) = pfp .

The following result is due to Yu (2007).

Proposition 4.2.3. Assume that ordpbn ≤ ordpbi for i = 1, . . . , n, and set

A′′i := max{h(αi), 1/(16e2d2)}, i = 1, . . . , n.
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If Λ 6= 0, then for any real δ with 0 < δ ≤ 1/2 we have

ordpΛ < c7(n, d)enp
N(p)

(logN(p))2
max

{
A′′1 · · ·A′′n logM,

δB

Bnc8(n, d)

}
,

where

c7(n, d) = (16ed)2(n+1)n3/2 log(2nd) log(2d),

c8(n, d) = (2d)2n+1 log(2d) log3(3d)

and
M = (Bn/δ)c9(n, d)N(p)n+1A′′1 · · ·A′′n−1

with
c9(n, d) = 2e(n+1)(6n+5)d3n log(2d).

Proof. This is the second consequence of the Main Theorem in Yu (2007).

As before, L denotes a number field of degree d andML its set of places,
α1, . . . , αn are n(≥ 2) non-zero elements of L, and b1, . . . , bn rational inte-
gers, not all zero. Let Λ be defined again as above, and put

Ω :=
n∏
i=1

max{h(αi),m(d)},

B := max{3, |b1|, . . . , |bn|}

where m(d) is the lower bound from Lemma 4.1.2. For a place v ∈ ML, we
write

N(v) :=

{
2 if v is infinite,
N(p) if v = p is finite.

The following proposition is in fact a combination of some inequalities of
Matveev (2000) and Yu (2007).

Proposition 4.2.4. Suppose that Λ 6= 0. Then for v ∈ML we have

log |Λ|v > −c10(n, d)
N(v)

logN(v)
Ω logB,

where c10(n, d) = 12(16ed)3n+2(log∗ d)2.
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Proof. This is Proposition 3.10 in Bérczes, Evertse and Győry (2013). For v
infinite, it is deduced from Corollary 2.3 of Matveev (2000), while for v finite,
from the first consequence of the Main Theorem on p. 190 of Yu (2007). We
have used Lemma 4.1.2 to incorporate the small values of B.

4.3 S-unit equations
Keeping the notation introduced in Section 4.1, L is a number field, S a finite
set of places of L containing the infinite places, OS the ring of S-integers of
L and O∗S the unit group of OS , that is the group of S-units in L.

Let α and β be non-zero elements of L with

max{h(α), h(β)} ≤ H,

where, for technical reasons, we assume that H ≥ max(1, π/d). Consider the
S-unit equation

αx+ βy = 1 in x, y ∈ O∗S. (4.3.1)

For S = S∞, this is called a(n ordinary) unit equation.
The first effective finiteness theorems for equation (4.3.1) were proved

for S = S∞ by Győry (1973,1974), and for general S by Győry (1979) and
independently, in a less precise form, by Kotov and Trelina (1979). In the
proofs, Baker’s theory of logarithmic forms was used. The results in Győry
(1974,1979) and Kotov and Trelina (1979) are quantitative, providing explicit
upper bounds for the heights of the solutions x, y of (4.3.1).

In Chapter 9, we shall use the following theorem, due to Győry and Yu
(2006). Here, d denotes the degree of L, s denotes the cardinality of S, PS =
max(1, N(p1), . . . , N(pt)) where p1, . . . , pt are the prime ideals in S, and RS

denotes the S-regulator.

Theorem 4.3.1. All solutions x, y of equation (4.3.1) satisfy

max{h(x), h(y)} ≤ c11PSRS(1 + (log∗RS)/ log∗ PS)H,

where
c11 = s2s+3.5 · 27s+27(log 2s)d2(s+1)(log∗(2d))3.

In the proof of Theorem 4.3.1 the main tools are Propositions 4.2.1, 4.2.3
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(logarithmic forms estimates) and a variation on Proposition 4.1.8 (the effec-
tive S-unit theorem).

Combining the method of proof with his new approach, Le Fourn (2019)
has recently improved Theorem 4.3.1 with PS replaced by P ′S which denotes
the third largest norm of prime ideals from S. For a further improvement, see
Győry (2019). However, these improvements would not give better bounds in
Chapter 9.

To avoid long and complicated computations but emphasize the role of the
main tools, we shall sketch the proof of the following less precise version of
Theorem 4.3.1.

Let x, y be a solution of equation (4.3.1). Then

max{h(x), h(y)} �L,S H. (4.3.2)

Here and below the positive constants implied by�L,S depend only on L and
S and are effectively computable.

For a complete proof of Theorem 4.3.1, the reader can consult Győry and
Yu (2006).

Sketch of the proof of (4.3.2). Let x, y be a solution of (4.3.1). We may as-
sume that h(x) ≥ h(y). Further, the case s = 1 being trivial, we assume that
s ≥ 2.

Let {ε1, . . . , εs−1} be a fundamental system of S-units with the properties
specified in Proposition 4.1.8. Then y can be written in the form

y = ζεb11 · · · ε
bs−1

s−1 , (4.3.3)

where ζ is a root of unity in L and b1, . . . , bs−1 are rational integers. Set

B := max{3, |b1|, . . . , |bs|}

and let v1, . . . , vs be distinct places from S. Then it follows from (4.3.3) that

log |y|vj =
s−1∑
i=1

bi log |εi|vj , j = 1, . . . , s− 1.

Together with Cramer’s rule and (iii) of Proposition 4.1.8 this implies that

B �L,S h(y)�L,S B. (4.3.4)
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Set αs = ζβ, bs = 1 and

Λ = εb11 · · · ε
bs−1

s−1 α
bs
s − 1.

Let v ∈ S for which |x|v is minimal. Then, using (4.3.1) and (4.1.15), we
deduce that

log |Λ|v = log |αx|v ≤ −dsh(x) + dH. (4.3.5)

First assume that v is infinite. We may assume that

B ≥ c(L, S)H

with an appropriate, effectively computable positive number c(L, S) depend-
ing only on L and S, since otherwise (4.3.1) and (4.3.4) would give immedi-
ately (4.3.2). Applying Proposition 4.2.1 to log |Λ|v and using Lemma 4.1.8,
(4.3.4) and h(x) ≥ h(y), we infer that

log |Λ|v �L,S

(
−H log

(
h(x)

H

))
.

Together with (4.3.5) this gives (4.3.2).
Next assume that v is finite and corresponds to the prime ideal p. Then it

follows that

log |αx|v = −(ordpΛ) logN(p). (4.3.6)

We apply now Proposition 4.2.3 to ordpΛ with the choice δ =
c(L,S)

2 ·HB ≤
1
2
.

Then, using Proposition 4.1.8, inequality (4.3.4) and h(y) ≤ h(x), we get

ordpΛ�L,S H log

(
h(x)

H

)
.

Together with (4.3.5) and (4.3.6) this gives (4.3.2).

The following consequence of Theorem 4.3.1, due to Győry and Yu (2006),
will be very useful.

Corollary 4.3.2. Let α1, α2, α3 be non-zero elements in L with logarithmic

78



heights at most H(≥ 2). Then for every solution x1, x2, x3 of

α1x1 + α2x2 + α3x3 = 0

in xk ∈ OS\{0} with NS(xk) ≤ N for k = 1, 2, 3 (4.3.7)

there is an ε ∈ O∗S such that

max
1≤k≤3

h(εxk) ≤ 2.001c11PSRS(1 + (log∗RS)/(log∗ PS))N

where
N = c4RL +

hL
d

logQS +H +
1

d
logN

with the constants c11 from Theorem 4.3.1 and c4 from Proposition 4.1.9.

We prove a weaker version of Corollary 4.3.2, that is, we show that for
every solution (x1, x2, x3) of (4.3.7), there is ε ∈ O∗S such that

max
1≤k≤3

h(εxk)�L,S max(H, logN). (4.3.8)

Proof of (4.3.8). Put H∗ := max(H, logN). Pick a solution (x1, x2, x3) of
(4.3.7). By Proposition 4.1.9, for k = 1, 2, 3 there are µk ∈ OS\{0} with
h(µk)�L,S logN and εk ∈ O∗S , such that xk = µkεk. This gives

α1µ1ε1 + α2µ2ε2 + α3µ3ε3 = 0,

or equivalently,

β1 ·
ε1

ε3

+ β2 ·
ε2

ε3

= 1 where β1 = −α1µ1

α3µ3
, β2 = −α1µ1

α3µ3
.

By the height properties (4.1.3) we have h(β1), h(β2) �L,S H
∗, and so, by

(4.3.2),

h(ε1/ε3), h(ε2/ε3)�L,S H
∗.

Now taking ε := ε−1
1 and invoking the height properties (4.1.3), we readily

obtain (4.3.8).
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4.4 Thue equations

As before, L is a number field and S a finite set of places of L, containing all
infinite places. Let F (X, Y ) ∈ L[X, Y ] be a binary form of degree n ≥ 3 with
at least three pairwise non-proportional linear factors over L, a fixed algebraic
closure of L. Further, let δ be a non-zero element of L and consider the Thue
equation over OS ,

F (x, y) = δ in x, y ∈ OS. (4.4.1)

For a polynomial P with algebraic coefficients, we denote by h(P ) the
maximum of the absolute logarithmic heights of its coefficients.

In the classical case L = Q, OS = Z, the first effective upper bound for
the heights of the solutions of equation (4.4.1) was given by Baker (1968b),
using one of his effective estimates concerning linear forms in logarithms.
Later, Baker’s effective result has been improved and generalized by sev-
eral people; for references, see e.g. Shorey and Tijdeman (1986), Sprindžuk
(1993), Győry (2002), Evertse and Győry (2015) and Bugeaud (2018).

For convenience, choose L such that F factors into linear forms over L.
Then the best known bound to date for the solutions of equation (4.4.1) is
due to Győry and Yu (2006). As before, d denotes the degree of L, while s
denotes the cardinality of S, the quantities PS, QS are defined by (4.1.9), and
RS denotes the S-regulator.

Theorem 4.4.1. Assume that F splits into linear factors over L. Then all
solutions x, y of equation (4.4.1) satisfy

max{h(x), h(y)}

≤ c12PSRS

(
1 +

log∗RS

log∗ PS

)
·
(
c4RL +

hL
d

logQS + 2ndH1 +H2

)
,

where

H1 := max(1, h(F )), H2 = max(1, h(δ)),

c12 := 250n6s2s+3.5 · 27s+29(log 2s)d2s+4(log∗(2d))3

and c4 is the constant from Proposition 4.1.9, i.e.,

c4 = 0 if r = 0, 1/d if r = 1, 29e · r!r
√
r − 1 · log d if r ≥ 2.
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This is Corollary 3 of Győry and Yu (2006). It is a special case of Theorem
3 of Győry and Yu (2006) concerning decomposable form equations.

In terms of S, a better bound has been recently obtained in Győry (2019),
replacing PS by P ′S; see the remark after Theorem 4.3.1. However, this im-
provement would not lead to a better bound in Chapter 9.

We shall outline a proof of the following less precise version of Theorem
4.4.1, under the same assumptions as in Theorem 4.4.1:

All solutions x, y of equation (4.4.1) satisfy

max{h(x), h(y)} �n,L,S max(H1, H2). (4.4.2)

We recall that here and below, constants implied by�a1,...,ar are positive
and effectively computable, and depend only on the parameters a1, . . . , ar in
the subscript.

Sketch of the proof of (4.4.2). We start with some remarks. There is an a ∈ Z
with 1 ≤ a ≤ n such that F (1, a) 6= 0. Consider the binary form G(X, Y ) :=
F (X, aX + Y ) in which the coefficient of Xn is F (1, 0) 6= 0 and the heights
of the coefficients of G are at most�n H1. Denote by g0 the product of the
denominators of the coefficients of G. Then we can write

g0G(X, Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n

= a0(X − α1Y ) · · · (X − αnY ),

where a0, . . . , an are already integers in L with heights �n,d H1. Further,
at least three from among α1, . . . , αn, say α1, α2, α3, are pairwise distinct.

Let x, y be a solution of (4.4.1). Then

x′ = a0x, y′ = −ax+ y (4.4.3)

is a solution of the equation

(x′ − α′1y′) · · · (x′ − α′ny′) = δ′, (4.4.4)

where δ′ = g0a
n−1
0 δ ∈ OS and α′i = a0αi for i = 1, . . . , n. We have

(α′i)
n + a1a0(α′i)

n−1 + · · ·+ ana
n−1
0 = 0
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which implies that α′i is an integer in L and h(α′i)�n,d H1 for each i. Further,

h(δ′)�n,d max(H1, H2). (4.4.5)

Putting δ′i = x′ − α′iy′, we have δ′i ∈ OS\{0}. It follows from (4.4.4) that δ′i
divides δ′ in OS . Therefore

logNS(δ′i) ≤ logNS(δ′)�n,d max(H1, H2).

The linear formsX−α′iY are pairwise non-proportional for i = 1, 2, 3. Hence
there are non-zero integers α1, α2, α3 in L such that

α1δ
′
1 + α2δ

′
2 + α3δ

′
3 = 0

and h(αi) �n,d H1 for i = 1, 2, 3. Then, by (4.3.8), which was proved in the
previous section, there is an ε ∈ O∗S such that

h(εδ′i)�n,L,S max(H1, H2) for i = 1, 2, 3.

But then from
(εx′)− α′i(εy′) = εδ′i, i = 1, 2

it follows that h(εx′), h(εy′) �n,L,S max(H1, H2) and thus h(x′/y′) �n,L,S

max(H1, H2). Using this together with (4.4.4), (4.4.5) we obtain h(x′), h(y′)�n,L,S

max(H1, H2), and finally, a combination with (4.4.3) gives (4.4.2).

4.5 Hyper- and superelliptic equations, the Schinzel-
Tijdeman equation

Again, S is a finite set of places of a number field L, containing all infinite
places. Let

f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ OS[X]

be a polynomial of degree n ≥ 2 with non-zero discriminant, δ ∈ OS\{0},
m ≥ 2 an integer, and consider the hyperelliptic equation

f(x) = δy2 in x, y ∈ OS, (4.5.1)
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where n ≥ 3, and the superelliptic equation

f(x) = δym in x, y ∈ OS, (4.5.2)

where n ≥ 2 and m ≥ 3.
For L = Q, S = S∞ the first explicit upper bounds for the solutions

of (4.5.1) and (4.5.2) were obtained by Baker (1968b,1968c,1969). Over Z,
Schinzel and Tijdeman (1976) were the first to consider equation (4.5.2) in
the more general situation when also the exponent m is unknown, and they
gave an effective upper bound for m. Quantitative improvements and general-
izations were later obtained by many authors, including Brindza (1984), who
gave an effective upper bound for the solutions x, y of (4.5.1) and (4.5.2) un-
der the most general condition, where f is allowed to have multiple roots. For
further references, see Shorey and Tijdeman (1986), Sprindžuk (1993), Győry
(2002), Evertse and Győry (2015) and Bugeaud (2018).

The following best known explicit results are due to Bérczes, Evertse and
Győry (2013). As before, d denotes the degree of L, s the cardinality of S,
and the quantities PS, QS are defined by (4.1.9). Further, we put

ĥ :=
1

d

∑
v∈ML

log max(1, |δ|v, |a0|v, . . . , |an|v). (4.5.3)

Theorem 4.5.1. All solutions x, y of equation (4.5.1) satisfy

h(x), h(y) ≤ c13|DL|8n
3

Q20n3

S e50n4dĥ,

where c13 = (4ns)212n4s.

Theorem 4.5.2. All solutions x, y of equation (4.5.2) satisfy

h(x), h(y) ≤ c14|DL|2m
2n2

Q3m2n2

S e8m2n3dĥ,

where c14 = (6ns)14m3n3s.

Finally, consider the Schinzel–Tijdeman equation

f(x) = δym in x, y ∈ OS, m ∈ Z≥2 (4.5.4)

where m ≥ 2 is also unknown.
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Theorem 4.5.3. All solutions of (4.5.4) such that y 6= 0 and y is not a root of
unity satisfy

m ≤ c15|DL|6nP n2

S e11ndĥ,

where c15 = (10n2s)40ns.

The above theorems are Theorems 2.1, 2.2 and 2.3 in Bérczes, Evertse and
Győry (2013).

Let f(X) be as in Theorem 4.5.1 (when n ≥ 3) or in Theorem 4.5.2 (when
n ≥ 2) with non-zero discriminant, andG the splitting field of f over L. Then

f(X) = a0(X − α1) · · · (X − αn) with α1, . . . , αn ∈ G.

Let Mi = L(αi) and denote by Ti the set of places of Mi lying above the
places of S and by OTi the ring of Ti-integers in Mi, i = 1, . . . , n.

We state without proof the following crucial lemma.

Lemma 4.5.4. Let x, y ∈ OS be a solution of (4.5.1) (whenm = 2) or (4.5.2)
(when m ≥ 3) with y 6= 0. Then for i = 1, . . . , n there are γi, ξi with

x− αi = γiξ
m
i , ξi ∈ OTi , γi ∈M∗

i

and

h(γi) ≤ c16e
2ndĥ|DL|n

(
80(dn)dn+2 +

1

d
logQS

)
,

where c16 = m(n3d)nd.

For a proof, see (ii) in Lemma 4.2 of Bérczes, Evertse and Győry (2013).
The first version of this lemma in a less general and ineffective form was
proved by Siegel (1926), and in a less general but effective form by Baker
(1969). The proof uses the ideal factorization of [x−αi] inOTi , estimates for
the class number of Mi and an analogue of Proposition 4.1.9 for OTi .

Below we sketch proofs of less explicit versions of Theorems 4.5.1, 4.5.2,
4.5.3. We first prove the following weaker version of Lemma 4.5.4:

Let x, y ∈ OS be as in the statement of Lemma 4.5.4. Then for i = 1, . . . , n
there are γi, ξi with

x− αi = γiξ
m
i , ξi ∈ OTi . γi ∈M∗

i , h(γi)�n,L,S m · c(n, d)ĥ. (4.5.5)
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Here and in the remainder of this section, c(n, d) will denote effectively com-
putable numbers exceeding 1 that depend only on n and d, and that may be
different at each occurrence.

Proof. It suffices to prove (4.5.5) for i = 1. We write M,T for M1, T1. We
denote by [β1, . . . , βr] the fractional ideal of OT generated by β1, . . . , βr ∈
M . Let g(X) = (X−a0α2) · · · (X−a0αn) = an0f(X/a0)/(X−a0α1). Then
g ∈ OT [X]. We first prove that there are ideals C,A of OT such that

[a0(x− α1)] = C · Am, C ⊇ [(δa0g(a0α1))m−1]. (4.5.6)

First observe that there is h ∈ OT [X] such that

g(X)− g(a0α1) = (X − a0α1)h(X).

Substituting a0x for X we infer

g(a0α1) ∈ [a0(x− α1), g(a0x)]. (4.5.7)

Further,

an0δy
m = a0(x− α1)g(a0x). (4.5.8)

For a prime ideal P of OT (or equivalently, a prime ideal of OK outside T ),
denote by ordP(β) the exponent of P in the prime ideal factorization of [β].
For every prime ideal of OT , write ordP(a0(x− α1)) = vP + mwP with vP,
wP non-negative integers and 0 ≤ vP ≤ m − 1. The above two relations
imply that vP = 0 for those prime ideals P that do not divide δa0g(a0α1).
Now clearly, (4.5.6) holds with

C =
∏

P|δa0g(a0α1)

PvP , A =
∏
P

PwP .

We now proceed to prove (4.5.5). An ideal B of OT can be expressed
uniquely as B∗OT , where B∗ is an ideal of OK composed of prime ideals
outside T . We define NTB := |OK/B∗|. For instance by Lang (1994, pp.
119,120), there is non-zero ξ ∈ A∗ with |NL/Q(ξ)| ≤ |DM |1/2|OK/A∗|. This
translates into NT (ξ) ≤ |DM |1/2NTA, i.e., [ξ] = BA where B is an ideal
of OT with NTB ≤ |DM |1/2. Similarly, there exists γ ∈ L with [γ] = DC,
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where D is an ideal of OT with NTD ≤ |DM |1/2. As a consequence, we have

a0(x− α) =
γ

γ′
ξm,

where γ, γ′ ∈ OT , and
[γ′] = DBm.

Using (4.5.6) and the choice of B, D, we get

NT (γ) ≤ |DM |1/2NT (δa0g(a0α1))m−1, NT (γ′) ≤ |DM |(m+1)/2.

By Lemma 4.1.11 we have |DM | �L c(n, d)ĥ. Combined with (4.1.3), (4.1.14),
this shows

NT (γ), NT (γ′)�L,n,S c(n, d)mĥ.

By (4.1.11) we have RM �L c(n, d)ĥ. Using this together with Proposition
4.1.9, we infer that there are T -units η, η′ ∈ O∗T such that

h(γηm), h(γ′η′m)�n,L,S m · c(n, d)ĥ.

Putting
γ1 := a−1

0 γγ′−1(ηη′−1)m, ξ1 = η′η−1ξ,

we obtain x − α1 = γ1ξ
m
1 , where γ1 ∈ M∗ with h(γ1) �n,L,S m · c(n, d)ĥ

and ξ1 ∈ OT . This proves (4.5.5).

We now sketch the proof of the following weaker version of Theorem
4.5.2:

All solutions x, y ∈ OS of (4.5.2) with y 6= 0 satisfy

max{h(x), h(y)} �m,n,L,S c(n, d)m
2ĥ. (4.5.9)

Sketch of the proof of (4.5.9). Let m ≥ 3 and let x, y ∈ OS be a solution of
f(x) = δym with y 6= 0. Then we have x−αi = γiξ

m
i with γi, ξi as in (4.5.5),

i = 1, . . . , n. Let N = L(α1, α2,
m
√
γ1/γ2, %), where % is a primitive m-th

root of unity. Let T be the set of places of N , lying above the places from S,
and OT the ring of T -integers in N .

Then

γ1ξ
m
1 − γ2ξ

m
2 = α2 − α1, ξ1, ξ2 ∈ OT . (4.5.10)
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The left-hand side is a binary form in ξ1, ξ2 with non-zero discriminant which
splits into linear factors over N . We are going to apply Theorem 4.4.1 with
N, T instead of L, S. Notice that [N : L] ≤ m2n2. A repeated application of
Lemma 4.1.11 gives a discriminant estimate

|DN | �m,n,L,S c(n, d)m
2ĥ

and together with (4.1.11), (4.1.13), this implies the estimates

hN , RT �m,n,L,S c(n, d)m
2ĥ.

By applying Theorem 4.4.1 to (4.5.10) and inserting these bounds, we get

h(ξ1)�m,n,L,S c(n, d)m
2ĥ max(H1, H2), (4.5.11)

where

H1 := max{1, h(γ1), h(γ2)}, H2 := max{1, h(α2 − α1)}.

Further, we have H2 �n ĥ and by (4.5.5),

H1 �m,n,L,S c(n, d)ĥ. (4.5.12)

Using

h(x) ≤ log 2+h(α1)+h(γ1)+mh(ξ1), h(y) ≤ m−1(h(δ)+h(f)+nh(x))

and combining these with (4.5.11) and (4.5.12), inequality (4.5.9) follows.

In the proof of Theorem 4.5.1 we shall use the following.

Lemma 4.5.5. Let γ1, γ2, γ3, β12, β13 be non-zero elements of L such that

β12 6= β13,
√
γ1/γ2,

√
γ1/γ3 ∈ L,

h(γi) ≤ H1 for i = 1, 2, 3, h(β12), h(β13) ≤ H2.

Then for the solutions x1, x2, x3 of the system of equations

γ1x
2
1 − γ2x

2
2 = β12, γ1x

2
1 − γ3x

2
3 = β13 in x1, x2, x3 ∈ OS (4.5.13)
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we have

max
1≤i≤3

h(xi)

≤ c17PSRS

(
1 +

log∗RS

log∗ PS

)(
RL +

hL
d

logQS + dH1 +H2

)
(4.5.14)

where c17 = s2s+427s+60d2s+d+2.

Proof. This is Proposition 3.12 of Bérczes, Evertse and Győry (2013). The
idea of the proof is to reduce (4.5.13) to the decomposable form equation

F (x1, x2, x3) = δ in x1, x2, x3 ∈ OS,

where
δ = β12β13β23 with β23 = β13 − β12

and
F (X1, X2, X3) =

∏
1≤i<j≤3

(γiX
2
i − γjX2

j ).

Here F is a decomposable form of degree 6 with splitting fieldL, whose linear
factors form a triangularly connected system; see Section 2.6. To this equation
one can apply Theorem 3 of Győry and Yu (2006), which is a quantitative
number field version of Theorem 2.6.1, to obtain (4.5.14). In Section 4.7 we
have stated a special case of this result of Győry and Yu (Theorem 4.7.1) and
at the end of Section 4.7 we have included a sketch of its proof.

We sketch now the proof of the following less explicit version of Theorem
4.5.1.

All solutions x, y ∈ OS of equation (4.5.1) with y 6= 0 satisfy

max{h(x), h(y)} �n,L,S c(n, d)ĥ. (4.5.15)

Sketch of the proof of (4.5.15). Let x, y ∈ OS be a solution of the equation
f(x) = δy2 with y 6= 0. Then we have x− αi = γiξ

2
i (i = 1, . . . , n) with the

γi, ξi as in (4.5.5). Let

N = L(α1, α2, α3,
√
γ1/γ3,

√
γ2/γ3),

let T be the set of places of N lying above the places from S, and let OT be
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the ring of T -integers in N . Then

γ1ξ
2
1 − γ2ξ

2
2 = α2 − α1, γ1ξ

2
1 − γ3ξ

2
3 = α3 − α1, ξ1, ξ2 ∈ OT . (4.5.16)

Notice that [N : L] ≤ 4n3. Further, a repeated application of Lemma 4.1.11
gives |DN | �n,L,S c(n, d)ĥ and together with (4.1.11), (4.1.13), this implies
the estimates

hN , RT �n,L,S c(n, d)ĥ.

By applying Lemma 4.5.5 to (4.5.16) with N , T instead of L, S, inserting the
estimates for hN , RT and following the same computations as above, (4.5.15)
follows.

Finally, we shall sketch the proof of a less explicit version of Theorem
4.5.3.

Let L, S be as above, let f(X) ∈ OS[X] be a polynomial of degree n ≥
2 with non-zero discriminant and consider the Schinzel-Tijdeman equation
(4.5.4), where both x, y ∈ OS and m ≥ 2 are unknowns.

All solutions x, y ∈ OS , m ∈ Z≥3 of (4.5.4) such that y 6= 0 and y is not
a root of unity satisfy

m�n,L,S c(n, d)ĥ. (4.5.17)

We start with some preliminaries and a lemma. Let again f(X) = a0(X−
α1) · · · (X−αn). For i = 1, . . . , n, letMi = L(αi), and denote by dMi

, hMi
, RMi

the degree, class number and regulator of Mi. Further, let Ti be the set of
places of Mi lying above the places in S and denote by ti the cardinality of
Ti and by RTi the Ti-regulator of Mi. By Lemma 4.1.11 and (4.1.11), (4.1.13)
we have the estimates

hMi
, RTi �n,L,S c(n, d)ĥ. (4.5.18)

The group of Ti-units is finitely generated and, by Proposition 4.1.8, we can
choose a fundamental system of Ti-units ηi,1, . . . , ηi,ti−1 such that

ti−1∏
j=1

h(ηi,j), max
1≤j≤ti−1

h(ηi,j)�n,L,S c(n, d)ĥ. (4.5.19)

Lemma 4.5.6. Let x, y ∈ OS and m ≥ 3 be a solution of equation (4.5.4)
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such that y 6= 0 and y is not a root of unity. Then for i = 1, 2 there are
γi, ξi ∈ M∗

i , and integers bi,1, . . . , bi,ti−1 of absolute value at most m/2 such
that

(x− αi)hM1
hM2 = η

bi,1
i,1 · · · η

bi,ti−1

i,ti−1 γiξ
m
i , (4.5.20)

h(γi) ≤ (2n3s)6ns|DL|2ne4ndĥ(ĥ+ log∗ PS). (4.5.21)

This is Lemma 5.1 in Bérczes, Evertse and Győry (2013). We prove the fol-
lowing less precise result with instead of (4.5.21) the estimate

h(γi)�n,L,S c(n, d)ĥ for i = 1, 2. (4.5.22)

Proof. We prove this only for i = 1. We write M,T for M1, T1 and use again
[·] to denote ideals in OT . Let again g(X) = (X − a0α1) · · · (X − a0αn). By
(4.5.8), (4.5.7) we have for every prime ideal P of OT ,

ordP(an0δ) +mordP(y) = ordP(a0(x− α1)) + ordP(g(a0x)),

ordP(a0(x− α1)) ≤ ordP(g(a0α1)), or ordP(g(a0x)) ≤ ordP(g(a0α1)),

hence

ordP(a0(x− α1)) = v +mw with v, w ∈ Z, |v| ≤ ordP(δan0g(a0α1)), w ≥ 0.

It follows that there are ideals C1, C2, A of OT such that

[a0(x− α1)] = C1C
−1
2 Am, C1,C2 ⊇ [an0δg(a0α1)].

Raising to the hM1hM2-th power to make all ideals principal, and invoking
(4.5.18), we infer that there are θ1, θ2, ξ ∈ OT such that

[(a0(x− α1))hM1
hM2 ] = [θ1θ

−1
2 ξm],

logNT (θj) ≤ hM1hM2 logNT (an0δg(a0α1))�n,L,S c(n, d)ĥ for j = 1, 2.

(4.5.23)

Proposition 4.1.9 and again (4.5.18) imply that for j = 1, 2 there is εj ∈ O∗T
such that θ′j := εjθj satisfies

h(θ′j)�n,L,S c(n, d)ĥ.

90



Combined with (4.5.23), this gives

(a0(x− α1))hM1
hM2 = ηθ′1θ

′−1
2 ξm

with η ∈ O∗T . By the S-unit Theorem,we can express η as

η = ζη
b1,1
1,1 · · · η

b1,t1−1

1,t1−1 · εm

with ζ a root of unity, b1,k (k = 1, . . . , t1−1) integers of absolute value at most
m/2, and ε ∈ O∗T . Now (4.5.20), (4.5.22) hold with γ1 := ζθ′1θ

′−1
2 , ξ1 := εξ,

Sketch of the proof of (4.5.17). Let x, y ∈ OS and m ≥ 3 be a solution of
equation (4.5.4) such that y 6= 0 and y is not a root of unity. We assume that

h(x)�n,L,S c(n, d)ĥ. (4.5.24)

This is no loss of generality for if h(x) �n,L,S c(n, d)ĥ, then (4.5.4) and
Lemma 4.1.2 imply (4.5.17). In the course of our proof, the constant c(n, d)
in (4.5.24) will be chosen sufficiently large to make all our estimates work.

Let M = L(α1, α2), dM = [M : Q], T the set of places of M lying above
the places from S and t the cardinality of T . Put

Λ := 1−
(
x− α1

x− α2

)hM1
hM2

.

By (4.1.14), there is w ∈ T such that log |x − α2|w ≥ dM
t h(x − α2). Now a

combination of Lemma 4.1.1, (4.5.18) and (4.5.24) gives

log |Λ|w �n,L,S (hK1hK2)
2 + log

∣∣∣∣1− x− α1

x− α2

∣∣∣∣
w

�n,L,S c(n, d)ĥ + log
|α1 − α2|w
|x− α2|w

�n,L,S (−h(x)). (4.5.25)

To obtain a lower bound for log |Λ|w we substitute the identity(
x− α1

x− α2

)hK1
hK2

=
γ1

γ2

η
b1,1
1,1 · · · η

b1,t1−1

1,t1−1 · η
−b2,1
2,1 · · · η−b2,t2−1

2,t2−1

(
ξ1

ξ2

)m
,

from (4.5.20) and then apply Proposition 4.2.4. Notice that by (4.5.19) and

91



(4.5.22) we have

h(ξ1/ξ2)�n,L,S m
−1

(
h(γ1/γ2) + c(n, d)ĥm+ h

(x− α1

x− α2

))
�n,L,S c(n, d)ĥ(1 +m−1h(x)).

By inserting this, as well as the bounds from (4.5.22) and (4.5.19) into the
lower bound from Proposition 4.2.4, we obtain

log |Λ|w �n,L,S (−c(n, d)ĥ
(
1 +m−1h(x)

)
logm). (4.5.26)

Comparing (4.5.25) and (4.5.26) and combining this with (4.5.24), estimate
(4.5.17) easily follows.

4.6 The Catalan equation

Consider now the Catalan equation in the following generalized form

xm ± yn = 1 in x, y ∈ OS, m, n ∈ Z
with x, y not roots of unity and m,n > 1,mn > 4, (4.6.1)

where again S is a finite set of places, containing all infinite places, of a num-
ber field L. As was mentioned in Section 2.5, in the classical case L = Q,
O = Z, Tijdeman (1976) proved that the solutions x, y,m, n are bounded
above by an effectively computable absolute constant. His proof relies on
Baker’s theory of logarithmic forms.

Brindza, Győry and Tijdeman (1986) generalized Tijdeman’s proof for
equations (4.6.1) where OS = OL is the ring of integers of L. They showed
that in this case the heights of the solutions of (4.6.1) can be effectively
bounded above by a number which depends only on L. Brindza (1987) fur-
ther generalized this to equations (4.6.1) where S is an arbitary finite set of
places. The following theorem, due to Koymans (2016), is a more explicit
version of Brindza’s result. Again, d denotes the degree of L, s denotes the
cardinality of S, the quantities PS, QS are defined by (4.1.9), and RS denotes
the S-regulator.

Theorem 4.6.1. Suppose that in (4.6.1) m and n are primes. Then all solu-
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tions of (4.6.1) satisfy

max{m,n} < (sP 2
S)c
∗
1sPS |DL|6PSP

P 2
S

S =: C

where c∗1 is an effectively computable positive absolute constant, and

max{h(x), h(y)} < (C · s)C6

(|DL|QS)C
4

.

Furthermore, if in (4.6.1) m and n are arbitrary positive integers, we have

max{m,n} < (C · s)C6

(|DL|QS)C
4

.

The proof of Theorem 4.6.1 is a generalization of the proof given for ordi-
nary rings of integers in Brindza, Győry and Tijdeman (1986). The main tools
are Propositions 4.2.2 and 4.2.3 from Baker’s theory of logarithmic forms,
while also Theorems 4.3.1, 4.5.1 and 4.5.2, Proposition 4.1.8 play an impor-
tant role.

Following the proof of Koymans, we shall sketch the proof of the fol-
lowing less precise version of Theorem 4.6.1. In all statements below, con-
stants implied by the Vinogradov symbols �L,S and �L,S are effectively
computable and depend only on L and S.

Suppose that in (4.6.1) m and n are prime. Then all solutions of (4.6.1)
satisfy

max{m,n} �L,S 1, (4.6.2)

and

max{h(x), h(y)} �L,S 1. (4.6.3)

Furthermore, if in (4.6.1) m and n are arbitrary positive integers, we have

max{m,n} �L,S 1. (4.6.4)

We mention here that inequality (4.6.3) follows at once from (4.6.2) and
Theorems 4.5.1 and 4.5.2. Further, if m,n are arbitrary positive integers in-
stead of just primes, we pick prime divisors m′, n′ of m and n, respectively,
estimate m′ and n′ by means of (4.6.2), then estimate h(x′), h(y′) where
x′ := xm/m

′ and y′ := yn/n
′ by means of (4.6.3), and subsequently obtain

93



(4.6.4) by applying Voutier’s inequality Lemma 4.1.2. So it suffices to prove
(4.6.2) under the assumption that m and n are primes. This will be assumed
henceforth.

Another important ingredient of the proof of Theorem 4.6.1 is the follow-
ing result of Koymans (2017), which is of interest in itself.

Lemma 4.6.2. If p, x1, x2, y are such that p is a prime, x1, x2 ∈ O∗S , y ∈ OS
with y 6= 0 and y 6∈ O∗S and

x1 + x2 = yp (4.6.5)

then

p ≤ (2s)c
∗
2sP 2

SR
4
S (4.6.6)

with an effectively computable positive absolute contant c∗2.

Proof. This is Theorem 4.2 in Koymans (2017). It is a generalization of Lemma
6 in Brindza, Győry and Tijdeman (1986). Koymans’ proof is a more modern
and simplified version of that of Theorem 9.3 in Shorey and Tijdeman (1986).
We briefly sketch a proof of the weaker inequality

p�L,S 1, (4.6.7)

which is in fact sufficient for (4.6.2).
Below, we write�,� for�L,S ,�L,S . Choose a fundamental system of

S-units {η1, . . . , ηs−1} ofO∗S , where s := |S|. Let x1, x2, y, p be as in Lemma
4.6.2. Then

x1 = ζ1η
a1
1 · · · η

as−1

s−1 , x2 = ζ2η
b1
1 · · · η

bs−1

s−1 ,

where ζ1, ζ2 are roots of unity and the ai, bi are integers. We may and shall
assume that

0 ≤ bi < p for i = 1, . . . , s− 1; (4.6.8)

indeed, these inequalities can be achieved after multiplying x1, x2, y
p with a

suitable p-th power of an S-unit. From this assumption together with the lower
bound for h(y) arising from Lemma 4.1.2 we deduce that for v ∈ S,∣∣∣∣∣

s−1∑
i=1

ai log |ηi|v

∣∣∣∣∣ = | log |x1|v| � pmax(1, | log |y|v|)� ph(y),
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and then, on multiplying the vector (a1, . . . , as−1) with the inverse of any
(s− 1)× (s− 1)-submatrix of (log |ηi|v)i=1,...,s−1, v∈S ,

max(|a1|, . . . , |as−1|)� ph(y).

The next step is to derive upper and lower bounds for |x2y
−p|v = |1−x1y

−p|v
for v ∈ S. Here we assume without loss of generality that p > PS (the
maximum of the norms of the finite places in S). First suppose that v is an
infinite place. Then by Proposition 4.2.2 with n = s, A′s � h(y), bs = p,
A′i � 1, bi � ph(y) for i < s,

log |x2y
−p|v = log |1− x1y

−p|v = log |1− ζ1η
a1
1 · · · η

as−1

s−1 y
−p|v

� −h(y) log p. (4.6.9)

If v is finite, then |p|v = 1 since p is a prime exceeding PS . Now we can apply
Proposition 4.2.3 with A′′n � h(y), δ = 1

2
, Bn = p, B � ph(y), and obtain

again (4.6.9). By (4.1.14) there is v ∈ S such that log |y|v ≥ d
sh(y). Then by

(4.6.9) we have
log |x2|v − d

sph(y)� −h(y) log p,

while log |x2|v � p by (4.6.8). Assuming p� 1 as we may, we infer h(y)�
1. Since x2 ∈ O∗S we have

∏
v∈S |x2|v = 1, and since y ∈ OS , y 6= 0

and y 6∈ O∗S we have
∏

v∈S |y|v ≥ 2. Using these inequalities and summing
(4.6.9) over v ∈ S, we obtain

−p log 2� − log p,

which implies (4.6.7).

Sketch of the proof of (4.6.2). The proof will be carried out in several steps.
Again, constants implied by Vinogradov symbols �, � will be effectively
computable and depend only on L, S. We fix a solution (x, y,m, n) of (4.6.1),
with m and n primes.

Step 1. Simplifications.
In view of Theorem 4.5.3 we may assume that m,n are primes exceeding
PS (the maximum of the norms of the prime ideals in S). If x and y are
S-units, then we obtain h(xm), h(yn) � 1 from Theorem 4.3.1 and subse-
quently m,n � 1 from Lemma 4.1.2. If exactly one of x, y, say x, is an
S-unit, then by (4.6.7) we have n� 1 and subsequently also m� 1 by The-
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orem 4.5.3. So we may assume that neither of x, y is an S-unit. This implies
also that in the course of the proof we may assume that h(x), h(y) � 1. For
by enlarging S with a finite number of places we can achieve that all non-zero
elements z of L with h(z) � 1 are S-units. So by the above arguments, if
h(x) � 1 or h(y) � 1 then m,n � 1 follows. Lastly, we may assume that
m 6= n. For suppose that m = n is a prime. Then u = xm, v = −xy satisfy
u(u ± 1) = vm, v is non-zero and not an S-unit, and so m � 1 by Theorem
4.5.3.

So summarizing, it suffices to deal with the equation

xm + yn = 1 in x, y ∈ OS with x, y 6= 0, x, y 6∈ O∗S , (4.6.10)
and primes m,n with m > n > PS .

Henceforth, (x, y,m, n) will be a fixed solution of (4.6.10), and we may as-
sume that h(x), h(y) > C for any effectively computable constant depending
on L and S of our choice.

Step 2. A special case.
Assume that

(x− 1)m + (y − 1)n = 0. (4.6.11)

The exponent n is not an S-unit, since n > PS . Let q be a prime ideal ofOS di-
viding n. Then (4.6.11) together with (4.6.10) implies (x−1)m ≡ xm (mod q).
This shows that x and x−1 are coprime with n. Moreover,m divides the order
of the unit group of OS/q, which is smaller than nd.

Let a, b be integers with am+bn = 1. Then by (4.6.11) we have x = 1+εn

and y = 1− εm where ε = (x− 1)b(1− y)a. Clearly, ε ∈ OS . A substitution
into (4.6.10) gives

(1 + εn)m + (1− εm)n − 1 = 0,

implying

1 +
m−1∑
k=1

(
m
k

)
εnk +

n−1∑
k=1

(
n
k

)
(−1)kεmk = 0. (4.6.12)

As observed above, we may assume that h(x), h(y) > 3, say, which implies
that ε is not a root of unity. Hence there is a place v of L with |ε|v < 1. This
place v cannot be finite since otherwise, the left-hand side of (4.6.12) would
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have v-adic absolute value 1. So ε is an S-unit, and (4.1.15) implies that there
is an infinite place v of K with log |ε|v ≤ −dsh(ε). There is an embedding
σ : L ↪→ C such that | · |v = |σ(·)|s(v) with s(v) = 1 or 2. So by Lemma
4.1.2, we have |σ(ε)| ≤ c(d)−1, where c(d) > 1 is effectively computable and
depends only on d. Using m < nd we obtain the following lower bound for
the absolute value of the quantity obtained by applying σ to the left-hand side
of (4.6.12):

1−
m−1∑
k=1

ndkc(d)−nk −
n−1∑
k=1

nkc(d)−mk.

If n � 1 then ndc(d)−n < 1
4
, say, and this lower bound is strictly positive,

contradicting (4.6.12). So under the hypothesis (4.6.11) we conclude n � 1
and then also m� 1 since m < nd.

Having disposed of the case (4.6.11), we assume henceforth that

(x− 1)m + (y − 1)n 6= 0. (4.6.13)

Step 3. Ideal arithmetic.
We denote by [α1, . . . , αk] the fractional ideal ofOS generated by α1, . . . , αk ∈
L. Fix a system of fundamental S-units η1, . . . , ηs−1 of O∗S . Since

[x− 1] ·
[
xm−1
x−1

]
= [y]n,

[
x− 1, x

m−1
x−1

]
⊇ [m],

we have an ideal factorization [x− 1] = a1a
−1
2 · bn, where a1, a2, b are ideals

of OS with a1, a2 ⊇ [m]. By raising to the hL-th power we get a factorization
[x− 1]hL = [θ0] · [ω]n with ω ∈ OS\{0} and θ0 ∈ L∗ with numerator and de-
nominator of θ0 dividing mhL . Using Propositions 4.1.8 and 4.1.9, one infers
that θ0 and ω can be chosen in such a way, that

(x− 1)hL = ηu11 · · · η
us−1

s−1 θ0ω
n, (4.6.14)

where the ui are rational integers with 0 ≤ ui < n for i = 1, . . . s − 1 and
where ω ∈ OS\{0} and θ0 ∈ K∗ with

h(θ0)� logm. (4.6.15)
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Similarly, we can write

(1− y)hL = ηv11 · · · η
vs−1

s−1 τ0σ
m (4.6.16)

with rational integers vi such that 0 ≤ vi < m for i = 1, . . . , s − 1, and with
σ ∈ OS\{0} and τ0 ∈ K∗ such that

h(τ0)� log n. (4.6.17)

Step 4. First bounds for m and n.
We show that

m� h(y) logm, (4.6.18)
n� h(x) logm. (4.6.19)

Notice that (4.6.19) follows from (4.6.18) via |mh(x) − nh(y)| � 1. We

prove (4.6.18). Let Λ1 := 1 − (−y)n
xm = 1

xm . By (4.1.14) there is v ∈ S such
that

log |Λ1|v = −m log |x|v ≤ −mds h(x),

while Proposition 4.2.4 produces a lower bound

log |Λ1|v � −h(x)h(y) logm.

By combining the two bounds we get (4.6.18).

Step 5. A bound for n.
We now show that

n� (logm)4. (4.6.20)

We assume without loss of generality that

n > (logm)4, m� 1. (4.6.21)

Then by (4.6.19) we have

h(x)� (logm)3. (4.6.22)
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We deal with the expression

Λ2 :=
(1− y)nhL

(x− 1)mhL
− 1,

and derive an upper and lower bound for |Λ2|v for appropriate v. We assume
for the moment that Λ2 6= 0. By (4.1.14) there is v ∈ S such that

log |x|v ≥ d
sh(x).

For this v we have log |x|v � (logm)3. Now by Lemma 4.1.1, (4.6.10) and
(4.6.22), we have

log

∣∣∣∣(1− y)nhL

ynhL
− 1

∣∣∣∣
v

� log n− log |y|v � log n− log |x|v

� logm− d
sh(x)� −h(x).

Likewise,

log

∣∣∣∣ xmhL

(x− 1)mhL
− 1

∣∣∣∣
v

� logm− log |x− 1|v � −h(x),

and lastly, log |ynhLx−mhL − 1|v � −m log |x|v � −mh(x). So

log |Λ2|v = log

∣∣∣∣(1− y)nhL

ynhL
· xmhL

(x− 1)mhL
· ynhLx−mhL − 1

∣∣∣∣
v

� −h(x).

(4.6.23)

By inserting (4.6.14), (4.6.16), using the inequalities (4.6.15), (4.6.17) and
applying Proposition 4.2.4, we get

log |Λ2|v = log |ηnv1−mu11 · · · ηnvs−1−mus−1

s−1 τn0 θ
−m
0 (σ/ω)mn|v � −(logm)3H0,

(4.6.24)

whereH0 := max(h(σ), h(ω)). From (4.6.14), (4.6.15), (4.6.21) and (4.6.19),
we infer

h(ω)� n−1(n+ h(θ0) + h(x− 1))� n−1(n+ logm+ h(x))

� 1 +
h(x)

n
� logm

n
· h(x)
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while (4.6.16), (4.6.17) and (4.6.18) give h(σ)� h(y) · (logm)/m� h(x) ·
(logm)/n. So altogether, H0 � h(x) · (logm)/n. Now a combination with
(4.6.23) and (4.6.24) gives n� (logm)4.

We still have to deal with the case Λ2 = 0. We now consider instead

Λ3 :=
(1− y)n

(x− 1)m
− 1.

By (4.6.13) we have Λ3 6= 0. By precisely the same argument as above we
get (4.6.23) with Λ3 instead of Λ2. Further, Λ3 = ζ − 1 for a root of unity
ζ 6= 1 of L, so we certainly have the analogue of (4.6.24). Again we obtain
n� (logm)4.

Step 6. Finishing the proof.
Let

Λ4 :=
xmhL

(1− y)nhL
− 1.

Assume for the moment that Λ4 6= 0. By (4.1.14), we can choose v ∈ S such
that log |y|v ≥ d

sh(y). By an argument similar as in Step 5 we get

log |Λ4|v = log

∣∣∣∣xmhLynhL
· ynhL

(y − 1)nhL
− 1

∣∣∣∣
v

� log n− log |y|v � −h(y)

� −mn h(x). (4.6.25)

By virtue of (4.6.16) we can write

Λ4 = ηd11 · · · η
ds−1

s−1 τ
−n
0

(
xhL

σn

)m
,

with rational integers di such that |di| < mn for i = 1, . . . , s− 1. Notice that
by (4.6.16), (4.6.17), (4.6.20) we have

h(xhLσ−n)� h(x) + n
m(h(1− y) +m+ log n)� h(x) + n.

By Proposition 4.2.4, inserting this upper bound and (4.6.18), we obtain

log |Λ4|v � −(h(x) + n) log n logm.

Together with (4.6.25) and n� (logm)4 this implies m� 1.
We still have to deal with the case Λ4 = 0, i.e., xmhL = (1 − y)nhL . This
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implies (1− yn)hL = (1− y)nhL , whence

1− yn = ξ(1− y)n,

where ξ is a hL-th root of unity in L. We show that n � 1. Suppose without
loss of generality that n > hL. Then in fact, n is coprime with hL, so ξ = ζn

for some root of unity ζ of L, and thus,

(ζ(1− y))n + yn = 1.

As observed in Step 1., this implies n � 1. Then, using the fact g(y) = 0
for the polynomial g(X) := (1 − X)nhL − (1 − Xn)hL , one can deduce
that h(y) � 1. Combined with (4.6.10) this gives h(xm) � 1, and then an
application of Lemma 4.1.2 finally leads to m� 1.

4.7 Decomposable form equations

Keeping the above notation, let again L be a number field, and S a finite
set of places of L containing the set S∞ of infinite places. Consider now the
decomposable form equation

F (x) = δ in x = (x1, . . . , xm) ∈ OmS , (4.7.1)

where δ ∈ L\{0} and F (X) = F (X1, . . . , Xm) is a decomposable form of
degree n ≥ 3 in m ≥ 2 variables which factorizes into linear forms over L.
As in Chapter 2, we write

F = `1 · · · `n (4.7.2)

where `1, . . . , `n are linear forms in the variables X1, . . . , Xm with coeffi-
cients in L, and denote by LF the system (`1, . . . , `n). Suppose that LF has
at least three pairwise non-proportional linear forms. Let G(LF ) denote the
triangular graph of LF as defined by (2.6.4), i.e., G(LF ) has vertex system
LF , andh `i and `j with i 6= j are connected by an edge if `i, `j are linearly
dependent over L or they are linearly independent but there is q 6∈ {i, j} such
that λi`i + λj`j + λq`q = 0 for some non-zero λi, λj, λq ∈ L. Let L1, . . . ,Lk
be the vertex systems of the connected components of G(LF ), and denote by
[Lj] the L-vector space spanned by the linear forms from Lj . To be in accor-
dance with earlier work to which we will refer, we suppose that F in (4.7.1)
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satisfies conditions slightly stronger than (2.6.5), i.e.,

LF has rank m, (4.7.3)

Xm ∈ [L1] ∩ · · · ∩ [Lk]; (4.7.4)

of course (4.7.4) is automatically satisfied if (4.7.3) holds and k = 1.
In the next theorem we use the earlier notation, i.e., d, r, hL, andRL denote

the degree, unit rank, class number and regulator of L, s is the cardinality of
S, RS the S-regulator of L and PS and QS the largest norm and the product
of the norms of the prime ideals corresponding to the finite places in S, with
the convention that PS∞ = QS∞ = 1. Recall that by the height of an algebraic
number we always meant the absolute logarithmic height.

The following theorem was proved by Győry and Yu (2006) in a slightly
more general form.

Theorem 4.7.1. Let F ∈ L[X1, . . . , Xm] be a decomposable form of degree
n ≥ 3 that factorizes into linear forms over L such that LF satisfies the con-
ditions (4.7.3), (4.7.4). Suppose that the logarithmic heights of the coefficients
of the linear forms in LF do not exceed H1(≥ 1). Further, let δ ∈ L\{0} with
logarithmic height at most H2(≥ 1). With the above notation, all solutions
x = (x1, . . . , xm) ∈ OmS of (4.7.1) with xm 6= 0 if k > 1, satisfy

max
1≤i≤m

h(xi) ≤ c18PSRS

(
1 +

log∗RS

log∗ PS

)
×

×
(
c4RL +

hL
d

logQS +mndH1 +H2

)
(4.7.5)

with c18 = 50m(m+1)(n−1)c11, where c4, c11 denote the constants specified
in Proposition 4.1.9 and Theorem 4.3.1.

For m = 2, this gives Theorem 4.4.1 on Thue equations with a somewhat
different bound.

Recently, in terms of S the bound in (4.7.5) has been improved in Győry
(2019), replacing e.g. PS by P ′S; see Section 4.3. However, this does not play
any role in our work.

Next suppose that L is a finite normal extension of degree≥ 3 of a number
field K. Let α1 = 1, α2, . . . , αm be linearly independent elements of L over
K such that K ′ := K(α1, . . . , αm) is of degree n ≥ 3 over K. Consider the
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norm form equation

NK′/K(α1x1 + · · ·+ αmxm) = δ in x1, . . . , xm ∈ OS, (4.7.6)

whereNK′/K(α1X1 + · · ·+αmXm) =
∏n

i=1 `
(i)(X), with `(i)(X) = α

(i)
1 X1 +

· · ·+α(i)
mXm, i = 1, . . . , n, the conjugates of `(X) with respect toK ′/K. With

the above notation, for k > 1 Theorem 4.7.1 implies the following.

Corollary 4.7.2. Suppose that αm is of degree≥ 3 overK(α1, . . . , αm−1), the
heights of α2, . . . , αm do not exceed H1(≥ 1) and h(δ) is at most H2(≥ 1).
Then all solutions (x1, . . . , xm) ∈ OmS of equation (4.7.6) with xm 6= 0 satisfy
(4.7.5).

It is not difficult to show that under the conditions of Corollary 4.7.2 the
norm form NK′/K(α1X1 + · · · + αmXm) satisfies the conditions concerning
F in Theorem 4.7.1; see e.g. Győry (1981a) or the proof of Corollary 2.7.2.
Hence Corollary 4.7.2 is a consequence of Theorem 4.7.1. Corollary 4.7.2 has
a further consequence for equation (4.7.6), corresponding to Corollary 2.7.3.

Let now 1, α1, . . . , αm be linearly independent elements of L over K with
heights at most H(≥ 1). Assume again that K ′ := K(α1, . . . , αm) is of de-
gree n ≥ 3 over K. In the discriminant form equation

DK′/K(α1x1 + · · ·+ αmxm) = δ in x1, . . . , xm ∈ OS (4.7.7)

the discriminant form DK′/K(α1X1 + · · ·+αmXm) satisfies the assumptions
concerning F in Theorem 4.7.1 with k = 1 and with n(n − 1) in place of
n. Further, the coefficients of the linear factors of the discriminant form have
heights at most 2H1+log 2. Suppose again that h(δ) does not exceedH2(≥ 1).

Corollary 4.7.3. Under the above assumptions, all solutions of equation (4.7.7)
satisfy (4.7.5) with n replaced by n(n− 1) and H1 by 2H1 + log 2.

Similarly to Corollary 2.8.2, our Corollary 4.7.3 has applications to index
form equations, integral elements of given discriminant and simple integral
ring extensions of OS; for details see e.g. Győry (1981a,1998).

As was mentioned in Section 1.5, for equation (4.7.7) over Z the first ef-
fective result was obtained by Győry (1976) in quantitative form. This was
extended by Győry and Papp (1977) to the case of rings of integers of number
fields. For S = S∞ and k = 1 Győry and Papp (1978), while for arbitrary
S and k ≥ 1 Győry (1981a) proved the above results with weaker effec-
tive bounds. Improvements were later obtained among others by Bugeaud
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and Győry (1996), Bugeaud (1998) for equation (4.7.6) and by Győry (1998),
Győry and Yu (2006) and Győry (2019) for equation (4.7.1).

As was seen in Chapters 1 and 2, equation (4.7.1) as well as (4.7.6), (4.7.7)
can be extended to equations of the type

F (x1, . . . , xm) = ηδ in η ∈ O∗S, x1, . . . , xm ∈ OS, (4.7.8)

where we may assume that δ and the coefficients of F are contained in OS . If
η,x0 = (x1, . . . , xm) is a solution of (4.7.8) then so is εnη, εx0 for any S-unit
ε. However, for each solution η,x0 of (4.7.8) there is an ε ∈ O∗S such that εx0

is a solution of the equation corresponding to (4.7.1) with δ replaced by εnηδ
whose height can be explicitly bounded above by Proposition 4.1.9. Then the
above results give an explicit upper bound for max1≤i≤m h(εxi).

We now sketch the proof of the following less explicit version of Theorem
4.7.1.

Under the assumptions of Theorem 4.7.1, all solution x = (x1, . . . , xm) ∈
OmS of equation (4.7.1) with xm 6= 0 if k > 1 satisfy

max
1≤i≤m

h(xi)�m,n,L,S max(H1, H2). (4.7.9)

Sketch of the proof of (4.7.9). We set H := max(H1, H2). Constants implied
by� will be effectively computable and depend on m,n, L, S only. We fre-
quently use the elementary height properties listed in (4.1.3) without mention.

Let F, δ be as in (4.7.1) and (4.7.2). Let the positive rational integer a
be the product of the denominators of the coefficients of `1, . . . , `n and put
`′i := a`i (i = 1, . . . , n), F ′ := `′1 · · · `′n and δ′ := anδ. Then equation (4.7.1)
is equivalent to

F ′(x) = `′1(x) · · · `′n(x) = δ′. (4.7.10)

Further,

the coefficients of `′1, . . . , `
′
n and δ′ have logarithmic heights� H .

(4.7.11)

To the system LF ′ = (`′1, . . . , `
′
n) we can attach a graph G(LF ′) similar to

G(LF ), and we denote the vertex systems of its connected components by
L′1, . . . ,L′k. Then it satisfies conditions analogous to (4.7.3), (4.7.4).

Pick a solution x = (x1, . . . , xm) ∈ OmS of (4.7.1) or equivalently, (4.7.10)
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with xm 6= 0 if k > 1. Let {`′i, `′j} be an edge of G(LF ′). Assume that `′i, `
′
j are

linarly independent. Then there are q 6∈ {i, j}, and non-zero λ′i, λ
′
j, λ
′
q ∈ L,

such that λ′i`
′
i + λj`

′
j + λq`

′
q = 0. This leads to

λ′i`
′
i(x) + λ′j`

′
j(x) + λq`

′
q(x) = 0. (4.7.12)

The coefficients λ′i, λ
′
j, λ
′
q can be chosen as 2×2-determinants with entries

from the coefficients of `′i, `
′
j, `
′
q. So by (4.7.11),

h(λ′i), h(λ′j), h(λ′q)� H.

Further, `′i(x), `′l(x), `′j(x) divide δ′ in OS , so

logNS(`′i(x)), logNS(`′j(x)), logNS(`′q(x)) ≤ logNS(δ′)� H.

Now an application of (4.3.8) yields that there is ε ∈ O∗S such that

h(ε`′i(x)), h(ε`′j(x))� H.

In case that `′i, `
′
j are linearly dependent this is trivially true; so this holds for

each edge {`′i, `′j} of G(LF ′). Thus, we obtain

h

(
`′i(x)

`′j(x)

)
� H for each edge {`′i, `′j} of G(LF ′). (4.7.13)

Now let `′i, `
′
j belong to the same connected component of G(LF ′). Then there

is a path from `′i to `′j , i.e., a sequence of edges {`′i, `′i1}, {`
′
i1
, `′i2},. . .,{`

′
it , `
′
j}

of G(LF ′). Taking t minimal we have t ≤ n. Writing

`′i(x)

`′j(x)
=

`′i(x)

`′i1(x)
·
`′i1(x)

`′i2(x)
· · ·

`′it(x)

`′j(x)

and invoking (4.7.13), we obtain

h

(
`′i(x)

`′j(x)

)
� H for each `′i, `

′
j

in the same connected component of G(LF ′). (4.7.14)

For the moment, let k > 1. We want to extend (4.7.14) to all pairs `′i, `
′
j ,

not necessarily belonging to the same connected component. Let i ∈ {1, . . . , n}
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and let L′j be the connected component of `′i. According to (4.7.4), we have

Xm =
∑
`′u∈L′j

γu`
′
u

with coefficients γu ∈ L. Taking such an expression with a minimal number
of non-zero coefficients, the γu are quotients of determinants of order at most
m, whose entries are from the coefficients of the `′u ∈ L′j . So by (4.7.11),
h(γu)� H . Now we have a relation

xm
`′i(x)

=
∑
`′u∈L′j

γu
`′u(x)

`′i(x)

and so by (4.7.14),

h

(
xm
`′i(x)

)
� H.

This holds for i = 1, . . . , n. Since we assumed k > 1 we have xm 6= 0. Thus
we conclude

h

(
`′i(x)

`′j(x)

)
� H for each i, j ∈ {1, . . . , n}.

We proved this assuming k > 1, but for k = 1 this is immediate from (4.7.14).
Now from (4.7.10) we infer

`′i(x)n = δ′
n∏
j=1

`′i(x)

`′j(x)

and thus,

h(`′i(x))� H for i = 1, . . . , n. (4.7.15)

In view of (4.7.3) we may assume that `′1, . . . , `
′
m are linearly independent.

By Cramer’s rule, we can express each xi as a quotient ∆i/∆, where ∆ is the
determinant of order m whose j-th column consists of the coefficients of `′j ,
for j = 1, . . . ,m, and where ∆i is obtained from ∆ by replacing the i-th row
of the latter by `′1(x), . . . , `′m(x). Now (4.7.15) in combination with (4.7.11)
gives (4.7.9). This completes our proof.
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4.8 Discriminant equations
Let K be a number field, DK its discriminant,MK the set of places of K, T
a finite subset ofMK containing the set of infinite places T∞, and L a finite
normal extension of K with the parameters d, r, hL and RL specified above.
Let S denote the set of extensions to L of the places in T , with s, PS, QS and
RS as in Section 4.1.

If f is a monic polynomial with coefficients in OT , the ring of T -integers
of K, and f ′(X) = f(X + a) for some a ∈ OT , then the discriminants
D(f), D(f ′) coincide. As before, such polynomials f, f ′ are called strongly
OT -equivalent.

For a polynomial P (X) = Xn + a1X
n−1 + · · ·+ an ∈ K[X], we put

h(P ) :=
1

[K : Q]

∑
v∈MK

log max(1, |a1|v, . . . , |an|v).

From Theorem 4.7.1 one can deduce the following.

Theorem 4.8.1. Let f ∈ OT [X] be a monic polynomial of degree n ≥ 2 with
zeros in L such that

D(f) = δ, (4.8.1)

where δ is a non-zero element of K with height not exceeding H(≥ 1). Then
f is strongly OT -equivalent to a polynomial f ′ ∈ OT [X] for which

h(f ′) ≤ n
(

(n+ 1)C + log |DK |+ 1
)
. (4.8.2)

Here

C := c19PSRS(1 + log∗RS/ log∗ PS)(c4RL +
hL
d

logQS + n3 +H)

with c19 = 50n3c11, where c4, c11 denote the constants specified in Proposition
4.1.9 and Theorem 4.3.1.

This theorem is an improvement of Theorem 3 of Győry (1998). In the
proof of Theorem 4.8.1 one can follow the arguments of the deduction of The-
orem 3 from Theorem 1 of Győry (1998). We note that Theorem 4.8.1 could
be directly deduced, with a slightly different bound, from Theorem 4.3.1 con-
cerning S-unit equations.
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Theorem 4.8.1 has several consequences.
Let again K and L be number fields with the above properties and pa-

rameters such that there is a number field K ′ with K ⊂ K ′ ⊆ L and with
n = [K ′ : K] ≥ 2. Note that if ξ ∈ K ′, then every element ξ′ of the OT -coset
ξ +OT = {ξ + a : a ∈ OT} satisfies DK′/K(ξ′) = DK′/K(ξ).

Corollary 4.8.2. Let δ be a non-zero element of K with height at most H(≥
1). Then for every ξ ∈ K ′ such that

DK′/K(ξ) = δ, ξ is integral over OT (4.8.3)

there are ξ′ ∈ K ′, a ∈ OT such that

h(ξ′) ≤ (n+ 1)C + log |DK |, ξ = ξ′ + a (4.8.4)

with the above C.

This is an improvement of Theorem 15 of Győry (1984b). It could be
easily deduced from Theorem 4.8.1, but only with a slightly weaker bound.
To obtain Corollary 4.8.2 in the present form it suffices to apply the proof of
Theorem 4.8.1 to the minimal polynomial, say f , of the ξ under consideration.
Then D(f) = δ, and following the proof of Theorem 4.8.1 it follows that f is
stronglyOT -equivalent to a polynomial f ′ which has a zero ξ′ ∈ ξ+OT such
that (4.8.4) holds.

In the classical case K = Q, T = T∞, the first effective results for equa-
tions (4.8.1) and (4.8.3) were proved by Győry (1973,1974) in quantitative
forms, without fixing the splitting field of the polynomials f resp. the number
field L containing the algebraic numbers ξ. For general K and T , and vari-
ous applications, see Győry (1976,1978b,1981c,1984b,1998) and Evertse and
Győry (2017).

As was mentioned in Section 1.6, the following more general versions of
equation (4.8.1) in f and equation (4.8.3) in ξ have also important applica-
tions:

D(f) ∈ δO∗T in monic f ∈ OT [X] of degree n ≥ 2
having all its zeros in OS (4.8.5)

and

DK′/K(ξ) ∈ δO∗T in ξ ∈ K ′, integral over OT , (4.8.6)
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where O∗T is the unit group of OT .
We recall that the monic polynomials f, f ′ ∈ OT [X] of degree n are called

OT -equivalent if f ′(X) = εnf(ε−1X + a) for some ε ∈ O∗T , a ∈ OT . If f
satisfies (4.8.5), so does f ′. Using Proposition 4.1.9, equation (4.8.5) can be
reduced to finitely many equations of the form (4.8.1). Then by means of
Theorem 4.8.1 one can prove that each OT -equivalence class of solutions of
(4.8.5) has a representative with explicitly bounded height. A similar effective
result can be proved for equation (4.8.6) by using Corollary 4.8.2. In this case
two elements ξ, ξ′ of K ′, integral over OT , are said to be OT -equivalent if
ξ′ = εξ + a with some ε ∈ O∗T , a ∈ OT . This latter result has an important
application to the equation

O = OT [ξ] in ξ ∈ K ′, integral over OT , (4.8.7)

where O denotes the integral closure of OT in K ′. If (4.8.7) holds for some
ξ ∈ O and ξ′ is OT -equivalent to ξ then O = OT [ξ′]. The above-mentioned
result concerning (4.8.6) implies in an effective and quantitative form that
every ξ satisfying (4.8.7) is OT -equivalent to an ξ′ ∈ OT whose height can
be explicitly bounded. For these and related results, see Győry (1981b,1984b)
and Evertse and Győry (2017a).

We sketch the proof of the following less explicit version of Theorem
4.8.1.

Under the assumption of Theorem 4.8.1, every solution f of equation
(4.8.1) is strongly OT -equivalent to a monic polynomial f ′ ∈ OT [X] for
which

h(f ′)�n,K,L,S H. (4.8.8)

In the proof of (4.8.8) we use the next division with remainder lemma.
Denote by OK the ring of integers of K.

Lemma 4.8.3. Let n ≥ 2 be an integer and let β ∈ OT . Then there is an
α ∈ OK such that

α ≡ β (modn)

and
h(α) ≤ log([K : Q] · n|DK |1/2).

Proof. This is a special case of Lemma 6 of Evertse and Győry (1991).

Sketch of the proof of (4.8.8). Assume that α1, . . . , αn are the zeros of f in
L. Denote by OS the ring of S-integers in L. Writing xi = αi − α1 for i =
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1, . . . , n, we have αi ∈ OS and xi ∈ OS . Further, putting

F (X2, . . . , Xn) = X2 · · ·Xn

∏
2≤i<j≤n

(Xi −Xj),

(4.8.1) implies

F (x2, . . . , xn) = ±δ0 with x2, . . . , xn ∈ OS, (4.8.9)

where δ0 ∈ OS\{0} and δ2
0 = δ. We have h(δ0) ≤ 1

2
H. The decomposable

form F is of degree n(n − 1)/2, and it is easy to verify that for n ≥ 3 it
satisfies the assumptions of Theorem 4.7.1 with k = 1. Hence by the less
precise version (4.7.9) we deduce from (4.8.9) that both for n = 2 and for
n ≥ 3

max
2≤i≤n

h(xi)�n,L,S H = C ′ (4.8.10)

holds.
The sum a0 = α1 + · · · + αn is contained in OT . Setting β = −(x1 +

· · · + xn), it follows from (4.8.10) that h(β) ≤ (n − 1/2)C ′. Further, we
have nα1 − a0 = β. By Lemma 4.8.3 there is an a1 ∈ OK such that a1 ≡
a0 (modn) in OT and h(a1) ≤ log(dn|DK |1/2). Set α′1 = (β + a1)/n. Then
h(α′1) ≤ (n − 1/3)C ′ + log |DK |. Further, α1 = a + α′1 with some a ∈ OT
and α′1 ∈ OS . Finally, with the notation α′i = xi + α′1 we get α′i = αi − a and

h(α′i) ≤ (n+ 1)C ′ + log |DK | for i = 1, . . . , n.

Put f ′(X) :=
∏n

i=1(X −αi). Then f ′(X) = f(X + a), while Corollary 4.1.5
gives our height estimate (4.8.8).

110



Chapter 5

Effective results over function
fields

As was mentioned above, S-unit equations, Thue-equations, hyper- and su-
perelliptic equations and the Catalan equation over finitely generated domains
will be reduced in Chapter 9 to equations of the same type over number fields
and over function fields. In this chapter we formulate the best bounds to date
for the heights of the integral solutions of the reduced equations over function
fields, and sketch the main ideas of their proofs. In contrast with the number
field case, these bounds in the function field case do not imply the finiteness
of the number of solutions.

5.1 Notation and preliminaries

We start with some notation and definitions and with recalling some prelimi-
nary results over function fields. For further details we refer to Mason (1984)
and Evertse and Győry (2015), Chapter 2.

Let k be an algebraically closed field of characteristic 0 and K an alge-
braic function field in one variable over k, that is, a finitely generated exten-
sion of k of transcendence degree 1. Recall that K is a finite extension of the
rational function field k(z) for any z ∈ K\k. By a valuation on K over k
we mean a normalized, discrete valuation on K that is trivial on k, that is, a
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surjective map v : K 7→ Z ∪ {∞} such that

v(α) =∞⇐⇒ α = 0;

v(αβ) = v(α) + v(β), v(α + β) ≥ min(v(α), v(β)) for α, β ∈ K;

v(α) = 0 for α ∈ k∗.

We denote byMK the set of valuations on K over k.
For a finite extension L of K, we say that a valuation w on L lies above a

valuation v on K, notation w | v, if the restriction of w to K is a multiple of
v. In this case, we have w(α) = ew|vv(α) for α ∈ K, where ew|v is a positive
integer, called the ramification index of w over v.

The valuations over k on the field of rational functions k(z), with z tran-
scendental over k, can be described easily as follows. Let za := z − a if
a ∈ k, and z∞ := z−1. For every a ∈ k ∪ {∞}, we may expand α ∈ k(z)
as a formal Laurent series

∑∞
m=n(α) am(α)zma with am(α) ∈ k for all m and

an(α)(α) 6= 0. Then orda defined by orda(α) := n(α) defines a valuation on
k(z). In particular, ord∞(α) = − deg(α) for α ∈ k[z]. The valuations orda
(a ∈ k ∪ {∞}) provide all valuations on k(z) over k.

Let K be a function field in one variable, and L a finite extension of K.
Clearly, every valuation on L lies above a valuation on K. We explain how to
construct, for a given valuation v on K, the valuations on L that lie above v.
As a special case, we may choose z ∈ K\k, take the valuations on k(z) just
described, and construct from these the valuations on K.

Let v be a valuation on K. Take a local parameter zv ∈ K of v, i.e., with
v(zv) = 1. Then the completion Kv of K at v is (up to isomorphism) just the
field of Laurent series k((zv)), and the algebraic closure Kv of Kv is the field
of Puiseux series in zv, i.e.,

∑∞
m=n amz

m/e
v with n ∈ Z, e ∈ Z>0 and am ∈ k

for all m ≥ n, where for every positive integer e we have fixed an e-th root of
zv. There are precisely [L : K]K-invariant isomorphic embeddings L ↪→ Kv,
given by

α 7→
∞∑

m=ni(α)

aim(α)ζjmi zm/eiv (i = 1, . . . , g, j = 0, . . . , ei − 1), (5.1.1)

where e1, . . . , eg are positive integers with e1 + · · ·+ eg = [L : K], ζi is some
fixed ei-th root of unity, aim(α) ∈ k for all m ≥ ni(α), and ai,ni(α) 6= 0. We
can now define for i = 1, . . . , g a valuation wi on L by wi(α) := ni(α) for
α ∈ L∗ and wi(0) = ∞. These are precisely the valuations on L lying above

112



v. Writing w for wi, the integer ei is just the ramification index ew|v. Thus, we
have ∑

w|v

ew|v = [L : K] for v ∈MK , (5.1.2)

where the sum is taken over all valuations on L lying above v. We easily
deduce from this the sum formula for K,∑

v∈MK

v(α) = 0 for α in K∗. (5.1.3)

Indeed, this is clear if α ∈ k∗. Let α ∈ K∗\k∗. By using the above description
of the valuations on k(α), with α replacing z, one easily gets

∑
u∈Mk(α)

u(α) =

0, and together with (5.1.2), with k(α), K instead ofK,L, identity (5.1.3) fol-
lows.

Denote by gK/k the genus of K over k. In case that z is transcendental
over k one has

gk(z)/k = 0. (5.1.4)

We can relate the genus of a finite extension L of K to that of K by means of
the Riemann-Hurwitz formula

2gL/k − 2 = [L : K](2gK/k − 2) +
∑
v∈MK

∑
w|v

(ew|v − 1). (5.1.5)

Let S be a finite subset ofMK . We call α ∈ K an S-integer if v(α) ≥ 0
for all v ∈ MK\S, and an S-unit if v(α) = 0 for all v ∈ MK\S. The S-
integers form a ring in K, denoted by OS , and the S-units a multiplicative
group, denoted by O∗S .

We define the height HK(α) of α ∈ K relative to K/k by

HK(α) := −
∑
v∈MK

min(0, v(α)).

It is clear that HK(α) ≥ 0 for α ∈ K and HK(α) = 0 if and only if α ∈ k.
If L is a finite extension of K then by (5.1.2),

HL(α) = [L : K] ·HK(α) for α ∈ K.
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From the description of the valuations on a field of rational functions one
easily deduces that Hk(α)(α) = 1 if α 6∈ k. So in particular,

HK(α) = [K : k(α)] for α ∈ K\k. (5.1.6)

It is easy to see that

HK(αm) = |m|HK(α) for α ∈ K∗, m ∈ Z (5.1.7)

(where for negative m one has to employ the sum formula) and

HK(α + β) ≤ HK(α) +HK(β), HK(αβ) ≤ HK(α) +HK(β) (5.1.8)

for all α, β ∈ K. Further

HK(α) = 1
2
(HK(α) +HK(α−1))

= 1
2

∑
v∈MK

|v(α)| ≥ 1
2
|T | for α ∈ K∗, (5.1.9)

where T denotes the set of valuations v ∈MK for which v(α) 6= 0.
We define the height of a vector α = (α1, . . . , αn) ∈ Kn relative to K/k

by
HK(α) := HK(α1, . . . , αn) = −

∑
v∈MK

min(0, v(α)),

where v(α) = mini(v(αi)) is the v-value of α. If L is a finite extension of K,
then

HL(α) = [L : K]HK(α) for α ∈ Kn\{0}.

We note that

HK(αi) ≤ HK(α) ≤ HK(α1) + · · ·+HK(αn) (i = 1, . . . , n). (5.1.10)

The homogeneous height of α = (α1, . . . , αn) ∈ Kn\{0}, relative to K/k is
defined as

Hhom
K (α) := −

∑
v∈MK

v(α).

It is clear that

Hhom
K (α) ≤ HK(α).
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By the sum formula, we have

Hhom
K (λα) = Hhom

K (α) for λ ∈ K∗. (5.1.11)

For instance, let p1, . . . , pn ∈ k[z] with gcd(p1, . . . , pn) = 1. Then

Hhom
k(z)(p1, . . . , pn) = max(deg p1, . . . , deg pn). (5.1.12)

Further, if L is a finite extension ofK, then, for α = (α1, . . . , αn) ∈ Kn\{0},
we have

Hhom
L (α) = [L : K]Hhom

K (α). (5.1.13)

Since

Hhom
K (α1, . . . , αn) = HK(α1/αi, . . . , αn/αi) for all i with αi 6= 0,

we deduce from (5.1.10) that, for α1 6= 0,

HK(αi/α1) ≤ Hhom
K (α1, . . . , αn) ≤

n∑
j=1

HK(αj) + (n− 2)HK(αi),

for i = 1, . . . , n. (5.1.14)

Further, for a polynomial F ∈ K[X], its height HK(F ) resp. its homoge-
neous height Hhom

K (F ) and its v-value v(F ) are defined by the height resp.
homogeneous height and the v-value of a vector whose coordinates are the
coefficients of F . Clearly, for monic polynomials the two heights coincide,
while in general,

Hhom
K (F ) ≤ HK(F ).

For any two polynomials F,G in K[X], we have

v(FG) = v(F ) + v(G) for v ∈MK , Hhom
K (FG) = Hhom

K (F ) +Hhom
K (G).
(5.1.15)

If a non-zero polynomial F (X) factorizes in K as f0(X − α1) · · · (X − αn)
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then by (5.1.15) and the sum formula, applied to f0, we obtain

HK(f0) ≤ HK(F ) and Hhom
K (F ) =

n∑
i=1

HK(αi) ≥ max
1≤i≤n

HK(αi).

(5.1.16)

Lemma 5.1.1. Let

F = f0X
n + f1X

n−1 + · · ·+ fn ∈ K[X]

be a polynomial with f0 6= 0 and with non-zero discriminant. Let L be the
splitting field of F over K. Then

gL/k ≤ [L : K](gK/k + nHK(F )).

In particular, if K = k(z) and f0, . . . , fn ∈ k[z], we have

gL/k ≤ [L : K]nmax(deg f0, . . . , deg fn).

Proof. Lemma 4.2 of Bérczes, Evertse and Győry (2014) gives a slightly bet-
ter estimate with Hhom

K (F ) instead of HK(F ). The second assertion is due to
Schmidt (1978).

In the next sections we present explicit upper bounds for the heights of the
solutions of S-unit equations, the Catalan equation, Thue equations, hyper-
and superelliptic equations.

We denote by |S| the cardinality of a set S.

5.2 S-unit equations

Let again K be a function field in one variable over an algebraically closed
field k of characteristic 0, and S a finite, non-empty set of valuations on K
over k, of cardinality at least 2. Consider the S-unit equation

αx+ βy = 1 in x, y ∈ O∗S\k∗, (5.2.1)

where α, β ∈ K∗. For α = β = 1, the following theorem is due to Mason
(1983). The general case, under the assumption αx /∈ k∗, was established in
Evertse and Győry (2015). We prove Theorem 5.2.1 without this assumption.
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Theorem 5.2.1. Every solution x, y of equation (5.2.1) satisfies

max(HK(x), HK(y)) ≤ 5H + |S|+ 2gK/k − 2, (5.2.2)

where H = max(HK(α), HK(β)).

Independently of Mason, Győry (1983) proved a version of Theorem 5.2.1
with larger explicit coefficients of |S| and gK/k. We note that this weaker ver-
sion would also be sufficient for application in Chapter 9. Theorem 5.2.1 is a
consequence of the following theorem of Mason (1983,1984). It is a general-
ization of an earlier result of Stothers (1981).

Theorem 5.2.2. Let S be a finite, non-empty subset ofMK , and let x1, x2, x3

be non-zero elements of K with x1 + x2 + x3 = 0 such that v(x1) = v(x2) =
v(x3) for every v inMK\S. Then either x1/x2 lies in k, or

HK(x1/x2) ≤ |S|+ 2gK/k − 2. (5.2.3)

Proof. We do not give Mason’s proof based on derivations, but instead an-
other well-known proof based on the Riemann-Hurwitz formula. We assume
without loss of generality that x1/x2 /∈ k and that S is precisely the set of all
v ∈ MK such that v(x1), v(x2), v(x3) are distinct. Let z := x1/x2. Then z
and 1+z are S-units. We can write S as a disjoint union S0∪S−1∪S∞ where

S0 := {v ∈MK : v(z) > 0}, S−1 := {v ∈MK : v(z + 1) > 0},
S∞ := {v ∈MK : v(z) < 0}.

Note that for a = 0,−1,∞, Sa is precisely the set of valuations on K ly-
ing above the valuation orda on k(z). So by the Riemann-Hurwitz formula
(5.1.5), and by (5.1.4) and (5.1.2),

2gK/k − 2 = [K : k(z)](2gk(z)/k − 2) +
∑

a∈k∪{∞}

∑
v|a

(ev|a − 1)

≥ −2[K : k(z)] +
∑

a∈{0,−1,∞}

∑
v|a

(ev|a − 1)

= −2[K : k(z)] +
∑

a∈{0,−1,∞}

([K : k(z)]− |Sa|) = [K : k(z)]− |S|,

where we have written v|a for v|orda. Using [K : k(z)] = HK(z) (see
(5.1.6)), Theorem 5.2.2 follows.
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Proof of Theorem 5.2.1. Let x, y be a solution of equation (5.2.1). Then

HK(x) = HK(αx · α−1) ≤ HK(αx) +HK(α−1) ≤ HK(αx) +H, (5.2.4)

and similarly HK(y) ≤ HK(βy) + H . If α, β ∈ k∗, then Theorem 5.2.1
follows at once from Theorem 5.2.2. Suppose that α, β are not both in k∗.
Then H ≥ 1.

If αx ∈ k∗ then βy ∈ k∗, hence their heights are zero and (5.2.2) imme-
diately follows.

Now suppose that αx, βy /∈ k∗. Let Sα denote the set of valuations v ∈
MK with v(α) 6= 0 and define Sβ similarly. In view of (5.1.9) we have |Sα| ≤
2HK(α) ≤ 2H and similarly |Sβ| ≤ 2H . Then it follows that v(αx) =
v(βy) = v(1) = 0 for v ∈ MK\(S ∪ Sα ∪ Sβ). Now using (5.2.4) and
applying Theorem 5.2.2 to αx, βy, 1 with S∪Sα∪Sβ instead of S, we obtain

max(HK(x), HK(y)) ≤ max(HK(αx), HK(βy)) +H

≤ |S|+ |Sα|+ |Sβ|+ 2gK/k − 2 +H

≤ 5H + |S|+ 2gK/k − 2.

Remark. In contrast with the number field case, for function fields there are
effective results for S-unit equations in the more unknowns case as well;
see Mason(1986,1988), Brownawell and Masser (1986) and, for further refer-
ences, e.g. Evertse and Győry (2015).

5.3 The Catalan equation
As before, K is a function field in one variable over an algebraically closed
field k of characteristic 0, and S is a finite set of valuations on K over k. We
deduce consequences for a slight generalization of the Catalan equation, i.e.,

xm − yn = ±1, (5.3.1)

both in the cases that x, y assume their values inOS and that x, y assume their
values in K.

Theorem 5.3.1. (i) Let S be a finite set of valuations of K, let m,n be
integers with m,n ≥ 2, mn > 4 and let x, y ∈ OS\k satisfy (5.3.1).
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Then

mHK(x), nHK(y) ≤ 6
(
|S|+ 2gK/k − 2

)
. (5.3.2)

(ii) Let m,n be integers with n ≥ m ≥ 2, mn ≥ 10 and let x, y ∈ K\k
satisfy (5.3.1). Then

mHK(x), nHK(y) ≤ 20(gK/k − 1). (5.3.3)

Since HK(x), HK(y) are ≥ 1, (5.3.2) and (5.3.3) imply upper bounds for
m and n.

Proof. (i) Let S1 be the set of v ∈ MK\S with v(x) > 0 and S2 the set of
v ∈MK\S with v(y) > 0. Then

|S1| ≤ HK(x) = 1
mHK(xm), |S2| ≤ HK(y) = 1

nHK(yn) ≤ 1
nHK(xm).

So by Theorem 5.2.2,

HK(xm) ≤ |S|+ |S1|+ |S2|+ 2gK/k − 2

≤ |S|+ 2gK/k − 2 +
( 1
m + 1

n

)
HK(xm)

≤ |S|+ 2gK/k − 2 + 5
6HK(xm),

implying (5.3.2).
(ii) Assume without loss of generality that n ≥ m. Let S1 be the set of

v ∈ MK with v(x) > 0, let S2 be the set of v ∈ MK with v(y) > 0, and
let S3 be the set of v ∈ MK with v(x) < 0; for these places we have also
v(y) < 0. Then

|S1| ≤ 1
mHK(xm), |S2|, |S3| ≤ HK(y) = 1

nHK(xm),

and Theorem 5.2.2 gives

HK(xm) ≤ |S1|+ |S2|+ |S3|+ 2gK/k − 2

≤ 2gK/k − 2 +
( 1
m + 2

n

)
HK(xm)

≤ 2gK/k − 2 + 9
10HK(xm),

implying (5.3.3).
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5.4 Thue equations

We denote as before byK a function field in one variable over an algebraically
closed field k of characteristic 0 and by S a finite set of valuations on K over
k. In this section, we consider the Thue equation

F (x, y) = 1 in x, y ∈ OS, (5.4.1)

where F is a binary form of degree n ≥ 3 with coefficients in K and with
non-zero discriminant.

Using a method of Osgood (1973,1975), Schmidt (1976,1978) derived
bounds for the heights of the solutions of (5.4.1). Later, by means of his The-
orem 5.2.2 above Mason (1984) gave a better bound for the heights of the
integral solutions over k[z] in the case when F factorizes into linear factors
over K. For a refinement, see Dvornicich and Zannier (1994).

We prove the following version of the theorems of Schmidt and Mason.

Theorem 5.4.1. Every solution x, y of equation (5.4.1) satisfies

max(HK(x), HK(y)) ≤ HK(x, y)

≤ (8n+ 62)HK(F ) + 4|S|+ 8gK/k. (5.4.2)

If the splitting field of F is K we have the stronger estimate

HK(x, y) ≤ 62HK(F ) + 4|S|+ 8gK/k. (5.4.3)

Our proof is different from that of Schmidt and Mason. It is based on
Theorem 5.2.1 above. No special importance is attached to the constants in
our upper bounds, which could be improved with some extra effort. However,
such improvements would be irrelevant for our application in Chapter 9.

Proof of Theorem 5.4.1. Write the binary form F in the form

F (X, Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n.

We may suppose without loss of generality that a0 6= 0. Indeed, this can be
achieved by a linear transformation of the shape

X = X ′, Y = aX ′ + Y ′
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with a ∈ k∗ such that F (1, a) 6= 0. Then putting

F ′(X ′, Y ′) := F (X ′, aX ′ + Y ′) = a′0X
′n + a′1X

′n−1Y ′ + · · ·+ a′nY
′n,

we have a′0 = F (1, a) 6= 0. Then with x′ = x, y′ = −ax + y we have
F ′(x′, y′) = 1. Observe that min(v(x′), v(y′)) = min(v(x), v(y)) for v ∈
MK , soHK(x′, y′) = HK(x, y). Further, each coefficient a′i of F ′ is a k-linear
combination of a0, . . . , an, hence v(a′i) ≥ min(v(a0), . . . , v(an)) = v(F ) for
v ∈MK , i = 0, . . . , n, that is, v(F ′) ≥ v(F ) for v ∈MK . But by symmetry,
the reverse inequality also holds so we have v(F ′) = v(F ) for v ∈ MK .
Hence HK(F ′) = HK(F ).

We assume henceforth that a0 6= 0. For the moment, we assume that F
has splitting field K. We can write (5.4.1) as

a0(x− α1y) · · · (x− αny) = 1 in x, y ∈ OS, (5.4.4)

where, by our assumption, α1, . . . , αn are distinct elements of K. Denote by
Sα the set of valuations v ∈ MS for which v(a0) 6= 0 and v(αi) 6= 0 for
i = 1, . . . , n. Notice that in view of (5.1.16),

|Sα| ≤ 2(HK(a0) +
n∑
i=1

HK(αi)) ≤ 4HK(F ). (5.4.5)

Putting S ′ = S ∪ Sα, the elements x, y, a0, α1, . . . , αn and βi = x − αiy for
i = 1, . . . , n are all S ′-integers in K. Now it follows from (5.4.4) that βi is an
S ′-unit in K for i = 1, . . . n.

We have

−γ βi
βj

+ (γ + 1)
βl
βj

= 1 (5.4.6)

for any distinct i, j, l, where γ = (αj − αl)/(αl − αi) and βi/βj, βl/βj are
S ′-units. If βi/βj ∈ k then HK(βi/βj) = 0. Otherwise, by Theorem 5.2.1 we
have

HK(βi/βj) ≤ 5H + |S ′|+ 2gK/k − 2

for each distinct i, j with 1 ≤ i, j ≤ n, where H = max(HK(γ), HK(γ+1)).
In view of (5.1.16) we have H ≤ 2HK(F ), while by (5.4.5) we have |S ′| ≤
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|S|+ 4HK(F ). Thus we get

HK(βi/βj) ≤ 14HK(F ) + |S|+ 2gK/k =: C (5.4.7)

for each i, j with 1 ≤ i, j ≤ n, i 6= j. Here we have removed the −2-term to
incorporate the case βi/βj ∈ k.

We infer from (5.4.4) that

β−nj = a0

n∏
i=1

βi
βj
, j = 1, . . . , n,

whence, using (5.1.16), we get

nHK(βj) ≤ HK(F ) + nC. (5.4.8)

But we have
x =

βiαj − αiβj
αj − αi

, y =
βi − βj
αj − αi

,

and so, using again (5.1.16) and (5.4.8), it follows that

HK(x) ≤ 2n+2
n HK(F ) + 2C.

ForHK(y) we get the same upper bound, so, in view ofHK(x, y) ≤ HK(x)+
HK(y),

HK(x, y) ≤ 4n+4
n HK(F ) + 4C.

Together with (5.4.7)) this gives (5.4.3).

Now assume that F has splitting field L over K. Let ∆ := [L : K], and
let T be the set of valuations on L lying above those in S. Then (5.4.3) holds
with L, T instead of K,S, i.e.,

HL(x, y) ≤ 62HL(F ) + 4|T |+ 8gL/k. (5.4.9)

We haveHL(x, y) = ∆HK(x, y),HL(F ) = ∆HK(F ), |T | ≤ ∆|S| and lastly,
by Lemma 5.1.1,

gL/k ≤ ∆(gK/k + nHK(F )).

By inserting this into (5.4.9) and dividing by ∆ we obtain (5.4.2). This com-
pletes our proof.
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5.5 Hyper- and superelliptic equations
Let again k be an algebraically closed field of characteristic 0, K a function
field in one variable over k, and S a finite subset ofMK .

Let f ∈ K[X] be a polynomial of degree n with non-zero discriminant.
Consider the hyperelliptic equation

f(x) = y2 in x, y ∈ OS (5.5.1)

where n ≥ 3, and the superelliptic equation

f(x) = ym in x, y ∈ OS (5.5.2)

where m ≥ 3, n ≥ 2,
Schmidt (1978) gave an explicit upper bound for the heights of the so-

lutions x, y of (5.5.1) in the case when all the zeros of f lie in K. Using
his Theorem 5.2.2 above, Mason (1983, 1984) derived explicit upper bounds
for the heights of the solutions of equation (5.5.1), (5.5.2) but only under the
assumptions that the zeros of f belong to K and S consists of the infinite val-
uations of K (i.e., those valuations v with v(z) < 0, where z is an element of
K\k that is chosen and fixed in advance). Bérczes, Evertse and Győry (2014)
needed results without these conditions, and so they extended Mason’s re-
sults to the most general situation when the splitting field of f and the set of
valuations S are arbitrary.

Below we present results similar to Proposition 4.7 and Proposition 4.6
of Bérczes, Evertse and Győry (2014), with different upper bounds. In our
proofs we will follow Mason. Both proofs will be based on Theorem 5.2.2.

Theorem 5.5.1. Every solution x, y of equation (5.5.1) satisfies

HK(x) ≤ (8n+ 42)HK(f) + 8|S|+ 8gK/k, (5.5.3)
HK(y) ≤ (4n2 + 21n+ 1)HK(f) + 4n|S|+ 4ngK/k. (5.5.4)

In case of equation (5.5.2) we can even estimate m from above, provided
that y /∈ k.

Theorem 5.5.2. Every solution x, y of equation (5.5.2) satisfies

HK(x) ≤ (6n+ 18)HK(f) + 3|S|+ 6gK/k, (5.5.5)
mHK(y) ≤ (6n2 + 18n+ 1)HK(f) + 3n|S|+ 6ngK/k. (5.5.6)
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It will be more convenient to prove first Theorem 5.5.2 and then Theorem
5.5.1. Similarly as in the case of Thue equations, in both proofs we first con-
sider the case when f splits completely over K and then deduce the general
case.

Proof of Theorem 5.5.2. We fix a solution (x, y) of (5.5.2). First we assume
that f(X) = a0

∏n
i=1(X − αi) with a0 ∈ K∗ and with distinct elements

α1, . . . , αn of K. We shall apply Theorem 5.2.2 to the identity

(x− α1) + (α2 − x) + (α1 − α2) = 0. (5.5.7)

We assume without loss of generality that α1, . . . , αn are arranged in order of
increasing height, and so, in view of (5.1.16),

s∑
i=1

HK(αi) ≤ sHK(f)/n for s = 1, . . . , n. (5.5.8)

Put βi =
∏

j 6=i(αi − αj), i = 1, . . . , n. Then we have

HK(βi) ≤ HK(f) + (n− 2)HK(αi) for i = 1, . . . , n.

Denote by W the set of valuations v on K at which one or more of the fol-
lowing occur:

v ∈ S, v(f) < 0, v(a0) > 0, v(β1β2) > 0. (5.5.9)

The number of v with v(f) < 0 is at most HK(f); the number of v with
v(a0) > 0 is at most HK(a−1

0 ) = HK(a0) ≤ HK(f); and lastly, by (5.5.8) the
number of v with v(β1β2) > 0 is at most

HK((β1β2)−1) = HK(β1β2) ≤ HK(β1) +HK(β2)

≤ 2HK(f) + (n− 2)(HK(α1) +HK(α2)) ≤
(
4− 4

n

)
HK(f).

So altogether,

|W | ≤ |S|+
(
6− 4

n

)
HK(f). (5.5.10)
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It is easy to check that for v ∈MK\W ,

v(a0) = 0, v(f) = 0, v(αi) = 0 for i = 1, . . . , n,
v(αi − αj) = 0 for i = 1, 2, j 6= i, (5.5.11)

so that min(v(x− αi), v(x− αj)) = 0 for i = 1, 2, j 6= i. Hence

v(x− αi) = mv(y) ≡ 0 (modm) for i = 1, 2. (5.5.12)

Denoting by Si, i = 1, 2, the set of v ∈MK\W such that v(x−αi) > 0, and
applying Theorem 5.2.2 to (5.5.7) we get

HK

( x− α1

α1 − α2

)
≤ |W ∪ S1 ∪ S2|+ 2gK/k. (5.5.13)

By (5.5.12) we have m|Si| ≤ HK(x − αi) ≤ HK(x) + HK(αi) for i = 1, 2.
Therefore we can deduce from (5.5.13) that

HK(x)− 2HK(α1)−HK(α2)

≤ 1
m

(
2HK(x) +HK(α1) +HK(α2)

)
+ |W |+ 2gK/k.

Together with (5.5.10),(5.5.8) and m ≥ 3 this gives

(1− 2
m)HK(x)

≤ 1
nHK(f) + (1 + 1

m) · 2nHK(f) + |S|+
(
6− 4

n

)
HK(f)) + 2gK/k

≤ 6HK(f) + |S|+ 2gK/k,

and thus,

HK(x) ≤ 18HK(f) + 3|S|+ 6gK/k. (5.5.14)

Now assume that f has splitting field L over K. Put ∆ := [L : K] and let
T be the set of valuations of L lying above the valuations in S. The inequality
(5.5.14) holds with L, T instead of K,S. Inserting

HL(x) = ∆HK(x), HL(y) = ∆HK(y), HL(f) = ∆HK(f),
|T | ≤ ∆|S|, gL/k ≤ ∆(gK/k + nHK(f)) (from Lemma 5.1.1)

}
(5.5.15)
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and then dividing by ∆, inequality (5.5.5) follows.
Writing f(X) = a0X

n + a1X
n−1 + · · ·+ an, we get for v ∈MK ,

mv(y) = v(f(x)) ≥ min
0≤i≤n

(v(ai) + iv(x))
)

≥ min(0, v(f)) + nmin(0, v(x)),

and thus,

mHK(y) ≤ HK(f) + nHK(x), (5.5.16)

which combined with (5.5.5) gives (5.5.6). This completes the proof of our
theorem.

Proof of Theorem 5.5.1. Let (x, y) be a solution of (5.5.1) in OS . We start
again with assuming that f has splitting field K, so that f(X) = a0(X −
α1) · · · (X − αn) with α1, . . . , αn distinct elements of K. We assume again
that HK(α1) ≤ · · · ≤ HK(αn), so that we have again (5.5.8). Let again

βi =
∏
j 6=i

(αi − αj) (i = 1, . . . , n).

We now take for W the set of valuations v of K satisfying at least one of the
conditions

v ∈ S, v(f) < 0, v(a0) > 0, v(β1β2β3) > 0. (5.5.17)

Then by a similar computation as in (5.5.10),

|W | ≤ |S|+
(
8− 6

n

)
HK(f). (5.5.18)

Moreover, similarly to (5.5.11) we have for v ∈MK\W ,

v(a0) = 0, v(f) = 0, v(αi) = 0 for i = 1, . . . , n,
v(αi − αj) = 0 for i = 1, 2, 3, j 6= i, (5.5.19)

and similarly to (5.5.12),

v(x− αi) ≡ 0 (mod 2) for v ∈MK\W, i = 1, 2, 3. (5.5.20)

Consider the fieldM generated overK by the square roots of x−α1, x−α2

and x−α3. Let δ := [M : K]. We first compute an upper bound for the genus
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of M , to be used in later arguments. By the Riemann-Hurwitz formula (see
(5.1.5)) we have

2gM/k − 2 = δ(2gK/k − 2) +
∑
v∈MK

∑
w|v

(ew|v − 1).

Let v ∈MK\W and choose a local parameter zv of v. By (5.5.20) the square
roots of x−αi (i = 1, 2, 3) can be expressed as Laurent series in zv, so for the
embeddings of M in Kv as described in (5.1.1), all ei are equal to 1. In other
words, we have ew|v = 1 for all v ∈MK\W and all valuations w of M lying
above v. We lastly observe that by (5.1.2) we have

∑
w|v ew|v = δ for v ∈ W .

By inserting this into the Riemann-Hurwitz formula, we get

2gM/k − 2 ≤ δ(2gK/k − 2 + |W |). (5.5.21)

Let µ := (α2 − α1)(α3 − α2)(α1 − α3), let V be the set of valuations of K
satisfying at least one of the conditions

v ∈ S, v(a0) > 0, v(f) < 0, v(µ) > 0.

By (5.5.8), we have

|V | ≤ |S|+ 2HK(f) + 2(HK(α1) +HK(α2) +HK(α3))

≤ |S|+
(
2 + 6

n

)
HK(f). (5.5.22)

For v ∈MK\V we have similarly to (5.5.19),

v(a0) = 0, v(f) = 0, v(αi) = 0 for i = 1, . . . , n,
v(αi − αj) = 0 for i = 1, 2, 3. (5.5.23)

Let U be the set of valuations of M lying above those in V , and denote byOU
the ring ofU -integers, and byO∗U the ring ofU -units inM . Choose ξ1, ξ2, ξ3 ∈
M such that

ξ2
i = x− αi, i = 1, 2, 3.

Then by (5.5.23) we have ξi ∈ OU for i = 1, 2, 3. Further, let γi, γ̂i (i =
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1, 2, 3) be given by

γ1 = ξ2 − ξ3, γ̂1 = ξ2 + ξ3

γ2 = ξ3 − ξ1, γ̂2 = ξ3 + ξ1

γ3 = ξ1 − ξ2, γ̂3 = ξ1 + ξ2.

Then

γ1γ̂1 = α3 − α2, γ2γ̂2 = α1 − α3 γ3γ̂3 = α2 − α1,

which together with (5.5.23) implies that

γi, γ̂i ∈ O∗U for i = 1, 2, 3.

By applying Theorem 5.2.2 to the relations

γ1 + γ2 + γ3 = 0, γ1 + γ̂2 − γ̂3 = 0,

γ̂1 − γ2 − γ̂3 = 0, γ̂1 − γ̂2 + γ3 = 0,

and inserting |U | ≤ δ|V |, (5.5.21),(5.5.18), (5.5.22) we infer that the quanti-
ties

HM(γ2/γ3), HM(γ̂2/γ3), HM(γ2/γ̂3), HM(γ̂2/γ̂3)

are all bounded above by

|U |+ 2gM/k ≤ δ(|V |+ |W |+ 2gK/k)

≤ δ
(

10HK(f) + 2|S|+ 2gK/k

)
=: δN.

Since x− α1 = ξ2
1 = 1

4
(γ̂2 − γ2)2, x− α3 = ξ2

3 = 1
4
(γ̂2 + γ2)2 it follows that

2x− α1 − α3

α2 − α1

= 1
2

(
(γ̂2/γ3)(γ̂2/γ̂3) + (γ2/γ3)(γ2/γ̂3)

)
,

whence

HK

(2x− α1 − α3

α2 − α1

)
= δ−1HM

(2x− α1 − α3

α2 − α1

)
≤ 4N.

Together with (5.5.8) this implies

HK(x) ≤ 4N + 2HK(α1) +HK(α2) +HK(α3) ≤ 4N + 4
nHK(f),
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which in view of n ≥ 3 leads to

HK(x) ≤ 42HK(f) + 8|S|+ 8gK/k. (5.5.24)

Now consider the general case that f has arbitrary splitting field L overK,
and let ∆ := [L : K]. Denote by T the set of valuations of L lying above those
in S. Then (5.5.24) holds with L, T instead of K,S. By inserting (5.5.15) and
dividing by ∆ we obtain (5.5.3). Together with (5.5.16) with m = 2 this
implies (5.5.4). This completes our proof.
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Chapter 6

Tools from effective commutative
algebra

In this chapter we have collected some algorithmic results for fields finitely
generated over Q and for integral domains of characteristic 0 finitely gener-
ated over Z. Our main references are Seidenberg (1974) and Aschenbrenner
(2004).

By saying that given any input from a specified set we can determine ef-
fectively an output, we mean that there exists an algorithm (i.e., a determin-
istic Turing machine) which, for any choice of input from the specified set,
computes the output in a finite number of steps. We say that an object is given
effectively if it is given in such a form that it can serve as input for an algo-
rithm.

We agree once more that upper case characters such as X, Y denote vari-
ables whereas lower case characters denote elements of rings or fields. Given
a ring R, we denote by Rm,n the R-module of m× n-matrices with elements
in R, and by Rn the R-module of n-dimensional column vectors with coordi-
nates in R.

From matrices A,B with the same number of rows, we form a matrix
[A,B] by placing the columns of B after those of A. Likewise, from two
matrices A,B with the same number of columns we form [ AB ] by placing the
rows of B below those of A.

The logarithmic height h(A) of a finite set A = {a1, . . . , at} ⊂ Z is
defined by h(A) := log max(|a1|, . . . , |at|). The logarithmic height h(U) of
a matrix U with entries in Z is defined by the logarithmic height of the set of
entries of U . The logarithmic height h(P ) of a polynomial P with coefficients
in Z is the logarithmic height of the set of coefficients of P . By the degree
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of a polynomial we always mean its total degree, and the total degree of a
polynomial P is denoted by degP .

As in Section 4.1, we write

log∗ u := max(1, log u) for u > 0, log∗ 0 := 1.

We use notation O(·) as an abbreviation for c× the expression between the
parentheses, where c is an effectively computable positive absolute constant.
At each occurrence of O(·), the value of c may be different.

6.1 Effective linear algebra over polynomial rings
We have taken some material from Evertse and Győry (2013, 2015) on effec-
tive results for systems of linear equations over polynomial rings over a field
or over Z, with some small improvements here and there. For convenience of
the reader we have repeated some details.

Lemma 6.1.1. Let U ∈ Zm,n and b ∈ Zm.
(i) The Z-module of y ∈ Zn with Uy = 0 is generated by vectors in Zn of
logarithmic height at most mh(U) + 1

2
m logm.

(ii) Assume that Uy = b is solvable in Zn. Then it has a solution y ∈ Zn with
h(y) ≤ mh([U,b]) + 1

2
m logm.

Proof. (i) We follow Aschenbrenner (2004), Lemma 4.2 and Section 5. Let
M be the Z-module of y ∈ Zn with Uy = 0. We may assume without
loss of generality that m ≤ n and U has rank m, so that U has non-singular
submatrices of order m. Let U1, . . . , Uk be the non-singular submatrices of U
of order m, and put δj := detUj for j = 1, . . . , k and δ := gcd(δ1, . . . , δk).

We first prove that for j = 1, . . . , k there are y1,j, . . . ,yn−m,j ∈ M such
that

for every y ∈M, there are bi,j ∈ Z with y = (δ/δj)
n−m∑
i=1

bi,jyi,j , (6.1.1)

h(yi,j) ≤ mh(U) + 1
2
m logm for i = 1, . . . , n−m. (6.1.2)

It suffices to prove this for j = 1. After permuting the columns of U we may
assume that U1 consists of the first m columns of U . Let V1 consist of the last
n −m columns of U . For y ∈ M, let y(1) consist of the first m coordinates
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of y, and y(2) of the last n−m coordinates of y. Then U1y
(1) = −V1y

(2), or
equivalently

y(1) = −U−1
1 V1y

(2).

For i = 1, . . . , n −m, let yi,1 be the solution y of Uy = 0 for which y(2) =
(δ1/δ)ei, where ei is the i-th standard basis vector of Zn−m. The coordinates
of yi,1 are all of the shape ±(δ1/δ) detW/ detU1 = ±δ−1 detW , where W
is the determinant of some submatrix of U of order m. Hence yi,1 ∈ Zn, im-
plying yi,1 ∈M for i = 1, . . . , n−m. Further, by Hadamard’s inequality we
have (6.1.2). If y = (b1, . . . , bn)T ∈ M then y = (δ/δ−1

1 )
∑n

i=m+1 biyi−m,1.
This proves (6.1.1).

There are integers a1, . . . , ak such that a1δ1 + · · · + akδk = δ. Applying
(6.1.2) we see that for y ∈M we have

y =
k∑
j=1

aj

( n−m∑
i=1

bi,jyi,j

)
.

This implies that the yi,j generateM.
(ii) Assume without loss of generality that U and [U,b] have rank m. By

a result of Borosh et al. (1989), Uy = b has a solution y ∈ Zn such that the
absolute values of the entries of y are bounded above by the maximum of the
absolute values of the m×m-subdeterminants of [U,b]. The upper bound for
h(y) as in the lemma easily follows from Hadamard’s inequality.

Theorem 6.1.2. Let F be a field, r ≥ 1, andR := F [X1, . . . , Xr]. Further, let
V be anm×n-matrix and b anm-dimensional column vector, both consisting
of polynomials from R of degree ≤ d where d ≥ 1.
(i) The R-module of x ∈ Rn with V x = 0 is generated by vectors x whose
coordinates are polynomials of degree at most (2md)2r .
(ii) Suppose that V x = b is solvable in x ∈ Rn. Then it has a solution x
whose coordinates are polynomials of degree at most (2md)2r .

Proof. See Aschenbrenner (2004, Thms. 3.2, 3.4). Results of this type were
obtained earlier, but not with a completely correct proof, by Hermann (1926)
and Seidenberg (1974).

Part (ii) of Theorem 6.1.2 gives an effective method to decide ideal mem-
bership in F [X1, . . . , Xr], provided that the field F is given effectively (a
notion which we are not going to formalize):
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Corollary 6.1.3. Given b, f1, . . . , fM ∈ F [X1, . . . , Xr], it can be decided
effectively whether b belongs to the ideal I := (f1, . . . , fM) of F [X1, . . . , Xr].

Proof. Let d := max(deg b, deg f1, . . . , deg fM). If b ∈ I then there are
x1, . . . , xM ∈ F [X1, . . . , Xr] of degree at most (2d)2r such that b = x1f1 +
· · ·xMfM . By comparing the coefficients of the polynomials on the left- and
right hand side, we get an inhomogeneous system of linear equations over F
whose solvability can be checked by standard linear algebra.

Corollary 6.1.4. Let R := Q[X1, . . . , Xr]. Further, let V be an m×n-matrix
consisting of polynomials in Z[X1, . . . , Xr] of degrees at most d and logarith-
mic heights at most h where d ≥ 1, h ≥ 1. Then theR-module of x ∈ Rn with
V x = 0 is generated by vectors x, consisting of polynomials in Z[X1, . . . , Xr]
of degree at most (2md)2r and logarithmic height at most (2md)6rh.

Proof. By Theorem 6.1.2 (i) we have to study V x = 0, restricted to vec-
tors x ∈ Rn consisting of polynomials in R of degree at most (2d)2r . Let y
be the tuple of coefficients of the polynomials in x. Then y ∈ Qn∗ , where
n∗ ≤ n(2md)r·2

r . Further, V x consists of m polynomials in Q[X1, . . . , Xr]
of degree at most d + (2md)2r all whose coefficients have to be set to 0. The
total number of coefficients of V x is m∗ ≤ m(d + (2md)2r)r. Thus, the sys-
tem of equations V x = 0 in polynomials in R of degree at most (2md)2r

reduces to a system of equations Uy = 0 in y ∈ Qn∗ , where U ∈ Zm∗,n∗ . By
Lemma 6.1.1 (i), the solution space of this system is generated by vectors y in
Zn∗ of logarithmic height at most 1

2
m∗ logm∗ + m∗h(U) ≤ (2md)6rh =: T .

Hence the corresponding vectors x consist of polynomials in Z[X1, . . . , Xr]
of logarithmic height at most T .

Theorem 6.1.5. Let r ≥ 1 and let V be an m × n-matrix and b a non-zero
m-dimensional column vector consisting of polynomials in Z[X1, . . . , Xr] of
degree at most d and logarithmic height at most h where d ≥ 1, h ≥ 1.
(i) The solution set of x ∈ Z[X1, . . . , Xr]

n with V x = 0 is generated by
vectors x = (x1, . . . , xn) ∈ Z[X1, . . . , Xr]

n with

deg xi ≤ (2md)exp((2r)r), h(xi) ≤ (2md)exp((6r)r)h for i = 1, . . . , n.

(ii) Assume that
V x = b (6.1.3)

is solvable in x ∈ Z[X1, . . . , Xr]
n. Then (6.1.3) has a solution x = (x1, . . . , xn)
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∈ Z[X1, . . . , Xr]
n with

deg xi ≤ d0 := (2md)expO(r log∗ r)h,

h(xi) ≤ h0 := (2md)expO(r log∗ r)hr+1

}
for i = 1, . . . , n. (6.1.4)

Proof. (i) This follows from Aschenbrenner (2004, Thm. 4.1) except for the
height bound. The height bound can be derived from Lemma 6.1.1 (i), with
similar computations as in the proof of Corollary 6.1.4.

(ii) This follows from Aschenbrenner (2004, Thm. 6.5) except for the
height bound. To derive such a height bound, let us restrict to solutions x =
(x1, . . . , xn) of (6.1.3) with deg xi ≤ d0 for i = 1, . . . , n, and denote by y
the vector of coefficients of the polynomials x1, . . . , xn. Then (6.1.3) trans-
lates into a system of linear equations Uy = b∗ which is solvable over Z.
Here, the number m∗ of equations, i.e., number of rows of U , is ≤ (d0 + d)r.
Further, h(U,b∗) ≤ h. By Lemma 6.1.1 (ii), Uy = b∗ has a solution y with
coordinates in Z of logarithmic height at most

m∗h+ 1
2
m∗ logm∗ ≤ (2d)expO(r log∗ r)hr+1 =: h0.

It follows that (6.1.3) has a solution x ∈ Z[X1, . . . , Xr]
n satisfying (6.1.4).

Aschenbrenner (2004) gives an example which shows that the upper bound
for the degrees of the xi cannot depend on d and r only.

Part (ii) of Theorem 6.1.5 gives an effective criterion for ideal membership
in Z[X1, . . . , Xr]:

Corollary 6.1.6. Given b, f1, . . . , fM ∈ Z[X1, . . . , Xr], it can be decided ef-
fectively whether b belongs to the ideal I := (f1, . . . , fM) of Z[X1, . . . , Xr].

Proof. By Theorem 6.1.5, if b ∈ I then there are x1, . . . , xM ∈ Z[X1, . . . , Xr]
with upper bounds for the degrees and heights as in (6.1.4) with m = 1, n =
M , such that b =

∑M
i=1 xifi. It requires only a finite computation to check

whether such xi exist.

Theorem 6.1.7. Let f1, . . . , fM be polynomials in Z[X1, . . . , Xr] of total de-
grees at most d and logarithmic heights at most h. Let I be the ideal of
Q[X1, . . . , Xr] generated by f1, . . . , fM . Then I := I ∩ Z[X1, . . . , Xr] is
an ideal generated by polynomials of total degrees at most d + (2d)(2r)r and
logarithmic heights at most (6r)r log(2d) + h.
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Proof. The upper bound for the degrees follows from Aschenbrenner (2004),
Theorem 4.7. But in his proof he uses Corollary 3.5 of his paper, some details
of the proof of which he has left to the reader and which were not fully ob-
vious to us. So we provide an argument avoiding Aschenbrenner’s Corollary
3.5. First consider for a fixed positive integer a the ideal Ia of polynomials
x ∈ Z[X1, . . . , Xr] such that ax is in the ideal of Z[X1, . . . , Xr] generated by
f1, . . . , fM . We can find these x by solving the equation

x1f1 + · · ·+ xMfM − ax = 0 in (x, x1, . . . , xM) ∈ Z[X1, . . . , XM ]M+1.

By Theorem 6.1.5, the solutions (x, x1, . . . , xM) of this equation form a mod-
ule over Z[X1, . . . , Xr], generated by tuples of polynomials of total degree
at most C := (2d)(2r)r . Hence for every positive integer a, Ia is generated
by polynomials g1f1 + · · · + gMfM , where g1, . . . , gM ∈ a−1Z[X1, . . . , Xr]
and deg gi ≤ C for i = 1, . . . ,M . It follows that I = ∪aIa is generated by
polynomials g1f1 + · · ·+ gMfM , where

g1, . . . , gM ∈ Q[X1, . . . , Xr],

g1f1 + · · ·+ gMfM ∈ Z[X1, . . . , Xr],

deg g1, . . . , deg gM ≤ C.

(6.1.5)

The Q-vector space V of g1f1 + · · ·+gMfM with g1, . . . , gM satisfying (6.1.5)
but without the condition g1f1 + · · ·+ gMfM ∈ Z[X1, . . . , Xr] is contained in
the vector space of polynomials in Q[X1, . . . , Xr] of degree≤ C+d, whence
has dimension N ≤

(
C+d+r

r

)
. Further, V is generated by the polynomials

Xj1
1 · · ·Xjr

r fi (i = 1, . . . ,M , j1 + · · ·+ jr ≤ C), hence we can select a basis
b1, . . . , bN of V from this set. Notice that b1, . . . , bN belong to Z[X1, . . . , Xr]
and have logarithmic heights ≤ h. By Cassels (1959), Chap. V, Lemma 8, the
Z-module of polynomials g1f1+· · ·+gMfM with (6.1.5) has a basis c1, . . . , cN
with ci =

∑i
j=1 ξi,jbj for j = 1, . . . , N , where ξi,j ∈ Q and |ξi,j| ≤ 1 for

all i, j. These polynomials c1, . . . , cN generate I, have total degrees at most
C + d, and logarithmic heights at most

h+ logN ≤ h+ log
(
C+d+r

r

)
≤ h+ (6r)r log 2d.

This proves our theorem.

136



6.2 Finitely generated fields over Q
To a field K = Q(z1, . . . , zr) that is finitely generated over Q we may asso-
ciate the polynomial ideal

I := {f ∈ Q[X1, . . . , Xr] : f(z1, . . . , zr) = 0}.

By Hilbert’s Basis Theorem, the ideal I is finitely generated, that is, I =
(f1, . . . , fM) with f1, . . . , fM ∈ Q[X1, . . . , Xr]. Thus, K is isomorphic to the
quotient field of

Q[X1, . . . , Xr]/(f1, . . . , fM), (6.2.1)

and z1, . . . , zr may be identified with the residue classes of X1, . . . , Xr mod-
ulo (f1, . . . , fM). We call (f1, . . . , fM) an ideal representation for K. We say
that K is given effectively if an ideal representation for it is given.

Notice that for polynomials f1, . . . , fM ∈ Q[X1, . . . , Xr] to form an ideal
representation of a field, it is necessary and sufficient that (f1, . . . , fM) be a
prime ideal of Q[X1, . . . , Xr]. This can be verified effectively, see for instance
Seidenberg (1974, Sect. 46, p. 293) (there in fact Seidenberg gives a method
to determine the prime ideals associated to a given ideal I, which certainly
enables one to decide whether I is a prime ideal).

Let K = Q(z1, . . . , zr) be a field with given ideal representation I =
(f1, . . . , fM). We say that y ∈ K is given/can be computed (in terms of
z1, . . . , zr), if polynomials g, h ∈ Q[X1, . . . , Xr] are given/can be computed
such that y = g(z1, . . . , zr)/h(z1, . . . , zr). Thanks to Theorem 6.1.2 we can
verify whether an expression g(z1, . . . , zr)/h(z1, . . . , zr) is well-defined (i.e.,
h(z1, . . . , zr) 6= 0 or equivalently, h 6∈ I) and whether two expressions
gi(z1, . . . , zr)/hi(z1, . . . , zr) (i = 1, 2) are equal (i.e., g1h2 − g2h1 ∈ I).

We note that if y1, . . . , ym are given in terms of z1, . . . , zr, then for any
given polynomial h ∈ Q[Y1, . . . , Ym] it can be decided whether h(y1, . . . , ym) 6=
0. Moreover, for any two given g, h ∈ Q[Y1, . . . , Ym] with h(y1, . . . , ym) 6= 0
one can compute g(y1, . . . , ym)/h(y1, . . . , ym) in terms of z1, . . . , zr.

Finally, if y1, . . . , ym are elements of K given in terms of z1, . . . , zr then
we say that y is given/can be computed in terms of y1, . . . , ym, if g, h ∈
Q[Y1, . . . , Ym] are given/can be computed, such that h(y1, . . . , ym) 6= 0 and
y = g(y1, . . . , ym)/h(y1, . . . , ym).

Theorem 6.2.1. (i) For any r ≥ 1 and any effectively given field K =
Q(z1, . . . , zr) we can:
(i) determine a permutation x1, . . . , xq, y1, . . . , yt of z1, . . . , zr such that
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x1, . . . , xq are algebraically independent over Q and y1, . . . , yt are algebraic
over Q(x1, . . . , xq);
(ii) determine the monic minimal polynomial of y1 over Q(x1, . . . , xq) with
coefficients given in terms of x1, . . . , xq, and for i = 2, . . . , t, determine the
monic minimal polynomial of yi over Q(x1, . . . , xq, y1, . . . , yi−1) with coeffi-
cients given in terms of x1, . . . , xq, y1, . . . , yi−1.

Proof. Repeated application of Seidenberg (1974, §23 on p. 284 and §25 on
p. 285).

Theorem 6.2.2. For any effectively given field K = Q(z1, . . . , zr) and any
y1, . . . , ys, y ∈ K given in terms of z1, . . . , zr we can:
(i) determine a finite set of generators for the ideal

{f ∈ Q[X1, . . . , Xs] : f(y1, . . . , ys) = 0};

(ii) decide whether y ∈ Q(y1, . . . , ys) and if so, determine g, h ∈ Z[X1, . . . , Xs]
such that y = g(y1, . . . , ys)/h(y1, . . . , ys).

Proof. (i) Seidenberg (1974, §27, p. 287).
(ii) By (i) one can compute a finite set of generators for the ideal of f ∈

Q[X1, . . . , Xs+1] such that f(y1, . . . , ys, y) = 0. Using Theorem 6.2.1 one
can decide whether y is algebraic over Q(y1, . . . , ys), if so compute its monic
minimal polynomial over Q(y1, . . . , ys), and check if it has degree 1.

Theorem 6.2.3. For any effectively given field K = Q(z1, . . . , zr) and any
polynomialF ∈ K[X1, . . . , Xm] with coefficients given in terms of z1, . . . , zr,
we can determine a factorization of F into irreducible polynomials of
K[X1, . . . , Xm], whose coefficients are all given in terms of z1, . . . , zr. In
particular we can decide whether F is irreducible.

Proof. This follows from Seidenberg (1974), sections 33–35 (p. 289). For
m = 1, a more precise quantitative version can be deduced from Proposition
8.2.3 in Chapter 8 below.

Theorem 6.2.4. For any effectively given field K = Q(z1, . . . , zr) and any
monic irreducible polynomial F ∈ K[X] with coefficients given in terms of
z1, . . . , zr, we can:
(i) determine a finite set of generators for the ideal

{f ∈ Q[X1, . . . , Xr, Y ] : f(z1, . . . , zr, y) = 0}
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where y is a root of F;
(ii) for any a ∈ K(y) given in terms of z1, . . . , zr, y, determine b0, . . . , bF−1 ∈
K, given in terms of z1, . . . , zr, such that a =

∑degF−1
i=0 biy

i.

Proof. Put L := K(y), d := [L : K]. Let (f1, . . . , fM) be an ideal represen-
tation for K. We may express F as Xd + (a1/b)X

d−1 + · · · + (ad/b) where
a1, . . . , ad, b are given as polynomials with integer coefficients in z1, . . . , zr.

Let y′ := by. Then K(y′) = L, and y′ has minimal polynomial Xd +
a1X

d−1 + · · · + bd−1ad over K. We can write bi−1ai = hi(z1, . . . , zr) with
hi ∈ Z[X1, . . . , Xr] for i = 1, . . . , d. Then the ideal of polynomials Q ∈
Q[X1, . . . , Xr, Y ] with Q(z1, . . . , zr, y

′) = 0 is generated by f1, . . . , fM and
Y d +

∑d
i=1 hiY

d−i and so these polynomials provide an ideal representation
for L. Using Theorem 6.2.2, we can compute a finite set of generators for the
ideal of f ∈ Q[X1, . . . , Xr, Y ] with f(z1, . . . , zr, y) = 0.

Using division byF with remainder, from an expression of a ∈ L in terms
of z1, . . . , zr, y we can compute an expression

∑d−1
i=0 biy

i, with bi ∈ K given
in terms of z1, . . . , zr.

Corollary 6.2.5. For any effectively given field K = Q(z1, . . . , zr) and any
polynomial F ∈ K[X] with coefficients given in terms of z1, . . . , zr we can
determine effectively an ideal representation for the splitting field of F over
K.

Proof. We proceed by induction on n := degF . For n = 1 our assertion is
clear. Let n ≥ 2. By Theorem 6.2.3 we can compute an irreducible factor
F1 ∈ K[X] of F in terms of z1, . . . , zr and then adjoin a zero y1 of F1 to K.
By Theorem 6.2.4 we can compute an ideal representation for K1 := K(y1),
and then by the induction hypothesis an ideal representation for the splitting
field of F(X)/(X − y1) over K1. This is then the splitting field of F over
K.

Corollary 6.2.6. For any effectively given ideal representations for K =
Q(z1, . . . , zr) and a finite extension L = Q(z1, . . . , zr, y1, . . . , yn) of K, we
can:
(i) determine effectively an element y of L in terms of z1, . . . , zr, y1, . . . , yn
such that L = K(y), together with the monic minimal polynomial of y over
K, with coefficients given in terms of z1, . . . , zr;

(ii) for any a ∈ L given in terms of z1, . . . , zr, y1, . . . , yn, determine effectively
b0, . . . , b[L:K]−1 ∈ K in terms of z1, . . . , zr such that a =

∑[L:K]−1
i=0 biy

i.
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Proof. LetK be the effectively given field, putK0 := K and for i = 1, . . . , n,
define Ki := K(y1, . . . , yi), put di := [Ki : Ki−1], and denote by Gi the
monic minimal polynomial of yi over Ki−1. The coefficients of Gi can be
computed in terms of z1, . . . , zr, y1, . . . , yi−1 by means of Theorem 6.2.4. Put
d := [L : K]. Then

{ω1, . . . , ωd} := {yk11 · · · yknn : 0 ≤ kj < dj, j = 1, . . . , n}

is a K-basis of L = Kn. Using Theorem 6.2.4 we can compute, for any
element of L given in terms of z1, . . . , zr, y1, . . . , yn, an expression of this
element as a K-linear combination of ω1, . . . , ωd, with coefficients given in
terms of z1, . . . , zr. As is well-known, there are integers c1, . . . , cd of absolute
values at most d2 such that y := c1ω1 + · · · + cdωd is a primitive element of
L over K. For each choice of the ci we can check whether y is primitive by
expressing 1, y, . . . , yd−1 as K-linear combinations of ω1, . . . , ωd and check
if they are linearly independent over K. Having found such an y, we can
express ω1, . . . , ωd, and thus every element of L, as K-linear combinations of
1, y, . . . , yd−1 with coefficients given in terms of z1, . . . , zr. In particular, we
can express yd as such a linear combination, and thus find the monic minimal
polynomial of y.

Remark. From Corollary 8.3.4 one can deduce quantitative versions of Corol-
laries 6.2.5 and 6.2.6.

6.3 Finitely generated integral domains over Z

We need some analogues of the results mentioned above for finitely generated
integral domains Z[z1, . . . , zr] of characteristic 0. First we recall some basic
concepts introduced in Section 2.1.

To an integral domain A = Z[z1, . . . , zr] of characteristic 0 we may asso-
ciate the polynomial ideal

I := {f ∈ Z[X1, . . . , Xr] : f(z1, . . . , zr) = 0}.

By Hilbert’s Basis Theorem, there are finitely many polynomials f1, . . . , fM ∈
Z[X1, . . . , Xr] such that I = (f1, . . . , fM). Thus, A is isomorphic to

Z[X1, . . . , Xr]/(f1, . . . , fM), (6.3.1)
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and z1, . . . , zr may be identified with the residue classes of X1, . . . , Xr mod-
ulo (f1, . . . , fM). We call (f1, . . . , fM) an ideal representation for A. We say
that A is effectively given if an ideal representation for it is given.

Notice that for polynomials f1, . . . , fM ∈ Z[X1, . . . , Xr] to form an ideal
representation of an integral domain, it is necessary and sufficient that I :=
(f1, . . . , fM) be a prime ideal of Z[X1, . . . , Xr] and I ∩ Z = (0). This is
equivalent to I := I · Q[X1, . . . , Xr] being a prime ideal of Q[X1, . . . , Xr],
I ∩ Z[X1, . . . , Xr] = I and 1 6∈ I. For instance by Seidenberg (1974), Sect.
46, p. 293, one can check that I is a prime ideal in Q[X1, . . . , Xr] and by The-
orem 6.1.2 (ii) one can check that 1 6∈ I. To verify that I∩Z[X1, . . . , Xr] = I,
one can compute a set of generators for I ∩ Z[X1, . . . , Xr] using Theorem
6.1.7, and then check, using Theorem 6.1.5, whether these generators belong
to I.

Let A = Z[z1, . . . , zr] be an integral domain with given ideal represen-
tation I = (f1, . . . , fM). We say that y ∈ A is given/can be computed (as a
polynomial in z1, . . . , zr), if a polynomial g ∈ Z[X1, . . . , Xr] is given/can be
computed such that y = g(z1, . . . , zr). Thanks to Corollary 6.1.6 we can ver-
ify whether two expressions gi(z1, . . . , zr) (i = 1, 2) are equal (i.e., g1− g2 ∈
I).

Finally, if y1, . . . , ym are given elements ofA, then we say that y is given/can
be computed as a polynomial in terms of y1, . . . , ym, if g ∈ Z[Y1, . . . , Ym] are
given/can be computed, such that y = g(y1, . . . , ym).

Theorem 6.3.1. For any effectively given integral domain A = Z[z1, . . . , zr]
of characteristic 0 and any given monic irreducible polynomial F ∈ A[X]
with coefficients given as polynomials in z1, . . . , zr, we can:
(i) determine effectively a finite set of generators for the ideal

{f ∈ Z[X1, . . . , Xr, Y ] : f(z1, . . . , zr, y) = 0}

where y is a root of F;

(ii) for any a ∈ A[y] given as polynomial in z1, . . . , zr, y, determine effec-
tively b0, . . . , bdegF−1 ∈ A, given as polynomials in z1, . . . , zr, such that
a =

∑degF −1
i=0 biy

i.

Proof. Similar to Theorem 6.2.4.

Theorem 6.3.2. For any effectively given integral domain A = Z[z1, . . . , zr]
of characteristic 0 finitely generated over Z, any m×n-matrix V with entries
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in the quotient field K of A, and any column vector b ∈ Kn, all with entries
given in terms of z1, . . . , zr we can:
(i) determine effectively a finite set of generators, with coordinates given as
polynomials in z1, . . . , zr, for the A-module {x ∈ An : V x = 0};
(ii) decide whether V x = b is solvable in x ∈ An and if so, determine
effectively a solution with coordinates given as polynomials in z1, . . . , zr.

Proof. After multiplication with a suitable non-zero element of A, we may
assume that V and b have their entries in A, and are given as polynomials
with integer coefficients in z1, . . . , zr. Suppose that A is given by an ideal
representation I = (f1, . . . , fM). By choosing representatives for the entries
of V and b in R := Z[X1, . . . , Xr] we can rewrite the systems of linear
equations in (i), (ii) as systems of linear congruence equations modulo I in
unknowns from R. By writing the elements of I as R-linear combinations
of f1, . . . , fM , we can rewrite these congruence systems as systems of linear
equations as considered in Theorem 6.1.5 and apply the latter.

Theorem 6.3.3. For any effectively given field K = Q(z1, . . . , zr) and any
y1, . . . , ys, y ∈ K given in terms of z1, . . . , zr we can:
(i) determine effectively a finite set of generators for the ideal

J := {f ∈ Z[X1, . . . , Xs] : f(y1, . . . , ys) = 0};

(ii) decide whether y ∈ Z[y1, . . . , ys] and if so, determine effectively g ∈
Z[X1, . . . , Xs] such that y = g(y1, . . . , ys).

Proof. (i) Theorem 6.2.2 (i) provides an algorithm to compute a finite set of
generators for the ideal

J := {f ∈ Q[X1, . . . , Xs] : f(y1, . . . , ys) = 0}

and subsequently, by means of Theorem 6.1.7 one can determine a finite set
of generators for J ∩ Z[X1, . . . , Xs] = J .

(ii) By Theorem 6.2.2 (ii) it can be decided whether y ∈ Q(y1, . . . , ys) and
if so, elements a, b of Z[y1, . . . , ys] can be computed, both represented as poly-
nomials with integer coefficients in y1, . . . , ys, such that y = a/b. By Theorem
6.3.2, it can be decided whether a/b ∈ Z[y1, . . . , ys] and if so, a polynomial
g ∈ Z[X1, . . . , Xs] can be computed such that a/b = g(y1, . . . , ys).

Let A = Z[z1, . . . , zr] be an effectively given integral domain finitely
generated over Z, and K its quotient field. We consider finitely generated
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A-modules contained in K (so in other words, fractional ideals of A). The
A-module generated by elements y1, . . . , ym is denoted by (y1, . . . , ym). We
say that such a module is given/can be determined in terms of z1, . . . , zr, if a
finite set of generators for it is given/can be determined in terms of z1, . . . , zr.

We say that a finitely generated A-moduleM ⊂ K is given if a finite set
of A-module generators forM is given.

Theorem 6.3.4. For any two given A-submodulesM1,M2 of K, one can
(i) decide whetherM1 ⊆M2;
(ii) compute a finite set of A-module generators forM1 ∩M2.

Proof. LetM1 = (a1, . . . , au),M2 = (b1, . . . , bv) with the ai, bj ∈ K given
in terms of z1, . . . , zr. Then (i) comes down to checking whether a1, . . . , au ∈
M2, which is a special case of part (ii) of Theorem 6.3.2. To determine a finite
set of A-module generators for M1 ∩ M2, using part (i) of Theorem 6.3.2
one first determines a finite set of A-module generators for the solution set
(x1, . . . , xu, y1, . . . , yv) ∈ Au+v of

∑u
i=1 xiai =

∑v
j=1 yjbj and then for each

generator one takes the coordinates x1, . . . , xu, and subsequently
∑u

i=1 xiai.

The quotient module of twoA-modulesM1,M2 withM1 ⊆M2 is given
by M2/M1 := {a +M1 : a ∈ M2}, with the usual addition and scalar
multiplication of cosets. By a full system of representatives forM2/M1 we
mean a subset of M2 consisting of precisely one element from each of the
cosets a+M1 (a ∈M2).

Theorem 6.3.5. For any effectively given integral domain A = Z[z1, . . . , zr]
finitely generated over Z and any two given finitely generated A-modules
M1,M2 with M1 ⊆ M2 contained in the quotient field of A, it can be
decided whetherM2/M1 is finite. If this is the case, a full system of repre-
sentatives forM2/M1 can be determined in terms of z1, . . . , zr.

Proof. The proof is too lengthy to be inserted here. See for instance Evertse
and Győry (2017b, Prop. 3.6).

Let A be an integral domain, K its quotient field, and G a finite exten-
sion of K. Then we denote by AG the integral closure of A in G. In partic-
ular, AK is the integral closure of A in its quotient field K. Recall that G is
effectively given if an irreducible polynomial P ∈ K[X] is given such that
G ∼= K[X]/(P ). The irreducibility of P can be checked for instance by means
of Theorem 6.2.3.
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Theorem 6.3.6. Assume that A and a finite extension G of its quotient field
K are effectively given. Then one can compute a finite set of A-module gen-
erators for AG. Moreover, one can compute an ideal representation for AG.

Proof. A method to compute a finite set of A-module generators for AG can
be derived by combining results of Nagata (1956), de Jong (1998), Matsumura
(1986) and Matsumoto (2000), see for more details Evertse and Győry (2017a,
Cor. 10.7.18). Then an ideal representation for AG can be computed using
Theorem 6.3.3.

We finish with two consequences, related to Theorems 1.6.1 and 1.6.3.

Corollary 6.3.7. Assume that A is effectively given. Let n be an integer ≥ 2.
Then one can effectively decide whether the quotientA-module ( 1nA∩AK)/A

is finite and if so, compute a full system of representatives for ( 1nA ∩AK)/A.

Proof. Immediate consequence of Theorems 6.3.4–6.3.6.

Let again A be effectively given and denote by K its quotient field. Recall
that a finite étale K-algebra Ω is effectively given if a separable polynomial
P ∈ K[X] is given such that Ω ∼= K[X]/(P ). The separability of P can be
checked for instance by means of Theorem 6.2.3.

Let n := degP and denote by θ the residue class of X modulo P . Then
{1, θ, . . . , θn−1} is a K-basis of Ω and every element of Ω can be expressed
uniquely as

∑n−1
i=0 aiθ

i with all ai ∈ K. We say that such an element is given
if the ai are given in terms of z1, . . . , zr.

We say that a finitely generated A-moduleM⊂ Ω is effectively given, if
ω1, . . . , ωu are given such thatM = {

∑u
i=1 xiωi : x1, . . . , xm ∈ A}.

Corollary 6.3.8. Assume that A, a finite étale K-algebra Ω, and a finitely
generated A-moduleM⊂ Ω are effectively given.
(i) For any given α ∈ Ω it can be decided whether α ∈M.
(ii) A set of A-module generators forM∩K can be determined effectively in
terms of z1, . . . , zr.

Proof. Let P, n, θ be as above. Further, let {ω1, . . . , ωu} be an effectively
given set of A-module generators forM. Then ω1, . . . , ωu can be expressed
as K-linear combinations of 1, θ, . . . , θn−1, with coefficients given in terms
of z1, . . . , zr. Then we may express elements of M as

∑n−1
k=0 `k(x)θk with

x ∈ Au, where `0, . . . , `n−1 are linear forms from K[X1, . . . , Xu] with coef-
ficients given in terms of z1, . . . , zr.
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(i) Let α =
∑n−1

k=0 akθ
k, where a0, . . . , an−1 ∈ K are effectively given

in terms of z1, . . . , zr. Clearly, α ∈ M if and only if there is x ∈ Au with
`k(x) = ak for k = 0, . . . , n − 1, and this can be ckecked by means of
Theorem 6.3.2 (ii).

(ii) By Theorem 6.3.2 (i), we can compute a set of A-module generators,
say {x1, . . . ,xv}, for

{x ∈ Au : `1(x) = · · · = `n−1(x) = 0}.

Then {`0(x1), . . . , `0(xv)} is a set of A-module generators forM∩K.

Corollary 6.3.9. Assume that A, a finite étale K-algebra Ω, and a finitely
generated A-module O ⊂ Ω are effectively given.
(i) It can be decided whether O is an A-order of Ω.
(ii) If O is an A-order of Ω, one can decide whether the quotient A-module
(O ∩ K)/A is finite, and if so, compute a full system of representatives for
(O ∩K)/A.

Proof. (i) Let {ω1, . . . , ωu} be a set of A-module generators for O, and let
`0, . . . , `n−1 be the linear forms from the proof of Corollary 6.3.8.

We first have to verify that the linear forms `0, . . . , `n−1 have rank n over
K, to make sure that O contains a K-basis of Ω; this is simply a matter of
computing a determinant. The next thing to verify is whether 1 ∈ O and
ωiωj ∈ O for i, j = 1, . . . , u; this can be done using Corollary 6.3.8 (i).

(ii) Using Corollary 6.3.8 (ii) we can compute a finite set of A-module
generators for O ∩K. With these generators for O ∩K and Theorem 6.3.5,
we can check whether (O ∩K)/A is finite, and if so, compute a full system
of representatives.
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Chapter 7

The effective specialization
method

In this chapter we present our general effective specialization method and
make it ready for application to our Diophantine equations under considera-
tion.

The general idea of our method is to reduce our given Diophantine equa-
tions over A to Diophantine equations of the same type over function fields
and over number fields by means of an effective specialization method. In the
first step we extend our equations to equations of the same form over a finitely
generated overring B of A of a special type which is more convenient to deal
with.

As was mentioned in the Introduction and Chapter 3 such an effective
specialization argument was elaborated by Győry (1983,1984b) for decom-
posable form equations and discriminant equations over a restricted class of
finitely generated integral domains A containing both algebraic and transcen-
dental elements, of which the elements have some "good" effective represen-
tations. That time, for any finitely generated domains A, no algorithm was
known to select those solutions from the overring B which are contained in
A. A later effective result by Aschenbrenner (2004) on systems of linear equa-
tions over polynomial rings over Z enabled us in our paper Evertse and Győry
(2013) to surmount this difficulty and extend the method to the case of arbi-
trary finitely generated domains A.

Below we follow closely our paper Evertse and Győry (2013). Save for
some small modifications, Lemmas 7.2.3, 7.2.4, 7.2.6, 7.3.1, 7.3.3 and 7.4.2–
7.4.7, as well as Propositions 7.2.5, 7.2.7 below are taken from that paper. For
convenience of the reader, we reproduce here their proofs.
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7.1 Notation

As in the previous chapters, for a polynomial f with coefficients in Z we
denote by deg f , h(f) its total degree and its logarithmic height, i.e., the log-
arithm of the maximum of the absolute values of its coefficients. Further, we
define log∗ u := max(1, log u) for u > 0.

Let A = Z[z1, . . . , zr] be an integral domain of characteristic 0 finitely
generated over Z, and denote by K the quotient field of A. We assume that
r > 0. We have

A ∼= Z[X1, . . . , Xr]/I, (7.1.1)

where I is the ideal of polynomials f ∈ Z[X1, . . . , Xr] such that f(z1, . . . , zr) =
0. The ideal I is finitely generated. We assume that

I = (f1, . . . , fM) with deg fi ≤ d, h(fi) ≤ h for i = 1, . . . ,M,

where d ≥ 1, h ≥ 1.

(7.1.2)

A representative for α ∈ A is a polynomial α̃ ∈ Z[X1, . . . , Xr] such that
α = α̃(z1, . . . , zr), or, with the representation (7.1.2) for A, α = α̃(mod I).

We assume that K has transcendence degree q ≥ 0 over Q. For q > 0,
we assume without loss of generality that z1, . . . , zq are algebraically inde-
pendent over Q, and that z1 = X1, . . . , zq = Xq. Write t := r− q and rename
zq+1, . . . , zr as y1, . . . , yt. Put

A0 := Z[X1, . . . , Xq], K0 := Q(X1, . . . , Xq) if q > 0,
A0 := Z, K0 := Q if q = 0,

(7.1.3)

so that

A = A0[y1, . . . , yt], K = K0(y1, . . . , yt), [K : K0] <∞.

For a ∈ A0 we denote by deg a, h(a) the total degree and logarithmic height
of a if q > 0, while we put deg a := 0 and h(a) := log |a| if q = 0.

Recall that A0 is a unique factorization domain with unit group A∗0 =
{±1}. This implies that any finite set a1, . . . , ar of non-zero elements of A0

has an up to sign unique greatest common divisor b := gcd(a1, . . . , ar) such
that c ∈ A0 divides a1, . . . , ar if and only if c divides b.

148



7.2 Construction of a more convenient ground do-
main B

In this section we prove in a more general form that there are w ∈ A, g ∈
A0\{0} such that

A ⊆ B := A0[w, g−1]

and w has minimal polynomial F(X) = XD + F1X
D−1 + · · · + FD over

K0 with Fi ∈ A0 for i = 1, . . . , D. Further, we give explicit upper bounds in
terms of r, q, d, h forD and the degrees and logarithmic heights of g,F1, . . . ,FD.
Moreover, we require that A ⊂ B∗ for some prescribed finite set A.

We shall need several lemmas.

Lemma 7.2.1. Let b1, . . . , bn ∈ A0 and b = b1 · · · bn. Then

|h(b)−
n∑
i=1

h(bi)| ≤ q deg b.

Proof. Consequence of Corollary 4.1.6.

Write Y := (Xq+1, . . . , Xr) and K0(Y) := K0(Xq+1, . . . , Xr). Given
f ∈ Z[X1, . . . , Xr], we write f ∗ for f but viewed as a polynomial in the
variables Y = (Xq+1, . . . , Xr), with coefficients in A0. Given f ∈ K0(Y),
we denote by degY f its total degree with respect to Y; recall that the total
degree deg b of b ∈ A0 is taken with respect to X1, . . . , Xq. With this notation
(7.1.1) and (7.1.2) can be rewritten as

A ∼= A0[Y]/(f ∗1 , . . . , f
∗
M),

degY f
∗
i ≤ d for i = 1, . . . ,M,

the coefficients of f ∗1 , . . . , f
∗
M in A0 have total degrees

at most d and logarithmic heights at most h.

 (7.2.1)

Lemma 7.2.2. Let k be an algebraically closed field of characteristic 0, let
s be a positive integer and let X be an algebraic subset of ks given by poly-
nomials of total degree at most d. Further, let Y be an algebraic subset of X
such that X\Y is finite. Then X\Y has cardinality at most ds.

Proof. See Corollary 7.5.3 of Evertse and Győry (2015). It is proved by re-
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peated application of the version of Bezout’s theorem from algebraic geome-
try as stated in Hartshorne (1977) Ch. 1, Theorem 7.7.

Let D := [K : K0] and let σ1, . . . , σD denote the K0-isomorphic embed-
dings of K in an algebraic closure K0 of K0.

Lemma 7.2.3. (i) We have D ≤ dt.

(ii) There exist rational integers a1, . . . , at with |ai| ≤ D2 for i = 1, . . . , t,
such that for v := a1y1 + · · ·+ atyt we have K = K0(v).

Proof. (i) The images of (y1, . . . , yt) under σ1, . . . , σD belong to

W := {y ∈ Kt

0 : f ∗1 (y) = · · · = f ∗M(y) = 0}.

Conversely, each assignment Y = (Xq+1, . . . , Xr) 7→ y with y ∈ W yields
a K0-isomorphic embedding of K in K0 since K ∼= K0[Y]/(f ∗1 , . . . , f

∗
M).

Thus |W| = D <∞. Now Lemma 7.2.2 with k = K0, X =W ,Y = ∅ gives
|W| ≤ dt. Hence D ≤ dt.

(ii) For integers a1, . . . , at, the quantity v := a1y1 + · · ·+atyt generatesK
over K0 if and only if a1σ1(y1) + · · ·+ atσt(yt) are distinct for i = 1, . . . , D.
There are integers aj with |aj| ≤ D2, j = 1, . . . , t, for which this holds.

Lemma 7.2.4. There are G0, . . . ,GD ∈ A0 such that

D∑
i=0

GivD−i = 0, G0 · GD 6= 0 (7.2.2)

and

deg Gi ≤ (2d)expO(r), h(Gi) ≤ (2d)expO(r)h (7.2.3)

for i = 0, . . . , D.

Proof. We write Y := (Xq+1, . . . , Xr) and Yu := Xu1
q+1 · . . . · Xut

q+t, |u| :=
u1 + · · ·+ut for tuples of non-negative integers u = (u1, . . . , ut). Further, we
define W :=

∑t
j=1 ajXq+j .

Since v has degree D over K0, elements G0, . . . ,GD of A0 as in (7.2.2)
exist. By (7.2.1) there are g∗1, . . . , g

∗
M ∈ A0[Y] with the property

D∑
i=0

GiWD−i =
M∑
j=1

g∗j f
∗
j . (7.2.4)
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By Theorem 6.1.2 (ii), applied with the field F = K0, there are polyno-
mials g∗j ∈ K0[Y] satisfying (7.2.4) of degrees at most (2 max(d,D))2t ≤
(2d

t
)2t =: d′ in Y. Multiplying G0, . . . ,GD with an appropriate non-zero fac-

tor from A0, we may assume that g∗j are polynomials in A0[Y] of degree at
most d′ in Y. Considering (7.2.4) with such polynomials g∗j , we obtain

D∑
i=0

GiWD−i =
M∑
j=1

∑
|u|≤d′

gj,uY
u

∑
|v|≤d

fj,vY
v

 , (7.2.5)

where gj,u ∈ A0 and f ∗j =
∑
|v|≤d fj,vY

v with fj,v ∈ A0. Here G0, . . . ,GD
and the polynomials gj,u are viewed as the unknowns of (7.2.5). Thus (7.2.5)
has solutions with G0 · GD 6= 0.

Consider (7.2.5) as a system of linear equations V x = 0 overK0, where x
consists of Gi, i = 0, . . . , D, and gj.u, j = 1, . . . ,M , |u| ≤ d′. Using Lemma
7.2.3, (4.1.7), (4.1.8), we get that the polynomialWD−i =

(∑t
k=1 akXq+k

)D−i
has logarithmic height at most O(D log(2D2t)) ≤ (2d)O(t). Together with
(7.2.1) this gives that the entries of the matrix V are elements ofA0 of degrees
at most d and logarithmic heights at most h′ := max((2d)O(t), h). Further, the
number of rows of V is at most the number of monomials in Y of degree at
most d+ d′ which is bounded above by

m0 :=

(
d+ d′ + t

t

)
≤ (2d)expO(r).

In view of Corollary 6.1.4 the A0-module of solutions of (7.2.5) is generated
by vectors x = (G0, . . . ,GD, {gi,u}), whose coordinates are elements fromA0

of degrees and logarithmic heights at most

(2m0d)2q , (2m0d)6qh′,

respectively. Among these vectors x there is one with G0 6= 0 and also one
with GD 6= 0 since otherwise (7.2.5) would have no solution with G0 · GD 6=
0, contradicting what we already observed about (7.2.2) and (7.2.3). Either,
among these vectors x there is one with G0GD 6= 0; or there is no such vector
but then among these vectors there are x1 with G0 = 0,GD 6= 0 and x2 with
G0 6= 0,GD = 0, so that x := x1 + x2 has G0GD 6= 0. Using the above
established upper bound for m0, we infer that in both cases, the coordinates
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of x have degrees and logarithmic heights at most

(2d)expO(r), (2d)expO(r)h,

respectively. This completes the proof.

It will be more convenient to work with

w := G0v = G0(a1y1 + · · ·+ atyt) if D ≥ 2, w := 1 if D = 1.

Notice that by (7.2.3) and the estimates |ai| ≤ D2 ≤ d2r from Lemma 7.2.3,
this w belongs to A and has a representative w̃ ∈ Z[X1, . . . , Xr] with

deg w̃ ≤ (2d)expO(r), h(w̃) ≤ (2d)expO(r)h. (7.2.6)

The following proposition follows at once from Lemmas 7.2.1, 7.2.3 and
7.2.4.

Proposition 7.2.5. We have K = K0(w), where w ∈ A, w is integral over A0

and w has minimal polynomial F(X) = XD +F1X
D−1 + · · ·+FD over K0

such that

Fi ∈ A0, degFi ≤ (2d)expO(r), h(Fi) ≤ (2d)expO(r)h

for i = 1, . . . , D.

In what follows, we fix such a w ∈ A. Since A0 = Z[X1, . . . , Xq] is
a unique factorization domain, the greatest common divisor of a finite set of
elements ofA0 is well-defined and uniquely determined up to sign. With every
α ∈ K we associate an up to sign unique tuple Pα,0, . . . , Pα,D−1, Qα from A0

such that

α = Q−1
α

D−1∑
j=0

Pα,jw
j with Qα 6= 0, gcd(Pα,0, . . . , Pα,D−1, Qα) = 1.

(7.2.7)

We keep the notation from (7.1.2). Set

degα := max(degPα,0, . . . , degPα,D−1, degQα),

h (α) := max(h(Pα,0), . . . , h(Pα,D−1), h(Qα)).
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Lemma 7.2.6. Let α ∈ K∗ and let (a, b) be a pair of representatives for α
with a, b ∈ Z[X1, . . . , Xr], b 6= I. Put

d0 := max(d, deg a, deg b), h0 := max(h, h(a), h(b)).

Then
degα ≤ (2d0)expO(r), h(α) ≤ (2d0)expO(r)h0.

Proof. Consider the linear equation

Q =
D−1∑
j=0

Pjw
j (7.2.8)

in unknowns P0, . . . , PD−1, Q ∈ A0. Since α ∈ K = K0(w) and w has
degree D over K0, the equation (7.2.8) has a solution with Q 6= 0. Put again
Y := (Xq+1, . . . , Xr) and set Y := G0

(∑t
j=1 ajXq+j

)
. According to our

general convention, we write a∗, b∗ for a, b, viewed as polynomials in Y with
coefficients in A0. By (7.2.1), there exist g∗j ∈ A0[Y] such that

Qa∗ − b∗
D−1∑
j=0

PjY
j =

M∑
j=1

g∗j f
∗
j . (7.2.9)

By Theorem 6.1.2 (ii) this identity holds with polynomials g∗j ∈ K0[Y] of
degree at most (2 max(d0, D))2t ≤ (2d0)t·2

t in Y; by multiplying the tuple
(P0, . . . , PD−1, Q) with a suitable non-zero element of A0 we can make it so
that the g∗j belong to A0[Y]. Now, as in the proof of Lemma 7.2.4, we can
rewrite (7.2.9) as a system of linear equations over K0 and then Corollary
6.1.4 can be applied. It follows that (7.2.8) is satisfied by P0, . . . , PD−1, Q ∈
A0 with Q 6= 0 and

degP0, . . . , degPD−1, degQ ≤ (2d0)expO(r),

h(P0), . . . , h(PD−1), h(Q) ≤ (2d0)expO(r)h0.

Dividing P0, . . . , PD−1, Q by their greatest common divisor and using Lemma
7.2.1 we get Pα,0, . . . , Pα,D−1, Qα ∈ A0 satisfying (7.2.7) and

degPα,0, . . . , degPα,D−1, degQα ≤ (2d0)expO(r),

h(Pα,0), . . . , h(Pα,D−1), h(Qα) ≤ (2d0)expO(r)h0.
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This proves our lemma.

Proposition 7.2.7. Let w be as in Proposition 7.2.5, and let A be a finite
(possibly empty) subset of K∗ of cardinality k ≥ 0. For α ∈ A, let (aα, bα) be
a pair of representatives of α with aα, bα ∈ Z[X1, . . . , Xr], bα /∈ I. Put

d1 := max(d,max
α∈A

(deg aα, deg bα))

and
h1 := max(h,max

α∈A
(h(aα), h(bα))).

Then there is a non-zero g ∈ A0 such that

A ⊆ B := A0[w, g−1], A ⊂ B∗ (7.2.10)

and

deg g ≤ (k + 1)(2d1)expO(r),

h(g) ≤ (k + 1)(2d1)expO(r)h1.

}
(7.2.11)

Proof. Take

g :=
t∏
i=1

Qyi ·
∏
α∈A

(Qα ·Qα−1),

where, as above, A = A0[y1, . . . , yt]. In general, we have Qβ · β ∈ A0[w] for
β ∈ K∗. Hence we have gβ ∈ A0[w] for β = y1, . . . , yt and for each α, α−1

with α ∈ A. This implies (7.2.10). The inequalities (7.2.11) follow at once
from Lemmas 7.2.6 and 7.2.1.

We shall use Proposition 7.2.7 in various special cases. Before stating the
first, we introduce some further notation and prove a lemma.

We recall that a0, a1, . . . , an ∈ A are the coefficients of the binary form
F (X, Y ) in Section 2.3, resp. of the polynomial F (X) in Section 2.4, while
δ ∈ A\{0} is the term occurring in the Thue equation (2.3.1) and the superel-
liptic equation (2.4.3). Further, ã0, ã1, . . . , ãn, δ̃ denote their representatives
in Z[X1, . . . , Xr] with degrees at most d and logarithmic heights at most h,
where d ≥ 1, h ≥ 1. Denote by F̃ the binary form F (X, Y ), resp. the poly-
nomial F (X) with coefficients a0, a1, . . . , an replaced by ã0, ã1, . . . , ãn, and
by DF̃ the discriminant of F̃ . Then the assumption DF 6= 0 implies DF̃ /∈ I.
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With the above notation and assumptions from Sections 2.3 and 2.4, the
following lemma holds.

Lemma 7.2.8. For the discriminant DF̃ we have the following inequalities:

degDF̃ ≤ (2n− 2)d, (7.2.12)
h(DF̃ ) ≤ (2n− 2)[log(2n2 (d+r

r )) + h]. (7.2.13)

This is Lemma 3.2 of Bérczes, Evertse and Győry (2014).

Proof. Recall that DF̃ can be expressed as

DF̃ = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ã0 ã1 · · · · · · ãn
. . . . . .

ã0 ã1 · · · · · · ãn
ã1 2ã2 · · · nãn
nã0 (n− 1)ã1 · · · ãn−1

. . . . . .
nã0 (n− 1)ã1 · · · ãn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.2.14)

with on the first n − 2 rows of the determinant ã0, . . . , ãn, on the (n − 1)st
row ã1, 2ã2, . . . , nãn and on the last n−1 rows nã0, . . . , ãn−1; see e.g. Section
1.4 in Evertse and Győry (2017b). Now Lemma 7.2.8 follows at once from
Lemma 4.1.7, using that the determinant has (2n − 2)! ≤ (2n − 2)2n terms
and that each of the ãi has at most

(
d+r
r

)
non-zero coefficients.

We can now apply Proposition 7.2.7 to the numbers α1 = δ, α2 = δ−1,
α3 = DF , α4 = D−1

F . Then the pairs (δ̃, 1), (1, δ̃), (DF̃ , 1), (1, DF̃ ) repre-
sent these numbers. Using the upper bounds for degDF̃ , h(DF̃ ) provided by
Lemma 7.2.8 as well as deg δ̃ ≤ d, h(δ̃) ≤ h that we assumed in Sections 2.3
and 2.4, we obtain immediately from Proposition 7.2.7 the following.

Proposition 7.2.9. There is a non-zero g ∈ A0 such that

A ⊆ B := A0[w, g−1], δ, DF ∈ B∗ (7.2.15)

and

deg g ≤ (nd)expO(r), h(g) ≤ (nd)expO(r)h. (7.2.16)

This is Proposition 3.3 of Bérczes, Evertse and Győry (2014).
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7.3 Comparison of different degrees and heights
We keep the above notation. Namely, A is finitely generated over Z, i.e.
A ∼= Z[X1, . . . , Xr]/(f1, . . . , fM), where f1, . . . , fM ∈ Z[X1, . . . , Xr]. In
this section we compare, for α ∈ A\{0}, certain degrees and heights related
to α and an appropriate representative α̃ ∈ Z[X1, . . . , Xr] of α. Lemma 7.2.6
provided upper bounds for degα and h(α) in terms of the degrees and heights
of a, b, where (a, b) is a pair of representative for α. Conversely, we have the
following.

Lemma 7.3.1. Let λ ∈ K∗ and let α be a non-zero element of A. Let (a, b)
with a, b ∈ Z[X1, . . . , Xr] be a pair of representatives for λ. Put

d2 := max(1, deg f1, . . . , deg fM , deg a, deg b, deg λα),

h2 := max(1, h(f1), . . . , h(fM), h(a), h(b), h(λα)).

Then α has a representative α̃ ∈ Z[X1, . . . , Xr] such that

deg α̃ ≤ (2d2)expO(r log∗ r)h2,

h(α̃) ≤ (2d2)expO(r log∗ r)hr+1
2 .

If moreover α ∈ A∗, then α−1 has a representative α̃′ ∈ Z[X1, . . . , Xr] with

deg α̃′ ≤ (2d2)expO(r log∗ r)h2,

h(α̃′) ≤ (2d2)expO(r log∗ r)hr+1
2 .

In the special case with λ = 1 and a = b = 1 we get the following
corollary which will be useful in some applications.

Corollary 7.3.2. Let α ∈ A\{0}, and let

d′2 := max(1, deg f1, . . . , deg fM , degα),

h′2 := max(1, h(f1), . . . , h(fM), h(α)).

Then α has a representative α̃ ∈ Z[X1, . . . , Xr] such that

deg α̃ ≤ (2d′2)expO(r log∗ r)h′2,

h(α̃) ≤ (2d′2)expO(r log∗ r)h′
r+1
2 .

Proof of Lemma 7.3.1. With the identification of zi with Xi for i = 1, . . . , q
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we may view A0 as a subring of Z[X1, . . . , Xr]. Let Y := G0

(∑t
i=1 aiXq+i

)
.

We have

λα = Q−1

D−1∑
i=0

Piw
i (7.3.1)

with P0, . . . , PD−1, Q ∈ A0 and gcd(P0, . . . , PD−1, Q) = 1. In view of (7.3.1),
α̃ ∈ Z[X1, . . . , Xr] is a representative for α if and only if there exist g1, . . . , gm ∈
Z[X1, . . . , Xr] such that

α̃ · (Q · a) +
m∑
i=1

gifi = b

D−1∑
i=0

PiY
i. (7.3.2)

We may consider (7.3.2) as an inhomogeneous linear equation over Z[X1, . . . , Xr]
in the unknowns α̃, g1, . . . , gm. By Lemmas 7.2.3, 7.2.4, 7.2.5 and 7.2.6 the
degrees and logarithmic heights of Qa and b

∑D−1
i=0 PiY

i are bounded above
by

(2d2)expO(r), (2d2)expO(r)h2,

respectively. Theorem 6.1.5 implies that (7.3.2) has a solution with upper
bounds for deg α̃, h(α̃), as stated in the lemma.

Now suppose that α ∈ A∗. Then (7.3.1) gives as above that α̃′ ∈ Z[X1, . . . , Xr]
is a representative for α−1 if and only if there are g′1, . . . , g

′
m ∈ Z[X1, . . . , Xr]

such that

α̃′b
D−1∑
i=0

PiY
i +

m∑
i=1

g′ifi = Qa.

Similarly as above, this equation has a solution with upper bounds for deg α̃′,
h(α̃′) as stated in the lemma.

We next deduce some estimates for the deg of elements from K, by
applying the results from Chapter 5. Let as above K0 = Q(X1, . . . , Xq),
K = K0(y), A0 = Z[X1, . . . , Xq], B = Z[X1, . . . , Xq, w, g

−1]. Choose an
algebraic closure K0 of K0. Then there are precisely D K0-isomorphic em-
beddings of K into K0 which we denote by α 7→ α(j), j = 1, . . . , D.

For i = 1, . . . , q, let ki be the algebraic closure of Q(X1, . . . , Xi−1, Xi+1, . . . , Xq)
in K0. Then A0 is contained in ki(Xi). Consider the function field

Li := ki(Xi, w
(1), . . . , w(D)).
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This is the splitting field of the polynomialF(X) = XD+F1X
D−1+· · ·+FD

over ki(Xi). The subring

Bi := ki[Xi, w
(1), . . . , w(D), g−1]

of Li contains B = Z[X1, . . . , Xq, w, g
−1] as a subring. Define

∆i := [Li : ki(Xi)].

We shall apply some estimates from Section 5.1 with Xi,ki, Li instead of
z,k, K. The height HLi is taken with respect to Li/ki. For P ∈ A0 we denote
by degXi P the degree of P in the variable Xi. We recall that g from Propo-
sition 7.2.7, and the coefficients F1, . . . ,FD of the polynomial F(X) from
Proposition 7.2.7 are contained in A0.

Lemma 7.3.3. For α ∈ K we have

degα ≤
q∑
i=1

∆−1
i

D∑
j=1

HLi(α
(j)) + qDmax(degF1, . . . , degFD).

Remark. It will be convenient to have estimates in which only d and r occur.
Inserting the bounds for degFi from Proposition 7.2.5 and the estimate D ≤
dt from Lemma 7.2.3 we obtain

degα ≤ (2d)expO(r) + rdr max
i,j

∆−1
i HLi(α

(j)), (7.3.3)

where the maximum is taken over i = 1, . . . , u, j = 1, . . . , D.

Proof of Lemma 7.3.3. Put

d∗ := max(degF1, . . . , degFD).

We have

α = Q−1

D−1∑
j=0

Pjw
j

for certain P0, . . . , PD−1, Q ∈ A0 with gcd(Q,P0, . . . , PD−1) = 1. It is clear
that

degα ≤
∑q

i=1 µi,

where µi := max(degXi Q, degXi P0, . . . , degXi PD−1).
(7.3.4)
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Using the height properties listed in Section 5.1, we now estimate µ1, . . . , µq
from above. Fix i ∈ {1, . . . , q}. By taking conjugates over K0 we infer

α(k) = Q−1

D−1∑
j=0

Pj · (w(k))j, for k = 1, . . . , D.

Let Ω be the D ×D matrix with rows

(1, . . . , 1), (w(1), . . . , w(D)), . . . , ((w(1))D−1, . . . , (w(D))D−1).

By Cramer’s rule we get Pj/Q = δj/δ, where δ = det Ω and δj is the determi-
nant of the matrix obtained by replacing the j-th row of Ω by (α(1), . . . , α(D)).

Gauss’ Lemma implies that P0, . . . , PD−1, Q are relatively prime in the
ring ki[Xi]. Hence by (5.1.10) (with Xi in place of z) we obtain

µi = Hhom
ki(Xi)(Q,P0, . . . , PD−1).

But (δ, δ1, . . . , δD) is a scalar multiple of (Q,P0, . . . , PD−1). Combining (5.1.9),
(5.1.11) and inserting [Li : ki(Xi)] = ∆i, we deduce that

µi = ∆−1
i Hhom

Li
(Q,P0, . . . , PD−1) = ∆−1

i Hhom
Li

(δ, δ1, . . . , δD). (7.3.5)

We now estimate from above the right-hand side. It follows that for every
valuation v of Li/ki

−min(v(δ), v(δ1), . . . , v(δD))

≤ −D
D∑
j=1

min(0, v(w(j)))−
D∑
j=1

min(0, v(α(j))),

and then summation over v gives

Hhom
Li

(δ, δ1, . . . , δD) ≤ D

D∑
j=1

HLi(w
(j)) +

D∑
j=1

HLi(α
(j)). (7.3.6)
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A combination of (5.1.14), (5.1.11), (5.1.10) yields

∆−1
i

D∑
j=1

HLi(w
(j)) = ∆−1

i Hhom
Li

(F) = Hhom
ki(Xi)(F)

= max(degXi F1, . . . , degXi FD) ≤ d∗. (7.3.7)

Together with (7.3.5), (7.3.6) this gives

µi ≤ Dd∗ + ∆−1
i

D∑
j=1

HLi(α
(j)).

Now these bounds for i = 1, . . . , q together with (7.3.4) imply our lemma.

We have the following converse of Lemma 7.3.3.

Lemma 7.3.4. Let α ∈ K∗ and α(1), . . . , α(D) be as in Lemma 7.3.3. Then

max
i,j

∆−1
i HLi(α

(j)) ≤ 2D degα +Dmax(degF1, . . . , degFD). (7.3.8)

This is a slight refinement of Lemma 4.4 in Bérczes, Evertse and Győry
(2014).

Remark. Inserting the bounds for degFi from Proposition 7.2.5 and the esti-
mate D ≤ dt from Lemma 7.2.3 we obtain

max
i,j

∆−1
i HLi(α

(j)) ≤ (2d)expO(r) + 2drdegα. (7.3.9)

Proof of Lemma 7.3.4. Define again

d∗ := max(degF1, . . . , degFD).

Consider the representation of α of the form (7.2.7).Then we have

α(j) = Q−1
α

D−1∑
k=0

Pα,k(w
(j))k, for j = 1, . . . , D,
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since Pα,k and Qα are in K0. Using (5.1.7) and (5.1.8), we get

HLi(α
(j)) ≤

D−1∑
k=0

HLi(Pα,k/Qα) +
D−1∑
k=0

kHLi(w
(j)). (7.3.10)

However, we have

HLi(Pα,k/Qα) ≤ ∆iHki(Xi)(Pα,k/Qα) ≤ ∆i(degXi Pα,k + degXi Qα)

≤ ∆i(degPα,k + degQα)

≤ 2∆i degα. (7.3.11)

Further, it follows from the proof of (7.3.7) and from Lemma 7.2.3 (i) that

D−1∑
k=0

kHLi(w
(j)) ≤ D∆i max

1≤k≤D
degXi Fk ≤ D∆id

∗. (7.3.12)

Now (7.3.10), (7.3.11) and (7.3.12) give (7.3.8).

7.4 Specializations

In this section we first prove some results about our specialization homomor-
phisms from B to Q, where B denotes the overring of A from Proposition
7.2.7.

If q = 0, no specialization argument is needed. Hence, in this section we
assume that q > 0. We start with some auxiliary results that are used in the
construction of our specializations.

Lemma 7.4.1. Let α1, . . . , αm ∈ Q with G(X) := (X − α1) · · · (X − αm) ∈
Z[X]. Then

|h(G)−
m∑
i=1

h(αi)| ≤ m log 2.

Proof. This is a special case of Corollary 4.1.5.

Lemma 7.4.2. Let α1, . . . , αm ∈ Q be distinct and suppose that G(X) :=
(X − α1) · · · (X − αm) ∈ Z[X]. Let q, p0, . . . , pm−1 be integers with
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gcd(q, p0, . . . , pm−1) = 1 and put

βi :=
m−1∑
j=0

(pj/q)α
j
i for i = 1, . . . ,m.

Then

log max(|q|, |p0|, . . . , |pm−1|) ≤ 2m2 + (m− 1)h(G) +
m∑
i=1

h(βi).

Proof. For m = 1 the assertion is obvious, hence we assume m ≥ 2. Let
L = Q(α1, . . . , αm). Denote by Ω the m×m matrix with rows (αi1, . . . , α

i
m)

for i = 0, . . . ,m− 1. By Cramer’s rule we get pi/q = δi/δ, i = 0, . . . ,m− 1,
where δ = det Ω and δi is the determinant of the matrix obtained by replacing
the i-the row of Ω by (βi, . . . , βm). Put

µ := log max(|q|, |p0|, . . . , |pm−1|).

Since (δ, δ0, . . . , δm−1) is a scalar multiple of (q, p0, . . . , pm−1), we have by
(4.1.4) and (4.1.6)

µ = hhom(q, p0, . . . , pm−1) = hhom(δ, δ0, . . . , δm−1)

=
1

d

∑
v∈ML

log max(|δ|v, |δ0|v, . . . , |δm−1|v). (7.4.1)

Estimating the determinants using Hadamard’s inequality for the infinite places
and the ultrametric inequality for the finite places, we get

max(|δ|v, |δ0|v, . . . , |δm−1|v)

≤ mms(v)/2 ·
m∏
i=1

max(1, |αi|v)m−1 ·max(1, |βi|v)

for v ∈ ML, where s(v) = 1 if v is real, s(v) = 2 if v is complex, and
s(v) = 0 if v is finite. Together with (7.4.1) this gives

µ ≤ 1
2m logm+

m∑
i=1

((m− 1)h(αi) + h(βi)).
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Combining this with Corollary 4.1.5 we get Lemma 7.4.2.

Let again A0 = Z[X1, . . . , Xq]. Given b ∈ A0, u = (u1, . . . , uq) ∈ Zq we
denote by b(u) the image of b under Xi 7→ ui (i = 1, . . . , q).

Lemma 7.4.3. Let b ∈ A0 have degree D. Let N be a finite subset of Z of
cardinality > D. Then

|{u ∈ N q : b(u) = 0}| ≤ D|N |q−1.

Proof. We proceed by induction on q. For q = 1 the assertion is obvious. Let
q ≥ 2. Write

b =

D0∑
i=0

biX
i
q,

where bi ∈ Z[X1, . . . , Xq−1] and bD0 6= 0. Then deg bD0 ≤ D − D0. By
the induction hypothesis, there are at most (D − D0)|N |q−2 · |N | tuples
(u1, . . . , uq−1, uq) ∈ N q with bD0(u1, . . . , uq−1) = 0 and uq arbitrary. Fur-
ther, there are at most |N |q−1 · D0 tuples u ∈ N q with bD0(u1, . . . , uq−1) 6= 0
and b(u1, . . . , uq) = 0. Summing these two quantities implies that b has at
most D|N |q−1 zeros in N q.

For f ∈ A0 = Z[X1, . . . , Xq] and p ∈ MQ := {∞} ∪ {primes}, we
define |f |p to be the maximum of the | · |p-values of the coefficients of f .

Lemma 7.4.4. Let b1, b2 ∈ A0 have degrees D1,D2, respectively, and let N
be an integer ≥ max(1,D1,D2). Define

S := {u ∈ Zq : |u| ≤ N, b2(u) 6= 0}.

Then S is non-empty, and

|b1|p ≤ U q
p max{|b1(u)|p : u ∈ S} for p ∈MQ, (7.4.2)

where U∞ = (4N)D1 , Up = (2N)D1 if p is a prime with p ≤ 2N , and Up = 1
if p is a prime > 2N .

Proof. We proceed by induction on q, starting with q = 0. In the case q = 0
we interpret b1, b2 as non-zero constants. Then the lemma is trivial. Let q ≥ 1.
The lemma is obviously true if D1 = 0 so we assume D1 ≥ 1. Put

Cp := max{|b1(u)|p : u ∈ S} for p ∈MQ.
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Write

b1 =

D′1∑
j=0

b1,jX
j
q , b2 =

D′2∑
j=0

b2,jX
j
q ,

where the b1,j , b2,j belong to Z[X1, . . . , Xq−1] and b1,D′1 , b2,D′2 6= 0. By the
induction hypothesis, the set

S ′ := {u′ ∈ Zq−1 : |u′| ≤ N, b2,D′2(u
′) 6= 0}

is non-empty and moreover,

max
0≤j≤D′1

|b1,j|p ≤ U q−1
p C ′p for p ∈MQ,

where C ′p := max{|b1,j(u
′)|p : u′ ∈ S ′, j = 0, . . . ,D′1}.

(7.4.3)

We fix p ∈ MQ and estimate C ′p from above in terms of Cp. Take u′ ∈ S ′
such that C ′p = max0≤j≤D′1 |b1,j(u

′)|p. There exist at least 2N + 1 − D′2 ≥
D′1 + 1 integers uq with |uq| ≤ N such that b2(u′, uq) 6= 0. Let a0, . . . , aD′1
be distinct integers from this set. Using Lagrange’s interpolation formula we
obtain

b1(u′, Xq) =

D′1∑
j=0

b1j(u
′)Xj

q =

D′1∑
j=0

b1(u′, aj)
( D′1∏
i=0
i 6=j

Xq − ai
aj − ai

)
.

First, consider p = ∞. The coefficients of a polynomial
∏m

k=1(X − ck) with
c1, . . . , cm ∈ C have absolute values at most

∏m
k=1(1 + |ck|). Hence

C ′∞ = max
0≤j≤D′1

|b1j(u
′)| ≤ C∞

D′1∑
j=0

D′1∏
i=0
i 6=j

(1 + |ai|)

≤ C∞(D′1 + 1)(N + 1)D
′
1 ≤ U∞C∞.

Now let p be a prime and let k be the largest integer such that pk ≤ 2N .
Then for all i, j with 0 ≤ i < j ≤ D′1 we have

|ai − aj|p ≥ p−k ≥
{

(2N)−1 if p ≤ 2N,

1 if p > 2N,
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and thus,

C ′p = max
0≤j≤D′1

|b1j(u
′)|p ≤ Cp max

0≤j≤D′1

D′1∏
i=0
i 6=j

|aj − ai|−1
p ≤ UpCp.

So C ′p ≤ UpCp for all p ∈MQ. Combining this with (7.4.3) we obtain (7.4.2).

We now define our specializations B → Q and prove some properties.
These specializations were introduced by Győry (1983, 1984) and, in a refined
form, by Evertse and Győry (2013); see Chapter 3.

We recall that in this section q > 0 is assumed. Apart from that we keep
the notation and assumptions from Section 7.2. In particular,

A0 = Z[X1, . . . , Xq], K0 = Q(X1, . . . , Xq),

K = Q(X1, . . . , Xq, w), B = Z[X1, . . . , Xq, w, g
−1],

where g ∈ A0 is the polynomial from Proposition 7.2.7, w is integral over A0

and w has minimal polynomial

F(X) := XD + F1X
D−1 + · · ·+ FD ∈ A0[X]

over K0. By construction,A ⊂ B∗, whereA is the finite set from Proposition
7.2.7. In the case D = 1, we take w = 1, F = X − 1.

Let d1, h1 be the quantities from Proposition 7.2.7 and k the cardinality of
A. Further, define{

d3 := max(d, degF1, . . . , degFD), d4 := max(d3, deg g)

h3 := max(h, h(F1), . . . , h(FD)), h4 := max(h3, h(g)).
(7.4.4)

By Propositions 7.2.5 and 7.2.7 we have{
d3 ≤ (2d)expO(r), d4 ≤ (k + 1)(2d1)expO(r),

h3 ≤ (2d)expO(r)h, h4 ≤ (k + 1)(2d1)expO(r)h1.
(7.4.5)

Further, we will frequently use the consequence of Lemma 7.2.3 (i),

D ≤ dr. (7.4.6)
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Let u = (u1, . . . , uq) ∈ Zq. Then the substitution X1 7→ u1, . . . , Xq 7→ uq
defines a ring homomorphism (specialization) from a subring of K0 to Q

ϕu : α 7→ α(u) : {b1/b2 : b1, b2 ∈ A0, b2(u) 6= 0} → Q.

We want to define ring homomorphisms from B to Q and for this, we have
to impose some restrictions on u. Let ∆F denote the discriminant of F (with
∆F := 1 if D = degF = 1), and let

T := ∆FFD · g. (7.4.7)

Then T ∈ A0. Since ∆F is a polynomial of degree 2D − 2 with integer
coefficients in F1, . . . ,FD, we deduce easily that

deg T ≤ (2D − 1)d3 + d4 ≤ 2Dd4. (7.4.8)

Assume that
T (u) 6= 0.

Then g(u) 6= 0 and the polynomial

Fu := XD + F1(u)XD−1 + · · ·+ FD(u)

has D distinct zeros which are all different from 0, say w1(u), . . . , wD(u).
Thus, for j = 1, . . . , D the assignment

X1 7→ u1, . . . , Xq 7→ uq, w 7→ wj(u)

defines a ring homomorphism ϕu,j from B to Q; in the case D = 1 it is just
ϕu. The image of α ∈ B under ϕu,j is denoted by αj(u). We recall that the
elements α of B can be expressed as

α =
D−1∑
i=0

(Pi/Q)wi with relatively prime P0, . . . , PD−1, Q ∈ A0. (7.4.9)

Since α ∈ B, the denominator Q must divide a power of g. Hence Q(u) 6= 0.
Thus we have

αj(u) =
D−1∑
i=0

(Pi(u)/Q(u))wj(u)i, j = 1, . . . , D. (7.4.10)
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Clearly, ϕu,j is the identity on B ∩Q. Hence, if α ∈ B ∩Q, then ϕu,j(α) has
the same minimal polynomial as α and so it is conjugate to α.

For u = (u1, . . . , uq) ∈ Zq, we put |u| := max(|u1|, . . . , |uq|). It is easy
to show that for any b ∈ A0, u ∈ Zq,

log |b(u)| ≤ q log deg b+ h(b) + deg b log max(1, |u|). (7.4.11)

In particular,

h(Fu) ≤ q log d3 + h3 + d3 log max(1, |u|) (7.4.12)

and so by Corollary 4.1.5,

D∑
j=1

h(wj(u)) ≤ D + 1 + q log d3 + h3 + d3 log max(1, |u|). (7.4.13)

Define the algebraic number fields Ku,j := Q(wj(u)), j = 1, . . . , D. We
derive an upper bound for the discriminant DKu,j

of Ku,j .

Lemma 7.4.5. Let u ∈ Zq with T (u) 6= 0. Then for j = 1, . . . , D the field
Ku,j has degree [Ku,j : Q] ≤ D and absolute discriminant

|DKu,j
| ≤ D2D−1(dq3e

h3 max(1, |u|)d3)2D−2.

Remark. Inserting (7.4.5), (7.4.6) we obtain

log |DKu,j
| ≤ (2d)expO(r)

(
h+ log max(1, |u|)

)
. (7.4.14)

Proof. Let j ∈ {1, . . . , D}. As observed above, wj(u) is a zero of Fu, which
is a monic polynomial in Z[X] of degree D. Hence [Ku,j : Q] ≤ D. To esti-
mate the discriminant ofKu,j , let Pj denote the monic minimal polynomial of
wj(u) over Q, which necessarily has its coefficients from Z. Then DKu,j

di-
vides the discriminant of Pj , which is the discriminant of the order Z[wj(u)].
Using the expression of the discriminant of a monic polynomial as the product
of the squares of the differences of its zeros, it is easy to see that the discrim-
inant of Pj divides that of Fu in the ring of algebraic integers and so also in
Z. Denoting the latter discriminant by ∆, we infer that DKu,j

divides ∆ in Z.
It remains to estimate from above |∆|. We can express this as a determi-

nant similar to (7.2.14), replacing n by D and ã0, . . . , ãn by the coefficients
of Fu. Hadamard’s inequality gives that the absolute value of this determi-
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nant can be estimated from above by the product of the Euclidean norms of
its rows. Letting H denote the maximum of the absolute values of the coeffi-
cients of Fu, this leads to

|∆| ≤ (D + 1)(D−2)/2(12 + · · ·+D2)D/2H2D−2

= (D + 1)(D−2)/2(1
6
D(D + 1)(2D + 1))D/2H2D−2

≤ D2D−1H2D−2,

provided thatD ≥ 3. ForD = 1, 2, the inequality |∆| ≤ D2D−1H2D−2 can be
verified by direct computation. Inserting (7.4.12), i.e.,H ≤ dq3e

h3 max(1, |u|)d3 ,
we arrive at

|∆| ≤ D2D−1(dq3e
h3 max(1, |u|)d3)2D−2.

This implies our lemma.

Finally, we state and prove two lemmas which relate h(α) to the heights
of αj(u) for α ∈ B, u ∈ Zq.

Lemma 7.4.6. Let u ∈ Zq with T (u) 6= 0. Further, let α ∈ B. Then for
j = 1, . . . , D

h(αj(u)) ≤ D2 + q(D log d3 + log degα)+

+Dh3 + h(α) + (Dd3 + degα) log max(1, |u|).

Remark. Inserting (7.4.5), (7.4.6) we derive the estimate

h(αj(u)) ≤ h(α) + (2d)expO(r)
(
h+ (degα + 1) log max(1, |u|)

)
. (7.4.15)

Proof. Let P0, . . . , PD−1, Q be as in (7.4.9). Let L = Q(wj(u)). We denote
byML the set of places of L, and | · |v (v ∈ML) the corresponding absolute
values normalized as in Section 4.1. Then for v ∈ML we have

|αj(u)|v ≤ Ds(v)Tv max(1, |wj(u)|v)D−1,

where s(v) = 1 if v is real, s(v) = 2 if v is complex, s(v) = 0 if v is finite,
and

Tv = max(1, |P0(u)/Q(u)|v, . . . , |PD−1(u)/Q(u)|v).
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Hence

h(αj(u)) ≤ logD +
1

[L : Q]

∑
v∈ML

log Tv + (D − 1)h(wj(u)). (7.4.16)

We infer that

1

[L : Q]

∑
v∈ML

log Tv = h(P0(u)/Q(u), . . . , PD−1(u)/Q(u))

= hhom(Q(u), P0(u), . . . , PD−1(u))

≤ log max(|Q(u)|, |P0(u)|, . . . , |PD−1(u)|)
≤ q log degα + h(α) + degα · log max(1, |u|).

Combining this with (7.4.13) and (7.4.16), the lemma follows.

Lemma 7.4.7. Let α ∈ B, α 6= 0, and let N be an integer such that

N ≥ max
(
degα, 2Dd3 + 2(q + 1)(d4 + 1)

)
.

Then the set
S := {u ∈ Zq : |u| ≤ N, T (u) 6= 0}

is non-empty and
h(α) ≤ (6N)q+4(h4 +H),

where H := max{h(αj(u)) : u ∈ S, j = 1, . . . , D}.

Remark. In view of (7.4.5), (7.4.6) we may take here

N = max(degα, (k + 1)(2d1)expO(r)), (7.4.17)

and get an upper bound

h(α) ≤ (2d1)expO(r)((k + 1) + degα)q+5(h1 +H), (7.4.18)

where k = |A|, with A the set from Proposition 7.2.7.

Proof. Lemmas 7.4.4, 7.4.6 and our assumption on N imply that S is non-
empty. We proceed with estimating h(α). Let P0, . . . , PD−1, Q ∈ A0 be as in
(7.4.9). We analyze Q more closely. Let

g = ±pk11 · . . . · pkmm g`11 · . . . · g`nn
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be the up to the sign of the irreducible factors unique factorization of g in A0,
where p1, . . . , pm are distinct prime numbers, and g1, . . . , gn are irreducible
elements of A0 of positive degree with gi 6= ±gj for all i, j with 1 ≤ i < j ≤
n. By Corollary 4.1.5 we have

n∑
i=1

`ih(gi) ≤ qd4 + h4. (7.4.19)

Since α ∈ B, the polynomial Q is also composed of p1, . . . , pm, g1, . . . , gn.
Thus

Q = aQ′ with a = ±pk
′
1

1 · . . . · pk
′
m
m , Q′ = g

`′1
1 · . . . · g`

′
n
n (7.4.20)

for certain non-negative integers k′1, . . . , k
′
m, `

′
1, . . . , `

′
n. Clearly

`′1 + · · ·+ `′n ≤ degQ ≤ degα ≤ N,

and by Lemma 7.2.1 and (7.4.19)

h(Q′) ≤ q degQ+
n∑
i=1

`′ih(gi) ≤ N(q + qd4 + h4)

≤ N2(h4 + 1). (7.4.21)

By virtue of (7.4.11) we have for u ∈ S

log |Q′(u)| ≤ q log d4 + h(Q′) + degQ logN

≤ 3
2N logN +N2(h4 + 1) ≤ N2(h4 + 2).

Hence
h(Q′(u)αj(u)) ≤ N2(h4 + 2) +H

for u ∈ S, j = 1, . . . , D. Further, by (7.4.10) and (7.4.20) we have

Q′(u)αj(u) =
D−1∑
i=0

(Pi(u)/a)wj(u)i.

Set
δ(u) := gcd(a, P0(u), . . . , PD−1(u)).
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Then by applying Lemma 7.4.2 together with (7.4.12) we infer that

log

(
max(|a|, |P0(u)|, . . . , |PD−1(u)|)

δ(u)

)
≤ 2D2 + (D − 1)h(Fu) +D(N2(h4 + 2) +H)

≤ 2D2 + (D − 1)(q log d4 + h4 + d4 logN) +D(N2(h4 + 2) +H)

≤ N3(h4 + 2) +DH. (7.4.22)

Our assumption that Q,P0, . . . , PD−1 are relatively prime in A0 implies
that the greatest common divisor of a and the coefficients of P0, . . . , PD−1

is 1. Let p ∈ {p1, . . . , pm} be one of the prime factors of a. There is j ∈
{0, . . . , D− 1} such that |Pj|p = 1. Our assumption on N and (7.4.8) implies
that N ≥ max(deg T , degPj). This means that Lemma 7.4.4 can be applied
with g1 = Pj and g2 = T . It follows that

max{|Pj(u)|p : u ∈ S} ≥

{
(2N)−qN if p ≤ 2N ,
1 if p > 2N ,

that is, there is up ∈ S with

|Pj(up)|p ≥

{
(2N)−qN if p ≤ 2N ,
1 if p > 2N .

Thus,

|δ(up)|p ≥

{
(2N)−qN if p ≤ 2N ,
1 if p > 2N .

(7.4.23)

For u ∈ S , let Pu be the set of primes p dividing a with up = u, and P ′u the
set of primes p ∈ Pu with p ≤ 2N . Then by (7.4.22), (7.4.23) we have for
u ∈ S, ∑

p∈Pu

log |a|−1
p ≤ log |a/δ(u)|+

∑
p∈P ′u

log |δ(u)|−1
p

≤ N3(h4 + 2) +DH + |P ′u| · qN log 2N.
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Summing over u ∈ S, using that |S| ≤ (3N)q, we get

log |a| ≤ (3N)q(N3(h4 + 2) +DH) + 2qN2 log 2N

≤ (3N)q+4(h4 +H). (7.4.24)

Together with (7.4.20) and (7.4.21) this gives

h(Q) ≤ (4N)q+4(h4 +H). (7.4.25)

Further, the right-hand side of (7.4.24) provides also an upper bound for
log δ(u) for u ∈ S. A combination of this with (7.4.22) gives

log max{|Pj(u)| : u ∈ S, j = 0, . . . , D − 1} ≤ (5N)q+4(h4 +H).

Another application of Lemma 7.4.4 yields

h(Pj) ≤ qN log 4N + (5N)q+4(h4 +H) ≤ (6N)q+4(h4 +H)

for j = 0, . . . , D − 1. Together with (7.4.25) this gives the upper bound for
h(α) as claimed in our lemma.

7.5 Multiplicative independence
We prove a general effective multiplicative independence result for elements
of a finitely generated field.

Recall that non-zero elements γ1, . . . , γs of a field are called multiplica-
tively independent if there is no tuple (b1, . . . , bs) ∈ Zs with at least one of
the bi not equal to 0, such that γb11 · · · γbss = 1.

We start with a result over number fields, and with the help of the special-
ization theory worked out above, we extend this to arbitrary finitely generated
fields.

We state and prove a result on multiplicative dependence over number
fields due to Loxton and van der Poorten (1983), which is not the strongest
one available at present, but which amply suffices for our purposes. By dL
we denote the degree of a number field L and by wL the number of its roots
of unity. Further, m(dL) denotes the height lower bound from Lemma 4.1.2,
with d replaced by dL.

Lemma 7.5.1. Let L be an algebraic number field, and let γ0, . . . , γs be non-
zero elements of L such that γ0, . . . , γs are multiplicatively dependent, but any
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s elements among γ0, . . . , γs are multiplicatively independent. Then there are
non-zero integers k0, . . . , ks such that

γk00 · · · γkss = 1,

|ki| ≤ s! · wLm(dL)−sh(γ0) · · ·h(γs)/h(γi) for i = 0, . . . , s.

Remark. Loher and Masser (2004, Cor. 2.3) obtained the asymptotically
sharper upper bound, based on an idea of Kunrui Yu,

|ki| ≤ 58(s!es/ss)ds+1
L (log dL)h(γ0) · · ·h(γs)/h(γi) for i = 0, . . . , s.

Proof. We follow Loxton and van der Poorten. The result is trivially true if
s = 0 so we assume that s ≥ 1. By assumption, there are non-zero integers
b0, . . . , bs such that

γb00 · · · γbss = 1. (7.5.1)

Without loss of generality,

|b0| · h(γ0) ≥ |bi| · h(γi) for i = 1, . . . , s. (7.5.2)

The tuple (b0, . . . , bs) is uniquely determined up to a scalar factor, because if
(b′0, . . . , b

′
s) is any other tuple of non-zero integers with γb

′
0

0 · · · γ
b′s
s = 1, then

γ
b′0b1−b0b′1
1 · · · γb′0bs−b0b′ss = 1,

and thus, b′0bi − b0b
′
i = 0 for i = 1, . . . , s by the multiplicative independence

of γ1, . . . , γs.

Let (θk)k≥0 be a sequence of positive reals increasing to m(dL). For every
k, consider the (s+ 1)-dimensional symmetric convex body, consisting of the
points (x0, . . . , xs) ∈ Rs+1 with

s∑
i=1

h(γi)
∣∣∣xi − bi

b0
x0

∣∣∣ ≤ θk, |x0| ≤ s!θ−sk h(γ1) · · ·h(γs).

This body has volume 2s+1, so by Minkowski’s convex body theorem it con-
tains a non-zero point lk ∈ Zs+1. But among the points lk (k ≥ 0) there are
only finitely many distinct ones, since they all lie in a bounded set indepen-
dent of k. Hence there is a non-zero l = (l0, . . . , ls) ∈ Zs+1 belonging to the
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above defined convex bodies for infinitely many k. But then this point satisfies

s∑
i=1

h(γi)
∣∣∣li − bi

b0
l0

∣∣∣ < m(dL), |l0| ≤ s! ·m(dL)−sh(γ1) · · ·h(γs).

(7.5.3)

For i = 0, . . . , s, choose βi such that βb0i = γi. By (7.5.1), ζ := βb00 · · · βbss
is a root of unity. From the height properties (4.1.3) we infer

h(γl00 · · · γlss ) = h(γl00 · · · γlss ζ−l0) = h(βb0l1−b1l01 · · · βb0ls−bsl0s )

≤
s∑
i=1

h(βi)|b0li − bil0| =
s∑
i=1

h(γi)|li − bi
b0
l0| < m(dL).

So by Lemma 4.1.2, γl00 · · · γlss is a root of unity. It follows that γk00 · · · γkss = 1,
where ki := wLli for i = 0, . . . , s. Since we assumed that any s elements
among γ0, . . . , γs are multiplicatively independent, the integers k0, . . . , ks are
all non-zero.

It remains to estimate k0, . . . , ks. By (7.5.3) we have

|k0| ≤ s!wLm(dL)−sh(γ1) · · ·h(γs).

Further, (k0, . . . , ks) is up to a scalar multiple equal to (b0, . . . , bs), and so, in
view of (7.5.2), we have for i = 1, . . . , s,

|ki| =
∣∣∣ bib0k0

∣∣∣ ≤ h(γ0)
h(γi)

· |k0| ≤ s!wLm(dL)−sh(γ0) · · ·h(γs)/h(γi).

This proves our lemma.

We prove a generalization for arbitrary finitely generated integral domains.
As before, let A = Z[z1, . . . , zr] ⊇ Z be an integral domain finitely generated
over Z with quotient field K, and suppose that the ideal I of polynomials
f ∈ Z[X1, . . . , Xr] with f(z1, . . . , zr) = 0 is generated by f1, . . . , fM . Let
γ0, . . . , γs be non-zero elements of K, and for i = 0, . . . , s, let (gi,1, gi,2) be a
pair of representative for γi, i.e. elements of Z[X1, . . . , Xr] such that

γi =
gi,1(z1, . . . , zr)

gi,2(z1, . . . , zr)
.
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Proposition 7.5.2. Assume that γ0, . . . , γs are multiplicatively dependent. Fur-
ther, assume that f1, . . . , fM and gi,1, gi,2 (i = 0, . . . , s) have degrees at most
d and logarithmic heights at most h, where d ≥ 1, h ≥ 1. Then there are
integers k0, . . . , ks, not all zero, such that

γk00 · · · γkss = 1, (7.5.4)

|ki| ≤ (2d)expO(r+s)hs for i = 0, . . . , s. (7.5.5)

This is Lemma 7.2 of Evertse and Győry (2013).

Proof. We may assume without loss of generality that any s elements among
γ0, . . . , γs are multiplicatively independent (if this is not the case, take a min-
imal multiplicatively independent subset of {γ0, . . . , γs} and proceed further
with this subset). We first assume that q > 0. We use an argument of van der
Poorten and Schlickewei (1991). Keeping the above notation and assumptions
from Chapter 7, we assume that z1 = X1, . . . , zq = Xq is a transcendence ba-
sis of K, and rename zq+1, . . . , zr as y1, . . . , yt, respectively. For brevity, we
include the case t = 0 as well in our proof. But it should be possible to prove
in this case a sharper result by means of a more elementary method. We keep
the notation and assumptions from Section 7.2, in particular,

A0 = Z[X1, . . . , Xq], K0 = Q(X1, . . . , Xq), K = Q(X1, . . . , Xq, w),

where w is integral over A0 and w has minimal polynomial

F(X) := XD + F1X
D−1 + · · ·+ FD ∈ A0[X]

over K0. In the case D = 1, we take w = 1, F = X − 1. We construct
a specialization such that among the images of γ0, . . . , γs no s elements are
multiplicatively dependent, and then apply Lemma 7.5.1.

Let V ≥ 2d be a positive integer. Later we shall make our choice of V
more precise. Define the set

V := {v =(v0, . . . , vs) ∈ Zs+1\{0} :

|vi| ≤ V for i = 0, . . . , s, and with vi = 0 for some i}. (7.5.6)

Then

γv :=

(
s∏
i=0

γvii

)
− 1 (v ∈ V)
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are non-zero elements of K. It is easy to show that for v ∈ V , γv has a pair of
representatives (g1,v, g2,v) such that

deg g1,v, deg g2,v ≤ sdV.

In the case t > 0, there exists by Proposition 7.2.7 a non-zero g ∈ A0 such
that

A ⊆ B := A0[w, g−1], γv ∈ B∗ for v ∈ V

and
deg g ≤ V s+1(2sdV )expO(r) ≤ V expO(r+s).

In the case t = 0 this holds true as well, withw = 1 and g =
∏

v∈V(g1,v ·g2,v).
We apply the theory of specializations explained in Section 7.4 above with this
g. We put T := ∆FFD · g, where ∆F denotes the discriminant of F . Using
Proposition 7.2.5 and inserting the bound D ≤ dt from Lemma 7.2.3 we get
for t > 0:{

d3 := max(d, degF1, . . . , degFD) ≤ (2d)expO(r)

h3 := max(h, h(F1), . . . , h(FD)) ≤ (2d)expO(r)h,
(7.5.7)

with the provision deg 0 = h(0) = −∞; this is true also if t = 0. Combining
this with Lemma 7.2.8, we obtain

deg T ≤ (2D − 1)d3 + deg g ≤ V expO(r+s).

By Lemma 7.4.3 there exists u ∈ Zq with

T (u) 6= 0, |u| ≤ V expO(r+s). (7.5.8)

We proceed further with this u.

As was seen above, γv ∈ B∗ for v ∈ V . By our choice of u, there are D
distinct specialization maps ϕu,j (j = 1, . . . , D) from B to Q. We fix one of
these specializations, which we denote by ϕu. Given α ∈ B, we write α(u)
for ϕu(α). As the elements γv are all units in B, their images under ϕu are
non-zero. Thus we have

s∏
i=0

γi(u)vi 6= 1 for v ∈ V (7.5.9)

where V is defined by (7.5.6).
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We use Lemma 7.4.6 to estimate the heights h(γi(u)) for i = 0, . . . , s.
Recall that by Lemma 7.2.6 we have

degγi ≤ (2d)expO(r), h(γi) ≤ (2d)expO(r)h

for i = 0, . . . , s. By inserting these bounds and that for |u| from (7.5.8) into
(7.4.15), we obtain for i = 0, . . . , s,

h(γi(u)) ≤ (2d)expO(r)(1 + h+ log max(1, |u|))
≤ (2d)expO(r+s)(1 + h+ log V ). (7.5.10)

We show that any s numbers among γ0(u), . . . , γs(u) are multiplicatively
independent, provided V is chosen appropriately. Assume the contrary. By
Lemma 7.5.1 there are integers k0, . . . , ks, at least one of which is non-zero
and at least one of which is 0, such that

s∏
i=0

γi(u)ki = 1,

|ki| ≤ (2d)expO(r+s)(1 + h+ log V )s−1 for i = 0, . . . , s. (7.5.11)

We now choose V large enough such that this upper bound for the numbers
|ki| is smaller than V . This is satisfied with

V = (2d)expO(r+s)hs−1 (7.5.12)

where the constant in the O-symbol in (7.5.12) is sufficiently large compared
with that of (7.5.11). But then we have

∏s
i=0 γi(u)vi = 1 for some v ∈ V , con-

trary to (7.5.9). Hence we conclude that with the choice (7.5.12) for V , there
exists u ∈ Zq with (7.5.8), such that any s numbers among γ0(u), . . . , γs(u)
are multiplicatively independent. Of course, the numbers γ0(u), . . . , γs(u) are
multiplicatively dependent, since they are the images under ϕu of γ0, . . . , γs
which are multiplicatively dependent. Substituting (7.5.12) into (7.5.10) we
obtain

h(γi(u)) ≤ (2d)expO(r+s)h for i = 0, . . . , s. (7.5.13)

Now Lemma 7.5.1 implies that there are non-zero integers k0, . . . , ks such
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that
s∏
i=0

γi(u)ki = 1, (7.5.14)

|ki| ≤ (2d)expO(r+s)hs for i = 0, . . . , s. (7.5.15)

Our assumption concerning γ0, . . . , γs implies that there are non-zero in-
tegers `0, . . . , `s such that

∏s
i=0 γ

`i
i = 1. Hence

∏s
i=0 γi(u)`i = 1. Together

with (7.5.14) this yields

s∏
i=1

γi(u)`0ki−`ik0 = 1.

However, we have `0ki− `ik0 = 0 for i = 1, . . . , s since γ1(u), . . . , γs(u) are
multiplicatively independent, that is,

`0 · (k0, . . . , ks) = k0 · (`0, . . . , `s).

It follows that
s∏
i=0

γkii = ζ

for some root of unity ζ . But ϕu(ζ) = 1 and it is conjugate to ζ . Hence
ζ = 1. So in fact we have

∏s
i=0 γ

ki
i = 1 with non-zero integers ki satisfying

(7.5.15). This proves our Proposition, but under the assumption q > 0. If
q = 0 then a much simpler argument, without specializations, gives h(γi) ≤
(2d)expO(r+s)h for i = 0, . . . , s in place of (7.5.13). Then the proof is finished
in the same way as in the case q > 0.

Corollary 7.5.3. Let γ0, γ1, . . . , γs ∈ K∗, and suppose that γ1, . . . , γs are
multiplicatively independent and

γ0 = γk11 · · · γkss

for certain integers k1, . . . , ks. Let d, h be as in Proposition 7.5.2. Then

|ki| ≤ (2d)expO(r+s)hs for i = 1, . . . , s.

Proof. By Proposition 7.5.2, and by the multiplicative independence of γ1, . . . , γs,
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there are integers `0, . . . , `s such that

s∏
i=0

γ`ii = 1,

`0 6= 0, |`i| ≤ (2d)expO(r+s)hs for i = 0, . . . , s.

But then we have also
s∏
i=1

γ`0ki−`ii = 1,

whence `0ki − `i = 0 for i = 1, . . . , s. It follows that

|ki| = |`i/`0| ≤ (2d)expO(r+s)hs for i = 1, . . . , s,

which is what we wanted to prove.
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Chapter 8

Degree-height estimates

Let as before A be an integral domain of characteristic 0 that is finitely gener-
ated over Z, K its quotient field, and K an algebraic closure of K. We intro-
duce so-called degree-height estimates for elements of K, which may be seen
as an analogue for the naive height (height of the minimal polynomial over
Z) of an algebraic number. Our goal is to give a degree-height estimate for
β ∈ K in terms of degree-height estimates for α1, . . . , αm ∈ K, if β is related
to the αi by P (β, α1, . . . , αm) = 0 for some given P ∈ Z[X,X1, . . . , Xm]
that is monic in X . Estimates of this type will be crucial in Chapter 10.

8.1 Definitions

We keep using the following notation: A = Z[z1, . . . , zr] with r > 0 is an
integral domain of characteristic 0, K is its quotient field, and K is an al-
gebraic closure of K. Further, I is the ideal of f ∈ Z[X1, . . . , Xr] with
f(z1, . . . , zr) = 0, so that

A ∼= Z[X1, . . . , Xr]/I. (8.1.1)

We assume again that

I = (f1, . . . , fM) with deg fi ≤ d, h(fi) ≤ h for i = 1, . . . ,M,

where d ≥ 1, h ≥ 1. (8.1.2)

We now introduce the notion of degree-height estimate. Given a monic
polynomial G ∈ K[X], we call (g0, . . . , gn) a tuple of representatives for G
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if g0, . . . , gn ∈ Z[X1, . . . , Xr], g0 6∈ I and

G = Xn +
g1(z1, . . . , zr)

g0(z1, . . . , zr)
Xn−1 + · · ·+ gn(z1, . . . , zr)

g0(z1, . . . , zr)
.

We write
G ≺ (d∗, h∗)

if G has a tuple of representatives (g0, . . . , gn) with total degree deg gi ≤ d∗

and logarithmic height h(gi) ≤ h∗ for i = 0, . . . , n, and call (d∗, h∗) a degree-
height estimate for G.

In case that G is a monic polynomial in A[X], we call (g1, . . . , gn) an
integral tuple of representatives for G if g1, . . . , gn ∈ Z[X1, . . . , Xr] and

G = Xn + g1(z1, . . . , zr)X
n−1 + · · ·+ gn(z1, . . . , zr).

We write
G

int
≺ (d∗, h∗)

if G has an integral tuple of representatives (g1, . . . , gn) with deg gi ≤ d∗,
h(gi) ≤ h∗ for i = 1, . . . , n.

Let α ∈ K. We denote the monic minimal polynomial of α over K by
Fα. We denote by dK(α) the degree of α over K, i.e., the degree of Fα. We
define a tuple of representatives for α to be a tuple of representatives for Fα.
We write

α ≺ (d∗, h∗) if Fα ≺ (d∗, h∗)

and call (d∗, h∗) a degree-height estimate for α. In case that Fα ∈ A[X],
an integral tuple of representatives for Fα is also called an integral tuple of
representatives for α, and we write

α
int
≺ (d∗, h∗) if Fα

int
≺ (d∗, h∗).

In particular, if α ∈ K then α ≺ (d∗, h∗) if α has a pair of representatives
each of which has total degree at most d∗ and logarithmic height at most h∗,

while if α ∈ A, then α
int
≺ (d∗, h∗) if α has a representative of total degree at

most d∗ and logarithmic height at most h∗.

We should mention here that there Moriwaki (2000) developed a sophis-
ticated height theory for points in projective space Pn(K), based on Arakelov
intersection theory, which may be seen as an analogue of the theory of abso-
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lute Weil heights over Pn(Q). We preferred to keep our presentation down to
earth and to use the naive degree-height estimates introduced above. It would
be of interest to figure out how our degree-height estimates relate to Mori-
waki’s height.

As mentioned above, our aim is to give a degree-height estimate for β ∈ K
in terms of degree-height estimates for α1, . . . , αm ∈ K, if β is related to the
αi by P (β, α1, . . . , αm) = 0 for some given P ∈ Z[X,X1, . . . , Xm] that is
monic in X . We outline our procedure. Consider the polynomial

G(X) :=

n1∏
i1=1

· · ·
nm∏
im=1

P (X,α
(i1)
1 , . . . , α(im)

m ),

where α(ij)
i (j = 1, . . . , ni) are the conjugates of αi over K, for i = 1, . . . ,m.

The polynomial G is monic and by the theory of symmetric functions, its co-
efficients belong to K and can be expressed in terms of the coefficients of the
monic minimal polynomials of α1, . . . , αm over K. This enables us to derive
a degree-height estimate for G. The polynomial G has β as a zero and thus, is
a multiple of the monic minimal polynomial of β, but in general it is not equal
to this minimal polynomial. To get a degree-height estimate for the minimal
polynomial of β, hence of β itself, we use estimates for degree-height esti-
mates of the factors in K[X] of a given polynomial in K[X]. We will derive
such estimates in Section 8.2. In Section 8.3 we derive the degree-height esti-
mate for β in the way explained above, and give some further applications.

8.2 Estimates for factors of polynomials

We obtain explicit degree-height estimates for the monic divisors in K[X] of
a given monic polynomial in K[X]. Probably this would have been possible
by making explicit arguments from Seidenberg (1974). We have chosen to use
instead the specialization theory developed in Sections 7.2–7.4. We keep our
assumptions that A = Z[z1, . . . , zr] and that the ideal I of f ∈ Z[X1, . . . , Xr]
with f(z1, . . . , zr) = 0 is generated by polynomials f1, . . . , fM with (8.1.2).
We assume again that z1 = X1, . . . , zq = Xq is a transcendence basis of K,
and write

A0 = Z[X1, . . . , Xq], K0 = Q(X1, . . . , Xq).

We will work with a domain B = A0[w, g−1] as in Proposition 7.2.7 where
we take A = {∆F}, with ∆F the discriminant of the polynomial F from
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Proposition 7.2.5, so that ∆F ∈ B∗. Since g ∈ A0 and since w is integral over
A0, we have in fact

∆F ∈ K0 ∩B∗ = A0[g−1]∗. (8.2.1)

We take the quantities d1, h1 defined in Proposition 7.2.7. In our situation we
have

d1 = max(d, deg ∆F), h1 = max(h, h(∆F)).

By estimates completely similar to those in Lemma 7.2.8 we have

deg ∆F ≤ (2D − 2)d∗,

h(∆F) ≤ (2D − 2)
(

log
(
2D2

((
d∗+r
r

))
+ h∗

)
,

where

D = [K : K0], d∗ = max(degF1, . . . , degFD), h∗ = max(h(F1), . . . , h(FD)).

Invoking the estimates D ≤ dr implied by Lemma 7.2.3 and those for degFi,
h(Fi) from Lemma 7.2.5, we obtain

d1 ≤ (2d)expO(r), h1 ≤ (2d)expO(r)h. (8.2.2)

We start with some preparatory lemmas.

Lemma 8.2.1. The above domain B is integrally closed.

Proof. Denote by x 7→ x(i) (i = 1, . . . , D = [K : K0]) the K0-isomorphic
embeddings of K in an algebraic closure K0 of K0. Let β ∈ K be integral
over B. Then β is integral over A0[g−1]. We have

β =
D−1∑
j=0

bjw
j with b0, . . . , bD−1 ∈ K0

and thus,

β(i) =
D−1∑
j=0

bj(w
(i))j for i = 1, . . . , D.

Viewing this as a system of linear equations in b0, . . . , bD−1, we get by Cramer’s
rule,

bj = ∆j/∆ for j = 0, . . . , D − 1,
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where ∆ = det
(
(w(i))j−1

)
i=1,...,D, j=0,...,D−1

and where ∆j is the determi-
nant obtained by replacing (w(i))j−1 by β(i) for i = 1, . . . , D. Using Vander-
monde’s identity ∆2 =

∏
1≤j<k≤D(w(j) − w(k))2 = ∆F , we obtain

bj = ∆j ·∆/∆F for j = 0, . . . , D − 1.

Clearly, ∆j∆ ∈ K. Recall that the polynomial F is monic in A0[X], so w
is integral over A0. Hence the w(i) (i = 1, . . . , D) are integral over A0. Fur-
ther, β is integral over B, hence over A0[g−1], and so the β(i) (i = 1, . . . , D)
are integral over A0[g−1]. It follows that ∆j∆ is integral over A0[g−1], and
so it belongs to A0[g−1] since the latter is a localization of a unique factor-
ization domain, hence integrally closed. Together with (8.2.1) this implies
bj ∈ A0[g−1] for j = 0, . . . , D− 1. We conclude that β ∈ B, as required.

Lemma 8.2.2. Let F ∈ B[X] be a monic polynomial, andG ∈ K[X] a monic
polynomial that divides F in K[X]. Then G ∈ B[X].

Proof. For certain α1, . . . , αn ∈ K we have F = (X−α1) · · · (X−αn),G =
(X−α1) · · · (X−αm). Since α1, . . . , αm are integral over B, the coefficients
of G are also integral over B. These must belong to B, since B is integrally
closed.

We are now ready to prove our result concerning the degree-height esti-
mates of the factors of a given polynomial.

Proposition 8.2.3. Let d5 ≥ d, h5 ≥ h and let F ∈ K[X] be a monic poly-
nomial of degree n ≥ 2 with F ≺ (d5, h5). Then for each monic polynomial
G ∈ K[X] dividing F we have

G ≺
(
(nd5)expO(r), (nd5)expO(r)h5

)
.

Proof. We can writeF = Xn+(a1/a0)Xn−1+· · ·+(an/a0) where a0, . . . , an ∈
A, a0 6= 0, and ai has a representative ãi with deg ãi ≤ d5, h(ãi) ≤ h5, for
i = 0, . . . , n. Define F ∗(X) := an0F (X/a0). Then

F ∗(X) = Xn + a∗1X
n−1 + · · ·+ a∗n where a∗i := aia

i−1
0 for i = 1, . . . , n.

Clearly, F ∗ ∈ A[X] ⊆ B[X] and by Corollary 4.1.6, a∗i (i = 1, . . . , n) has a
representative ã∗i with

deg ã∗i ≤ nd5, h(ã∗i ) ≤ n(rd5 + h5) for i = 1, . . . , n. (8.2.3)
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Together with Lemma 7.2.6 this implies

deg a∗i ≤ (nd5)expO(r) for i = 1, . . . , n, (8.2.4)

h(a∗i ) ≤ (nd5)expO(r)h5 for i = 1, . . . , n. (8.2.5)

LetG ∈ K[X] be a monic divisor ofF of degreem, say, and setG∗(X) :=
am0 G(X/a0). Then G∗ is a monic divisor of F ∗ in K[X], so by Lemma 8.2.2,

G∗ ∈ B[X], G∗∗ := F ∗/G∗ ∈ B[X]. (8.2.6)

Write
G∗(X) = Xm + b∗1X

m−1 + · · ·+ b∗m.

Then

G(X) = a−m0 G∗(a0X)

= Xm + (b∗1a
−1
0 )Xm−1 + b∗2a

−2
0 Xm−2 + · · ·+ b∗ma

−m
0 . (8.2.7)

We first estimate deg b∗i for i = 1, . . . ,m by making a reduction to func-
tion field heights. For k = 1, . . . , q, let kk be the algebraic closure in K0 of
Q(X1, . . . , Xk−1, Xk+1, . . . , Xq), and

Lk := kk(Xk, w
(1), . . . , w(D)), ∆k := [Lk : kk(Xk)],

where w(1), . . . , w(D) are the conjugates of w over K0. From (8.2.4), (7.3.9),
with the notation as in Lemma 7.3.4, we deduce

∆−1
k HLk((a

∗
i )

(j)) ≤ (nd5)expO(r)

for k = 1, . . . , q, j = 1, . . . , D, i = 1, . . . ,m. The polynomial G∗ divides F ∗

in Lk[X], so by (5.1.15) and (5.1.14),

∆−1
k HLk((b

∗
i )

(j)) ≤ (nd5)expO(r),

which together with (7.3.3) yields

deg b∗i ≤ (nd5)expO(r) for i = 1, . . . ,m. (8.2.8)

The next step is to estimate h(b∗i ) for i = 1, . . . ,m. Inequalities (8.2.5),
(7.4.15) imply that for i = 1, . . . , n, j = 1, . . . , D and for each u ∈ Zq with
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|u| ≤ (nd5)expO(r), T (u) 6= 0,

h((a∗i )j(u)) ≤ (nd5)expO(r)h5,

where (a∗i )j(u) is the image of a∗i under the specialization homomorphism
ϕu,j . By (8.2.6), this homomorphism is also defined on the coefficients of
G∗, G∗∗. By applying ϕu,j to the coefficients of G∗ and G∗∗, we see that the
image of G∗ under ϕu,j divides the image of F ∗ in Ku,j[X]. Now we infer
from Corollary 4.1.4 and inequality (4.1.5),

h((b∗i )j(u)) ≤ (nd5)expO(r)h5

for i = 1, . . . ,m, j = 1, . . . , D and u ∈ Zq with |u| ≤ (nd5)expO(r), T (u) 6=
0, where (b∗i )j(u) is the image of b∗i under ϕu,j . An application of inequality
(7.4.18) with k = 1, using (8.2.2), (8.2.8), then gives

h(b∗i ) ≤ (nd5)expO(r)h5 for i = 1, . . . ,m. (8.2.9)

Inequalities (8.2.8) and (8.2.9) mean that there are Pi,0, . . . , Pi,D−1, Qi ∈ A0

such that

b∗i = Q−1
i

D−1∑
j=0

Pi,jw
j with

degPi,j, degQi ≤ (nd5)expO(r), h(Pi,j), h(Qi) ≤ (nd5)expO(r)h5 (8.2.10)

for i = 1, . . . , n, j = 0, . . . , D−1. The Pi,j andQi belong toA0 = Z[X1, . . . , Xq] ⊂
Z[X1, . . . , Xr]. Let w̃ be the representative for w from (7.2.6). From (8.2.10),
(8.2.7) and some computations, using Lemma 4.1.7, it follows that (b̃0, . . . , b̃m),
given by

b̃0 = ã0
mQ1 · · ·Qm,

b̃i = ã0
m−i

m∏
k=1
k 6=i

Qk

D−1∑
j=0

Pi,jw̃
j for i = 1, . . . ,m

is a tuple of representatives for G with

deg b̃i ≤ (nd5)expO(r), h(b̃i) ≤ (nd5)expO(r)h5 for i = 0, . . . ,m.
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This proves Proposition 8.2.3.

8.3 Consequences
Given degree-height estimates for certain elements α1, . . . , αm of K, and
given P ∈ Z[X,X1, . . . , Xm], we derive a degree-height estimate for β satis-
fying P (β, α1, . . . , αm) = 0. Further, we give a degree-height estimate for a
primitive element of a given finite extension K(α1, . . . , αm) of K. Lastly, we
give degree-height estimates for solutions of systems of linear equations with
coefficients from K. These results are all consequences of the work from the
previous section, together with a simple estimate for symmetric polynomials
that we deduce below. The quantities d, h satisfy (8.1.2).

Let Xi = (Xi,1, . . . , Xi,ni) (i = 1, . . . ,m) be blocks of variables. The
block Yi = (Yi,1, . . . , Yi,ni) of elementary symmetric polynomials in Xi is
given by

Xni − Yi,1Xni−1 + · · ·+ (−1)niYi,ni = (X −Xi,1) · · · (X −Xi,ni).

Let R be any commutative ring with 1. A polynomial F ∈ R[X1, . . . ,Xm] is
called symmetric in X1, . . . ,Xm if

F (σ1(X1), . . . , σm(Xm)) = F (X1, . . . ,Xm)

for each tuple (σ1, . . . , σm), with σi a permutation of the variables in Xi,
for i = 1, . . . ,m. By the theory of symmetric polynomials, such F can be
expressed as

F (X1, . . . ,Xm) = F sym(Y1, . . . ,Ym)

where F sym is a polynomial with coefficients in R. Further, if F has total de-
greeD, then F sym is anR-linear combination of monomials

∏m
i=1

∏ni
h=1 Y

ki,h
i,h ,

with

m∑
i=1

nh∑
h=1

h · ki,h ≤ D. (8.3.1)

We define the scalar product of any two tuples a = (ai : i ∈ I), b = (bi : i ∈
I) with entries in some commutative ring by 〈a,b〉 =

∑
i∈I aibi.

Lemma 8.3.1. Let F ∈ R[X1, . . . ,Xm] be of total degree D and symmetric
in the blocks X1, . . . ,Xm. Denote by f the tuple of non-zero coefficients of F .
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Then

F sym(Y1, . . . ,Ym) =
∑
k

〈sk, f〉
m∏
i=1

ni∏
h=1

Y
ki,h
i,h ,

where the sum is taken over all tuples k = (k1,1, . . . , km,nm) of non-negative
integers with (8.3.1), and where sk is a tuple with entries in Z of absolute
value at most 3D+n1+···+nm .

Proof. For a tuple of non-negative integers j = (j1,1, . . . , jm,nm) we write
X j :=

∏m
i=1

∏nm
h=1X

ji,h
i,h , Y j :=

∏m
i=1

∏nm
h=1 Y

ji,h
i,h . For a tuple of non-negative

integers k = (k1,1, . . . , km,nm) with ki,1 ≥ · · · ≥ ki,ni ≥ 0 for i = 1, . . . ,m,
letJk be the minimal set of tuples of non-negative integers j = (j1,1, . . . , jm,nm)
such that k ∈ Jk and

Fk :=
∑
j∈Jk

Xj

is symmetric in X1, . . . ,Xm. Then

F =
∑
k

fkFk

where fk ∈ R and the sum is taken over those tuples k with

ki,1 ≥ · · · ≥ ki,ni ≥ 0 for i = 1, . . . ,m,
m∑
i=1

ni∑
h=1

ki,h ≤ D.

By the theory of symmetric polynomials, F sym
k has its coefficients in Z. It

suffices to show that these coefficients have absolute values at most 3E+n,
where n := n1 + · · ·+ nm and E :=

∑m
i=1

∑ni
h=1 ki,h. We have

F sym
k (Y1, . . . ,Ym) =

∑
j

f sym
k,j Yj

where the sum is over the tuples j = (j1,1, . . . , jm,nm) of non-negative integers
with

∑m
i=1

∑ni
h=1 h · ji,h ≤ E , and the f sym

k,j are integers. Let Dr denote the set
of vectors z = (z1,1, . . . , zm,nm) ∈ Cn with |zi,j| ≤ r for i = 1, . . . ,m, h =
1, . . . , ni. Let γ be the circle with center 0 and radius 1 in the complex plane,
traversed counterclockwise. Recall that if xi,1, . . . , xi,ni , yi,1, . . . , yi,ni ∈ C are
such that Xn− yi,1Xn−1 + · · ·+ (−1)nyi,ni = (X−xi,1) · · · (X−xi,ni), then
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maxh |xi,h| ≤ 1 + maxh |yi,h|. This leads to

|f sym
k,j | = (2π)−n

∣∣∣∣∣
∮
γ

· · ·
∮
γ

F sym
k (z)

m∏
i=1

nh∏
h=1

(z
−ji,h−1

i,h dzi,h)

∣∣∣∣∣
≤ sup

y∈D1

|F sym
k (y)| ≤ sup

x∈D2

|Fk(x)|

≤ |Jk| · 2E ≤
(
n+E−1
E
)

2E ≤
n+E−1∑
k=0

(
n+E−1

k

)
2k ≤ 3E+n,

as required.

Before proving the result mentioned in the beginning of this section, we
make a simple observation. Let α ∈ K

∗
. If (g̃0, . . . , g̃n) is a tuple of repre-

sentatives for α, i.e., for its minimal polynomial Fα over K, then clearly its
reverse (g̃n, . . . , g̃0) is a tuple of representatives for α−1. This shows that

α ≺ (d∗, h∗)⇔ α−1 ≺ (d∗, h∗). (8.3.2)

We now state and prove the main result of this section. In the somewhat
elaborate computations, we use the properties of heights and lengths of poly-
nomials, stated in (4.1.7), (4.1.8) and Lemma 4.1.7.

Proposition 8.3.2. Let P ∈ Z[X,X1, . . . , Xm] be such that

degX P ≥ 1, P is monic in X

and let α1, . . . , αm ∈ K be such that

degK αi = ni, αi ≺ (d6, h6) for i = 1, . . . ,m,

where d6 ≥ d, h6 ≥ h. Lastly, let β ∈ K satisfy

P (β, α1, . . . , αm) = 0.

Then

degK β ≤ (degX P ) · n1 · · ·nm,

β ≺
(
RexpO(r)

1 , RexpO(r)
1 (h(P ) + h6)

)
,

whereR1 := 2m · n1 · · ·nm · degP · d6.

190



Proof. The estimate for degK β being clear, we proceed with computing a
degree-height estimate for β.

For i = 1, . . . ,m, let Xi = (Xi,1, . . . , Xi,ni) and let Yi = (Yi,1, . . . , Yi,ni)
be the elementary symmetric polynomials in Xi. Consider the polynomial

Q(X,X1, . . . ,Xm) =

n1∏
h1=1

· · ·
nm∏
hm=1

P (X,X1,h1 , . . . , Xm,hm).

This is symmetric in X1, . . . ,Xm, hence

Q(X,X1, . . . ,Xm) = Qsym(X,Y1, . . . ,Ym),

for some polynomial Qsym with integer coefficients. For i = 1, . . . ,m, let
(gi,0, . . . , gi,ni) be a tuple of representatives for Fαi in Z[X1, . . . , Xr], with

deg gi,h ≤ d6, h(gi,h) ≤ h6 for h = 1, . . . , ni. (8.3.3)

Then the monic minimal polynomial of αi over K is given by

Fαi := Xni +

ni∑
h=1

gi,h(z1, . . . , zr)

gi,0(z1, . . . , zr)
Xni−h.

Let α(h)
i (h = 1, . . . , ni) be the conjugates of αi over K. Further, let bi :=

(bi,1, . . . , bi,ni) be the tuple of elementary symmetric functions of α(1)
i , . . . , α

(ni)
i .

Then bi,h = (−1)hgi,j(z1, . . . , zr)/gi,0(z1, . . . , zr) for h = 1, . . . , ni. Clearly,

n1∏
h1=1

· · ·
nm∏
hm=1

P (X,α
(h1)
1 , . . . , α(hm)

m ) = Qsym(X,b1, . . . ,bm) =: G(X)

is a monic polynomial inK[X] withG(β) = 0. By replacing Yi,h by (−1)hgi,h/gi,0
for i = 1, . . . ,m, h = 1, . . . , ni in Qsym we obtain a polynomial G̃ in X with
coefficients in Q(X1, . . . , Xr). By substituting zi for Xi in G̃ for i = 1, . . . , r

we obtain again G. Clearing the denominators of G̃ we get a polynomial

F := (g1,0 · · · gm,0)degQsym

G̃

=

degQsym∑
k=0

(∑
u

ak(u)
m∏
i=1

ni∏
h=0

g
ui,h
i,h

)
Xk ∈ Z[X,X1, . . . , Xr], (8.3.4)
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where the inner sum is taken over tuples u = (u1,0, . . . , um,nm) of non-
negative integers with

∑
i,h ui,h = m degQsym and the ak(u) are up to sign

coefficients of Qsym. According to the definition we have

G ≺ (degF, h(F )).

Since G ∈ K[X] is monic and G(β) = 0, the monic minimal polynomial Fβ
of β over K divides G. So by Proposition 8.2.3,

β ≺ ((2d∗)expO(r), (2d∗)expO(r)h∗),

where d∗ := degG ·max(d, degF ), h∗ := max(h, h(F )). (8.3.5)

We estimate the right-hand side of (8.3.5) from above. Let n := n1 + · · ·+
nm + 1 and D := degP , H := H(P ). We have

degQ = D · n1 · · ·nm,

L(Q) ≤ L(P )n1···nm ≤
((D+n

D
)
H
)n1···nm

,

where in the second estimate we used (4.1.7) and (4.1.8). From Lemma 8.3.1
we infer

degQsym ≤ D · n1 · · ·nm, (8.3.6)

H(Qsym) ≤ 3Dn1···nm+n
((D+n

D
)
H
)n1···nm

. (8.3.7)

Using (8.3.6) we get

degG ≤ D · n1 · · ·nm

and, using (8.3.3), (8.3.4), (8.3.6),

degF ≤ m degQsym(d6 + 1) ≤ (m+ 1)Dn1 · · ·nm · d6,

leading to

d∗ ≤ (m+ 1)(Dn1 · · ·nm)2d6. (8.3.8)
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For the height of F we get, using (4.1.7), (4.1.8), (8.3.7), (8.3.3), (8.3.4),

H(F ) ≤ L(F ) ≤ L(Qsym)
(

max
i,h

L(gi,h)
)mDn1···nm

≤ 3Dn1···nm+n
(Dn1···nm+n

n

)(D+n
D
)n1···nm

Hn1···nm
((d6+r

r

)
exph6

)mDn1···nm .

Using n ≤ 2m · n1 · · ·nm, this leads to

h(F ) ≤ 5mD · n1 · · ·nm(log(D + n) + r + d6 + h(P ) + h6),

which is clearly an upper bound for h∗. By substituting this bound and the
upper bound for d∗ from (8.3.8) into (8.3.5) we arrive at

Fβ ≺
(
RexpO(r)

1 , RexpO(r)
1 (h(P ) + h6)

)
.

This proves Proposition 8.3.2.

Corollary 8.3.3. Let Q ∈ Z[X1, . . . , Xm] be a non-constant polynomial, and
let α1, . . . , αm ∈ K be such that

degK αi = ni, αi ≺ (d6, h6) for i = 1, . . . ,m,

where d6 ≥ d, h6 ≥ h. Then degK Q(α1, . . . , αm) ≤ n1 · · ·nm and

Q(α1, . . . , αm) ≺
(
RexpO(r)

2 , RexpO(r)
2 (h(Q) + h6)

)
,

whereR2 := 2m · n1 · · ·nm · degQ · d6.

Proof. Apply Proposition 8.3.2 with P = X −Q(X1, . . . , Xm).

Corollary 8.3.4. Let α0, α1, . . . , αm ∈ K be such that

α0 ∈ L := K(α1, . . . , αm),

degK αi = ni, αi ≺ (d6, h6) for i = 0, . . . ,m,

where d6 ≥ d, h6 ≥ h. Put E := [L : K] and

R3 := 2m · n1 · · ·nm · d6, R4 := 2m · nn0
0 · · ·nnmm · d6.

(i) There is θ ∈ L such that L = K(θ), θ has monic minimal polynomial
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Fθ ∈ A[X] over K, and

θ
int
≺ (RexpO(r)

3 , RexpO(r)
3 h6).

(ii) We have α0 =
∑E−1

j=0 pjθ
j , where

pj ∈ K, pj ≺ (RexpO(r)
4 , RexpO(r)

4 h6) for j = 0, . . . , E − 1.

Proof. We start with some preliminaries, before proving (i) and (ii).

Let σ1, . . . , σE : L ↪→ K denote the K-isomorphic embeddings of L.
Denote by α(1)

k , . . . , α
(nk)
k the conjugates of αk over K, for k = 0, . . . ,m.

There are rational integers a1, . . . , am with |ai| ≤ E2 for i = 1, . . . ,m,
such that the quantities

∑m
j=1 ajσi(αj) (i = 1, . . . , E) are pairwise distinct.

Let γ :=
∑m

j=1 ajαj . Then σi(γ) (i = 1, . . . , E) are pairwise distinct, and
thus, L = K(γ). By applying Corollary 8.3.3 with Q := a1X1 + · · ·+amXm,
we get

γ ≺ (RexpO(r)
3 , RexpO(r)

3 h6).

That is, there are gi ∈ Z[X1, . . . , Xr] (i = 0, . . . , E) such that for the monic
minimal polynomial Fγ of γ over K we have

Fγ =XE + (b1/b0)XE−1 + · · ·+ (bE/b0), with
bi := gi(z1, . . . , zr),

deg gi ≤ RexpO(r)
3 , h(gi) ≤ RexpO(r)

3 h6 for i = 0, . . . , E . (8.3.9)

(i) Let θ := b0γ. Then L = K(θ), θ has monic minimal polynomial

Fθ = bE0Fθ(X/b0) = XE + b1X
E−1 + b0b2X

E−2 + · · ·+ bE−1
0 bE ∈ A[X]

over K, and by Lemma 4.1.7, applied with the polynomials gi,

θ
int
≺ (RexpO(r)

3 , RexpO(r)
3 h6).

This proves (i).
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(ii) There are qj ∈ K (j = 0, . . . , E − 1) such that

α0 =
E−1∑
j=0

qjγ
j.

Hence

σi(α0) =
E−1∑
j=0

qj · σi(γ)j for k = 1, . . . ,m, i = 1, . . . , E .

By Cramer’s rule, we have

qj = ∆j/∆ for j = 0, . . . , E − 1,

where ∆ := det(σi(γ)j)i=1,...,E, j=0,...,E−1, and ∆j is the determinant obtained
by replacing σi(γ)j by σi(α0), for i = 1, . . . , E . We clearly have

α0 =
E−1∑
j=0

pjβ
j with pj = ∆j/(∆g

j
0) for j = 0, . . . , E − 1. (8.3.10)

Using σi(γ) =
∑m

`=1 a`σi(α`), we see that both ∆j and ∆ are polynomials
with integer coefficients in α(1)

0 , . . . , α
(n0)
0 , . . . , α

(1)
m , . . . , α

(nm)
m . These polyno-

mials have degrees at most E2. Further, a similar computation as carried out
in the proof of Proposition 8.3.2, using (4.1.7), (4.1.8), shows that these poly-
nomials have logarithmic heights at most O(E2 log(2mE2)) with the implied
constant being absolute. Using Corollary 8.3.3 and E ≤ n1 · · ·nm, this shows
that

∆0, . . . ,∆E−1, ∆ ≺ (RexpO(r)
4 , RexpO(r)

4 h6),

while (8.3.9) gives b0

int
≺ (RexpO(r)

3 ,RexpO(r)
3 h6). Now applying (8.3.2) and

Corollary 8.3.3 to (8.3.10), using the estimates for ∆j , ∆, g0 just established,
we arrive at

pj ≺ (RexpO(r)
4 , RexpO(r)

4 h6) for j = 0, . . . , E − 1.

This proves (ii).

Corollary 8.3.5. Let k, l be positive integers, A = (αi,j)i=1,...,k j=1,...,l a k×
l-matrix and b = (β1, . . . , βk)

T a k-dimensional column vector, both with
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entries in K, satisfying

degK αi,j ≤ ni,j, αi,j ≺ (d7, h7), degK βi ≤ ni, βi ≺ (d7, h7)

for i = 1, . . . , k, j = 1, . . . , l,

where d7 ≥ d, h7 ≥ h. Suppose that

Ax = b (8.3.11)

has a solution x = (x1, . . . , xl)
T ∈ Al. Then (8.3.11) has such a solution with

xj
int
≺ (RexpO(r log∗ r)

5 h7,RexpO(r log∗ r)
5 hr+1

7 ) for j = 1, . . . , l, (8.3.12)

whereR5 :=
(∏k

i=1

∏l
j=1 n

ni,j
i,j

)
·
(∏k

i=1 n
ni
i

)
2kld7.

Proof. Let L be the extension of K generated by the αi,j and the βi, for i =
1, . . . , k, j = 1, . . . , l, and put E := [L : K]. By Corollary 8.3.4 there exists
θ ∈ L such that L = K(θ), θ has monic minimal polynomial Fθ ∈ A[X],
and moreover, there exist ai,j,h, bi,h ∈ K, for i = 1, . . . , k, j = 1, . . . , l,
h = 0, . . . , E − 1 such that

αi,j =
E−1∑
h=0

ai,j,hθ
h, βi =

E−1∑
h=0

bi,hθ
h,

for i = 1, . . . , k, j = 1, . . . , l,

and

ai,j,h, bi,h ≺ (RexpO(r)
5 , RexpO(r)

5 h7)

for i = 1, . . . , k, j = 1 . . . l, h = 0, . . . , E − 1.

This means that

ai,j,h =
g′i,j,h(z1, . . . , zr)

g′′i,j,h(z1, . . . , zr)
, bi,h =

g′i,j(z1, . . . , zr)

g′′i,j(z1, . . . , zr)
,

where g′i,j,h, g
′′
i,j,h, g

′
i,j, g

′′
i,j are polynomials from Z[X1, . . . , Xr] of total degree

at mostRexpO(r)
5 and logarithmic height at mostRexpO(r)

5 h7, for i = 1, . . . , k,
j = 1, . . . , l, h = 0, . . . , E − 1. Take the product of the denominators of the
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ai,j,h, bi,j ,

c0 :=
( k∏
i=1

l∏
j=1

E−1∏
h=0

g′′i,j,h(z1, . . . , zr)
)
·
( k∏
i=1

l∏
j=1

g′′i,j(z1, . . . , zr)
)

and put
a′i,j,h := c0ai,j,h, b

′
i,h := c0bi,h for all i, j, h.

Then the a′i,j,h, b′i,h all belong to A and by Lemma 4.1.7 we have

a′i,j,h, b
′
i,h

int
≺ (RexpO(r)

5 , RexpO(r)
5 h7)

for i = 1, . . . , k, j = 1, . . . , l, h = 0, . . . , E − 1. (8.3.13)

Writing
Ah = (a′i,j,h)i=1,...,k, j=1,...,l, bh = (b′1,h, . . . , b

′
k,h)

T ,

we get

c0A =
E−1∑
h=0

θhAh, c0b =
E−1∑
h=0

θhbh.

Therefore, the solution set in x ∈ Al of (8.3.11) is equal to that of

E−1∑
h=0

θhAhx =
E−1∑
h=0

θhbh,

whence to that of

Ahx = bh for h = 0, . . . , E − 1, (8.3.14)

since 1, θ, . . . , θE−1 are linearly independent over K. Let Ãh, b̃h consist of
representatives in Z[X1, . . . , Xr] of the entries of Ah, bh, which by (8.3.13)
we may choose of total degrees at most RexpO(r)

5 and logarithmic heights at
mostRexpO(r)

5 h7. Then system (8.3.14) is equivalent to

Ãhx̃ ≡ b̃h (mod I) for h = 0, . . . , E − 1,

to be solved in x̃ ∈ Z[X1, . . . , Xr]
l, where the components of x̃ are represen-
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tatives for the components of x, and we can rewrite the latter system as

Ãhx̃ = b̃h +
M∑
i=1

fiỹi,h (h = 0, . . . , E − 1)

with solutions

(x̃, ỹ1,0, . . . , ỹM,E−1) ∈ Z[X1, . . . , Xr]
l(ME+1),

where {f1, . . . , fM} is the set of generators for I that we have chosen in the
very beginning. Note that this system contains altogether

kE ≤ k
( k∏
i=1

l∏
j=1

ni,j

)
·
( k∏
i=1

ni

)
linear equations, and that each coefficient of this system is a polynomial in
Z[X1, . . . , Xr] of total degree at mostRexpO(r)

5 and logarithmic height at most
RexpO(r)

5 h7. So by Theorem 6.1.5, if this system has a solution with coordi-
nates in Z[X1, . . . , Xr], then it has such a solution, of which each coordinate
has total degree and logarithmic height at most

RexpO(r log∗ r)
5 h7, RexpO(r log∗ r)

5 hr+1
7 ,

respectively. This implies that system (8.3.14), hence the original system (8.3.11)
we started with, has a solution x = (x1, . . . , xl)

T ∈ Al with (8.3.12). This
completes the proof of Corollary 8.3.5.
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Chapter 9

Proofs of the results from Sections
2.2–2.5; use of specializations

In this chapter we prove the general effective theorems from Chapter 2 on unit
equations, Thue equations, hyper- and superelliptic equations and the Catalan
equation over finitely generated domains of the form A = Z[z1, . . . , zr].

We consider our equations over a more convenient finitely generated over-
ringB ofA, constructed in Chapter 7. Then, to prove our theorems, we reduce
our equations first to the function field case and then to the number field case
by means of the effective specializations described in Chapter 7.

Sections 9.1, 9.2 and 9.3 are devoted to unit equations, Thue equations and
hyper- and superelliptic equations, while Section 9.4 deals with the Catalan
equation. Using some results from Chapter 7, in Section 9.1 we first reduce
the estimates of the sizes of appropriate representatives of the solutions x, y
in B resp. in B∗ to bounding the degrees degx, degy and heights h(x), h(y),
introduced in Chapter 7. Then, by means of the effective results from Chapter
5 concerning the corresponding equations over function fields we derive in
Section 9.2 bounds for deg x, deg y. Finally, combining the effective special-
izations presented in Chapter 7 with the corresponding effective results from
Chapter 4 over number fields we give in Section 9.3 effective upper bounds
for h(x), h(y) which completes the proof of our general effective results over
finitely generated domains.

As was pointed out in Section 2.5, in case of the Catalan equation it is
enough to derive an effective upper bound for the unknown exponents. In
Section 9.4 we combine the corresponding effective results from Chapters 4
and 5 over number fields resp. function fields with a simplified version, used
by Brindza (1993) and Koymans (2017), of our general method to bound the
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exponents under consideration.

9.1 A reduction

For convenience, we repeat some notation and definitions. As before, let A =
Z[z1, . . . , zr] with r > 0 be an integral domain of characteristic 0 which is
finitely generated over Z, and let K denote its quotient field. Then we have

A ∼= Z[X1, . . . , Xr]/I, (9.1.1)

where I is the ideal of polynomials f ∈ Z[X1, . . . , Xr] such that f(z1, . . . , zr) =
0. The ideal I is finitely generated. Assume as before that

I = (f1, . . . , fM) with deg fi ≤ d, h(fi) ≤ h for i = 1, . . . ,M,

where d ≥ 1, h ≥ 1. (9.1.2)

Suppose that K has transcendence degree q ≥ 0 over Q. If q > 0, we assume
without loss of generality that z1 = X1, . . . , zq = Xq is a transcendence basis
for K/Q. We define as before,

A0 := Z[X1, . . . , Xq], K0 := Q(X1, . . . , Xq) if q > 0,

A0 := Z, K0 := Q if q = 0.

For q ≥ 0, A0 is a unique factorization domain. For f ∈ A0\{0} we denote
by deg f and h(f) the (total) degree and logarithmic height of f , where in the
case q = 0 we put deg f := 0 and h(f) := log |f | if f ∈ Z\{0}.

By Proposition 7.2.5 there is a w ∈ A, integral over A0 such that K =
K0(w) and w has minimal polynomial F(X) = XD + F1X

D−1 + · · · + FD
over K0 such that

Fj ∈ A0, degFj ≤ (2d)expO(r), h(Fj) ≤ (2d)expO(r)h (9.1.3)

for j = 1, . . . , D and, by Lemma 7.2.3,

D ≤ dt where t = r − q. (9.1.4)

In what follows, we fix such an element w. With every α ∈ K we associate an
up to sign unique tuple Pα,0, . . . , Pα,D−1, Qα from A0 such that (7.2.7) holds,
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i.e.

α = Q−1
α

D−1∑
j=0

Pα,jw
j with Qα 6= 0, gcd(Pα,0, . . . , Pα,D−1, Qα) = 1.

Then, as in Section 7.2 we define

degα := max(degPα,0, . . . , degPα,D−1, degQα),

h (α) := max(h(Pα,0), . . . , h(Pα,D−1), h(Qα)).

We shall deal separately with unit equations, Thue equations and hyper-
and superelliptic equations.

9.1.1 Unit equations
We shall deduce our general Theorem 2.2.1 on unit equations from the fol-
lowing.

Proposition 9.1.1. Let g ∈ A0\{0} and put

d4 := max(d, deg g, degF1, . . . , degFD),

h4 := max(h, h(g), h(F1), . . . , h(FD))
(9.1.5)

Define the domain B := A0[w, g−1]. Then for every pair (ε, η) with

ε+ η = 1, ε, η ∈ B∗ (9.1.6)

we have

deg ε, deg η ≤ 4qD2d4, (9.1.7)

h(ε), h(η) ≤ expO
(
2D(q + d4)(log∗(2D(q + d4)))2 · h4

)
. (9.1.8)

The proof of Proposition 9.1.1 is given in the Subsections 9.2.1, 9.3.1.
In Subsection 9.2.1 we deduce the degree bound (9.1.7). Here, our main tool
is Mason’s effective result on S-unit equations in function fields; see Mason
(1983) or Theorem 5.2.1 in Section 5.2. In subsection 9.3.1 we prove (9.1.8)
by combining (9.1.7) with our general specialization method from Evertse and
Győry (2013), as presented in Chapter 7, and with an effective result of Győry
and Yu (2006) on S-unit equations over number fields; see also Theorem 4.3.1
in Chapter 4.
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We now deduce Theorem 2.2.1 from Proposition 9.1.1.

Proof of Theorem 2.2.1. Let a, b, c be the coefficients in the unit equation
(2.2.1), and ã, b̃, c̃ the representatives for a, b, c from the statement of The-
orem 2.2.1. Then by assumption

max(deg f1, . . . , deg fM , deg ã, deg b̃, deg c̃) ≤ d

and
max(h(f1), . . . , h(fM), h(ã), h(b̃), h(c̃)) ≤ h,

where d ≥ 1, h ≥ 1. Further, as was mentioned above, by Proposition 7.2.5
and Lemma 7.2.3 we have K = K0(w) with w ∈ A, integral over A0, and w
has minimal polynomial F(X) = XD + F1X

D−1 + · · · + FD over K0 such
that (9.1.3) and (9.1.4) hold.

In view of Proposition 7.2.7 there is a non-zero g ∈ A0 such that

A ⊆ B := A0[w, g−1], a, b, c ∈ B∗

and

deg g ≤ (2d)expO(r), h(g) ≤ (2d)expO(r)h. (9.1.9)

Let (x, y) be a solution of equation (2.2.1) and put x1 := ax/c, y1 := by/c.
Then x1 +y1 = 1 and x1, y1 ∈ B∗. By (7.4.5) we have d4 ≤ (2d)expO(r), h4 ≤
(2d)expO(r)h. We apply now Proposition 9.1.1 with ε = x1, η = y1. It follows
from Proposition 9.1.1 that

deg x1 ≤ 4qd2t(2d)expO(r) ≤ (2d)expO(r), (9.1.10)

h(x1) ≤ exp((2d)expO(r)h). (9.1.11)

We use Lemma 7.3.1 with λ = a/c, which is represented by (ã, c̃). Choosing
a = ã, b = c̃ and α = x in Lemma 7.3.1, we have λα = x1, and in view of
(9.1.10) and (9.1.11) we have

d2 ≤ (2d)expO(r), h2 ≤ exp((2d)expO(r)h).
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We infer that x, x−1 have representatives x̃, x̃′ in Z[X1, . . . , Xr] such that

deg x̃, deg x̃′, h(x̃), h(x̃′) ≤ exp((2d)expO(r)h).

In the same way one can derive similar upper bounds for the degrees and
logarithmic heights of representatives for y and y−1. This completes the proof
of Theorem 2.2.1.

In our proof of Theorem 2.2.3, given below, we need the following lemma.

Lemma 9.1.2. Let A ∼= Z[X1, . . . , Xr]/(f1, . . . , fM) be an integral domain.
Let β ∈ A\{0}, and let β̃ ∈ Z[X1, . . . , Xr] be a representative for β. Then

A[β−1] ∼= Z[X1, . . . , Xr, Y ]/(f1, . . . , fM , 1− β̃Y ).

Proof. For f ∈ A[Y ], define f ∗ := Y deg ff(Y −1). Then for f ∈ A[Y ] we
have

f(β−1) = 0⇔ f ∗(β) = 0⇔ f ∗ = (Y − β)h∗ for someh∗ ∈ A[Y ]

⇔ f = (1− βY )h for someh ∈ A[Y ].

Now via the ring homomorphism A[Y ] 7→ A[β−1] : f 7→ f(β−1) we obtain
A[Y ]/(1− βY ) ∼= A[β−1]. This implies

Z[X1, . . . , Xr, Y ]/(f1, . . . , fM , 1− β̃Y ) ∼= A[Y ]/(1− βY ) ∼= A[β−1].

Proof of Theorem 2.2.3. We keep the notation and assumptions from the state-
ment of Theorem 2.2.3. For i = 1, . . . , s, let

αi := gi,1(z1, . . . , zr), βi := gi,2(z1, . . . , zr),

with αi, βi ∈ A so that γi = αi/βi and define the ring

Ã := A[α−1
1 , β−1

1 , . . . , α−1
s , β−1

s ].

Then by repeatedly applying Lemma 9.1.2 we obtain

Ã ∼= Z[X1, . . . , Xr, Xr+1, . . . , Xr+2s]/Ĩ,

203



with

Ĩ =(f1, . . . , fM , g1,1Xr+1 − 1, g1,2Xr+2 − 1, g2,1Xr+3 − 1, g2,2Xr+4 − 1,

. . . , gs,1Xr+2s−1 − 1, gs,2Xr+2s − 1).

Let (u1, . . . , vs) be a solution of (2.2.2) and put

ε :=
s∏
i=1

γuii , η :=
s∏
i=1

γvii .

Then
aε+ bη = c, ε, η ∈ Ã∗.

By Theorem 2.2.1, ε has a representative ε̃ ∈ Z[X1, . . . , Xr+2s] of degree and
logarithmic height both bounded above by

exp((2d)expO(r+s)h).

Now Corollary 7.5.3 implies

|ui| ≤ exp((2d)expO(r+s)h) for i = 1, . . . , s.

For |vi| (i = 1, . . . , s) we derive a similar upper bound. This completes the
proof of Theorem 2.2.3.

9.1.2 Thue equations

As in Section 2.3, let

F (X, Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ A[X, Y ]

be a binary form of degree n ≥ 3 with discriminant DF 6= 0 and let δ ∈
A\{0}. Recall that for a0, . . . , an, δ we have chosen representatives ã0, . . . , ãn, δ̃
such that δ̃ and the discriminant DF̃ of F̃ :=

∑n
j=0 ãjX

n−j are not contained
in I, and that f1, . . . , fM , ã0, . . . , ãn, δ̃ have degrees at most d and logarithmic
heights at most h where d ≥ 1, h ≥ 1.

Theorem 2.3.1 will be deduced from the following.

Proposition 9.1.3. Let g ∈ A0\{0} with the properties specified in Proposi-
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tion 7.2.9, and consider the integral domain

A ⊆ B := A0[w, g−1], where δ,DF ∈ B∗. (9.1.12)

Then for the solutions x, y of the equation

F (x, y) = δ in x, y ∈ B (9.1.13)

we have

deg x, deg y ≤ (nd)expO(r) (9.1.14)

h(x), h(y) ≤ exp(n!(nd)expO(r)h). (9.1.15)

Proposition 9.1.3 will be proved in Subsections 9.2.2, 9.3.2.

We now deduce Theorem 2.3.1 from Proposition 9.1.3.

Proof of Theorem 2.3.1. Let x, y be a solution of equation (2.3.1) in A. In
view of (9.1.12) x, y are also contained in B := A0[w, g−1], where w, g have
the properties specified in Proposition 7.2.5 resp. in Proposition 7.2.9. Then,
by Proposition 9.1.3 the inequalities (9.1.14) and (9.1.15) hold. Applying
now Corollary 7.3.2 to x and y, we infer that x, y have representatives x̃, ỹ
in Z[X1, . . . , Xr] which satisfy (2.3.2).

9.1.3 Hyper- and superelliptic equations

Recall that as in Section 2.4, F (X) = a0X
n + a1X

n−1 + · · · + an ∈ A[X]
is a polynomial with a0 6= 0 and with discriminant DF 6= 0, that δ ∈ A\{0}
and that for a0, . . . , an, δ we have chosen representatives ã0, . . . , ãn, δ̃ from
Z[X1, . . . , Xr] with degrees at most d and logarithmic heights at most h such
that δ̃ and the discriminant of F̃ :=

∑n
j=0 ãjX

n−j are not in I.
We shall deduce Theorem 2.4.1 from the following

Proposition 9.1.4. Let g ∈ A0\{0} with the properties specified in Proposi-
tion 7.2.9 such that for the overring B := A0[w, g−1] of A, we have δ,DF ∈
B∗. Further, let m be an integer ≥ 2, and assume that n ≥ 3 if m = 2 and
n ≥ 2 if m ≥ 3. Then for all solutions x, y of the equation

F (x) = δym in x, y ∈ B (9.1.16)
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we have

deg x, deg y ≤ (nd)expO(r), (9.1.17)

m ≤ (nd)expO(r) if y 6∈ Q, (9.1.18)

h(x), h(y) ≤ exp(m3(nd)expO(r)h). (9.1.19)

We prove (9.1.17) and(9.1.18) in Subsection 9.2.3 and (9.1.19) in Subsec-
tion 9.3.3.

We now deduce Theorem 2.4.1 from Proposition 9.1.4.

Proof of Theorem 2.4.1. Let x, y be a solution of equation (2.4.1). In view of
A ⊆ B, the pair x, y is a solution also in B. Then, by Proposition 9.1.4 the
inequalities (9.1.17) and (9.1.19) hold. Applying Corollary 7.3.2 to x and y,
we infer that x, y have representatives x̃, ỹ in Z[X1, . . . , Xr] satisfying (2.4.2).

Together with Proposition 9.1.4, the below proposition implies Theorem
2.4.2.

Proposition 9.1.5. Suppose that equation (9.1.16) has a solution x, y with
y ∈ Q such that y 6= 0 and y is not a root of unity. Then

m ≤ exp
(
(nd)expO(r)h

)
.

Proposition 9.1.5 will be proved at the end of Section 9.3.

Proof of Theorem 2.4.2. Immediate from (9.1.18) and (9.1.19).

9.2 Bounding the degrees
In this section we prove separately the inequalities (9.1.7) from Proposition
9.1.1, (9.1.14) from Proposition 9.1.3 and (9.1.17) from Proposition 9.1.4.
The main tools will be Theorem 5.2.1 on unit equations, Theorem 5.4.1 on
Thue equations and Theorems 5.5.1, 5.5.2 on hyper- and superelliptic equa-
tions over function fields.

We recall some notation and introduce further notation. The case q =
0 being trivial, in this section we assume that q > 0. Let as above K0 =
Q(X1, . . . , Xq), K = K0(w), A0 = Z[X1, . . . , Xq], B = A0[w, g−1]. Choose
an algebraic closure K0 of K0. Then there are D K0-isomorphic embeddings
of K into K0 which we denote by α 7→ α(j), j = 1, . . . , D.
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As in Section 7.3, let ki be an algebraic closure of Q(X1, . . . , Xi−1, Xi+1, . . . , Xq)
for i = 1, . . . , q. Then A0 is contained in ki[Xi]. Consider the function field

Li := ki(Xi, w
(1), . . . , w(D)), i = 1, . . . , q,

where w(1) = w, . . . , w(D) denote the conjugates of w over K0 in K0. Then
Li is the splitting field of the polynomial F(X) = XD +F1X

D−1 + · · ·+FD
over ki(Xi) with Fj ∈ ki[Xi], j = 1, . . . , D. The subring

Bi := ki[Xi, w
(1), . . . , w(D), g−1]

of Li contains B = Z[X1, . . . , Xq, w, g
−1] as a subring. Put ∆i := [Li :

ki(Xi)].
Let gLi/ki denote the genus of Li/ki and HLi the height taken with re-

spect to Li/ki. By Lemma 5.1.1, applied with ki, Xi,ki(Xi), Li instead of
k, z,K, L and with F = F = XD + F1X

D−1 + · · · + FD, and using (9.1.3)
we obtain

gLi/ki ≤ ∆iDmax
j

degXi Fj ≤ ∆iDmax
j

degFj. (9.2.1)

Let Si denote the subset of valuations v of Li/ki such that v(Xi) < 0 or
v(g) > 0. Every valuation of ki(Xi) can be extended to at most ∆i valuations
of Li. Thus Li has at most ∆i valuations v with v(Xi) < 0 and at most
∆i deg g valuations with v(g) > 0. Hence, using also (9.1.9), we infer

|Si| ≤ ∆i + ∆i degXi g ≤ ∆i(1 + deg g) ≤ ∆i(2d)expO(r). (9.2.2)

Since w(1), . . . , w(D) lie in Li and are all integral over ki[Xi], they belong
to OSi , i.e., the ring of Si-integers in Li. Further, g−1 ∈ OSi . Consequently, if
α ∈ B = A0[w, g−1], then α(j) ∈ OSi for j = 1, . . . , D, i = 1, . . . , q.

9.2.1 Unit equations

We now prove the upper bound (9.1.7) in Proposition 9.1.1.

Proof of (9.1.7). Keeping the above notation, let (ε, η) be a solution of equa-
tion (9.1.6) ε+ η = 1 in ε, η ∈ B∗. Then we have

ε(j) + η(j) = 1, ε(j), η(j) ∈ O∗Si for j = 1, . . . , D
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and i = 1, . . . , q. We apply Theorem 5.2.1, insert the upper bounds (9.2.1),
(9.2.2) and use deg g, degFj ≤ d4 from (9.1.5) for j = 1, . . . , D. It follows
that for j = 1, . . . , D we have either ε(j) ∈ ki or

HLi(ε
(j)) ≤ |Si|+ 2gLi/ki − 2 ≤ 3∆iDd4.

Of course, the last upper bound is valid also if ε(j) ∈ ki. Together with Lemma
7.3.3 this implies

deg ε ≤ qDd4 + q · 3Dd4 ≤ 4qD2d4.

For deg η we obtain the same upper bound. This proves (9.1.7).

9.2.2 Thue equations
Keeping the notation introduced at the beginning of Section 9.2, we prove the
upper bound (9.1.14) from Proposition 9.1.3.

Proof of (9.1.14). Let x, y be a solution of equation (9.1.13). Put F ′ := δ−1F ,
and let F ′(j) denote the binary form obtained by taking the j-th conjugates of
the coefficients of F ′. Let i ∈ {1, . . . , q}, j ∈ {1, . . . , D}. Then F ′(j) ∈
Li[X, Y ] and we get

F ′(j)(x(j), y(j)) = 1 withx(j), y(j) ∈ OSi .

By Theorem 5.4.1 we obtain

max(HLi(x
(j)), HLi(y

(j))) ≤ (8n+ 62)HLi(F
′(j)) + 8gLi/ki + 4|Si|.

(9.2.3)

We estimate from above the parameters occurring in this bound. We start with
HLi(F

′(j)). Recall that F ′(X, Y ) = δ−1(a0X
n + a1X

n−1Y + · · · + anY
n).

Using the properties of heights from Section 5.1, and inequality (7.3.9), we
infer that

HLi(F
′(j)) = HLi(a

(j)
0 , . . . , a(j)

n ) ≤ HLi(a
(j)
0 ) + · · ·+HLi(a

(j)
n )

≤ ∆i(2d
r(deg a0 + · · ·+ deg an) + n(2d)expO(r)).

By Lemma 7.2.6

deg ai ≤ (2d)expO(r) for i = 1, . . . , n.
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Thus

HLi(F
′(j)) ≤ ∆i((n+ 1)(2d)expO(r) + n(2d)expO(r))

≤ ∆i(nd)expO(r). (9.2.4)

Next we estimate the genus gLi/ki . Using (9.2.1), Proposition 7.2.5 and
Lemma 7.2.3, we deduce that

gLi/ki ≤ ∆iDmax
j

degFj ≤ ∆i(2d)expO(r). (9.2.5)

Lastly, we estimate |Si|. Combining Proposition 7.2.9 with (9.2.2) we obtain

|Si| ≤ ∆i(nd)expO(r). (9.2.6)

Inserting the bound (9.2.4), (9.2.5), (9.2.6) into (9.2.3), we infer

max(HLi(x
(j)), HLi(y

(j))) ≤ ∆i(nd)expO(r). (9.2.7)

In view of Lemma 7.3.3, the inequalities (9.2.7), D ≤ dr, q ≤ r, and Propo-
sitions 7.2.5 and 7.2.9 we obtain

deg x ≤ qD(nd)expO(r) +

q∑
i=1

∆−1
i

D∑
j=1

HLi(x
(j)) ≤ (nd)expO(r)

and similarly for deg y. This proves (9.1.14).

9.2.3 Hyper- and superelliptic equations

Using the notation of Subsection 9.1.3 we prove the bounds in (9.1.17) and
(9.1.18) from Proposition 9.1.4.

Proof of (9.1.17). We follow the proof of (9.1.14) in Proposition 9.1.3, and
use the same notation. In particular, ki, Li, Si, gLi/ki ,∆i have the same mean-
ing and for α ∈ B and j = 1, . . . , D the jth conjugate α(j) is the one cor-
responding to w(j). Put F ′ := δ−1F , and let F ′(j) denote the polynomial ob-
tained by taking the jth conjugates of the coefficients of F ′.

We keep the argument together for both hyper- and superelliptic equations
by using the worse bounds everywhere. Let x, y ∈ B be a solution of (9.1.16),
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where m,n ≥ 2 and n ≥ 3 if m = 2. Then we get

F ′(j)(x(j)) = (y(j))m, x(j), y(j) ∈ OSi .

Combining Theorems 5.5.1 and 5.5.2 we obtain the generous bound

HLi(x
(j)), mHLi(y

(j)) ≤ 16n2(HLi(F
′(j)) + gLi/ki + |Si|).

For HLi(F
′(j)), gLi/ki , |Si| we have precisely the same estimates as (9.2.4),

(9.2.5) and (9.2.6). Then a similar computation as in the proof of (9.1.14)
leads to

HLi(x
(j)), mHLi(y

(j)) ≤ ∆i(nd)expO(r). (9.2.8)

Now applying Lemma 7.3.3 and ignoring m for the moment we get, similarly
to the proof of (9.1.14)

deg x, deg y ≤ (nd)expO(r)

which was to be proved.

We proceed to deduce the upper bound (9.1.18) for m in the Schinzel-
Tijdeman equation. We need the following lemma, originally proved by Brindza
(1993). We have included another proof.

Lemma 9.2.1. We have
q⋂
i=1

ki = Q.

Proof. Clearly, Q ⊆ ∩qi=1ki. To prove the reverse inclusion, let α ∈ ∩qi=1ki.
Define the fields Fi := Q(X1, . . . , Xi−1, Xi+1, . . . , Xq) (i = 1, . . . , q) and as
before K0 := Q(X1, . . . , Xq). For i = 1, . . . , q, let Pi ∈ Fi(X) be the monic
minimal polynomial of α over Fi, and let P ∈ K0(X) be the monic minimal
polynomial of α over K0. Then for i = 1, . . . , q, P divides Pi in K0(X). But
this is possible only if the coefficients of P lie in Fi for i = 1, . . . , q. So the
coefficients of P lie in ∩qi=1Fi, implying α ∈ Q.

Proof of (9.1.18). Assume that in (9.1.16) y 6∈ Q. Then y 6∈ ki for at least
one index i by Lemma 9.2.1. Since y ∈ B ⊂ ki(Xi, w) and [ki(Xi, w) :
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ki(Xi)] ≤ D, it follows that

HLi(y) = [Li : ki(Xi, w)]Hki(Xi,w)(y) ≥ [Li : ki(Xi, w)]

≥ ∆i/D.

Together with (9.2.8) and D ≤ dr (see Lemma 7.2.3 (i)), this gives

m ≤ (nd)expO(r)

which is (9.1.18).

9.3 Bounding the heights, specializations

Combining our degree bounds established in Section 9.2 with the effective
specialization method from Chapter 7 and the corresponding effective results
from Chapter 4 over number fields, we derive effective bounds for the heights
h of the solutions of unit equations, Thue-equations and hyper- and superel-
liptic equations. As was seen in Section 9.1, this will complete our effective
proofs for the general version of our equations considered over finitely gener-
ated domains.

Before proving the height bounds, we recall again some notation and
collect some preparatory results from Chapters 7 and 4. Let as above A =
Z[z1, . . . , zr] be an integral domain of characteristic 0 finitely generated over
Z, K its quotient field, q the transcendence degree of K, z1 = X1, . . . , zq =
Xq algebraically independent over Q, and A0 = Z[X1, . . . , Xq] if q > 0,
A0 = Z otherwise. Let w ∈ A with minimal polynomial F(X) = XD +
F1X

D−1 + · · · + FD ∈ A0[X] be as in Proposition 7.2.5, ∆F the discrimi-
nant of F , g ∈ A0\{0}, A ⊆ B := A0[w, g−1] as in Proposition 7.2.7, and
T = ∆FFDg as in (7.4.7). Moreover, in case of the Thue equation (9.1.13)
F (x, y) = δ and the superelliptic equation (9.1.16) F (x) = δym, we apply
Proposition 7.2.9 with δ and the discriminant DF of F belonging to B∗.

For u ∈ Zq with T (u) 6= 0, the polynomialFu(X) = XD+F1(u)XD−1+
· · · + FD(u) has distinct zeros w1(u), . . . , wD(u) in Q which are all non-
zero. Consequently, for j = 1, . . . , D the substitution X1 7→ u1, . . . , Xq 7→
uq, w 7→ wj(u) defines a ring homomorphism ϕu,j from B to Q. The image
of α ∈ B under ϕu,j is denoted by αj(u). Then ϕu,j(B) is contained in the
algebraic number field Ku,j := Q(wj(u)).

For a fixed j ∈ {1, . . . , D} and a suitably chosen finite extension L of
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Ku,j , we let S denote the set of places of L which consists of all infinite
places and all finite places lying above the rational prime divisors of g(u).
Note that wj(u) is an algebraic integer and g(u) ∈ O∗S . Thus ϕu,j(B) ⊆ OS
and ϕu,j(B

∗) ⊆ O∗S . Further, since δ,DF ∈ B∗, we have δj(u) 6= 0 and
DF,j(u) 6= 0.

As in Chapter 4, dL,OL,ML, DL, hL, rL and RL denote the degree, ring
of integers, set of places, discriminant, class number, unit rank and regulator
of L. The absolute norm of an ideal a of OL is denoted by N(a).

If S consists only of the infinite places of L, we put PS := 2, QS :=
2. If S contains also finite places, we let p1, . . . , pw denote the prime ideals
corresponding to the finite places of S and put

PS := max(N(p1), . . . N(pw)), QS := N(p1, . . . , pw). (9.3.1)

The S-regulator is denoted by RS . In case that S consists only of the
infinite places of L it is just RL, while otherwise

RS = hSRL

w∏
i=1

logN(pi),

where hS is a positive divisor of hL, see (4.1.10). Further,

RS ≤ |DL|1/2(log∗ |DL|)dL−1(log∗QS)w, (9.3.2)

see (4.1.13).
Finally, in Subsections 9.3.2 and 9.3.3 we shall need the discriminant es-

timates from Lemmas 4.1.10 and 4.1.11.
In the proofs in Subsections 9.3.1, 9.3.2 and 9.3.3 most of the above nota-

tion and results will be used without any further mention.

9.3.1 Unit equations
We prove the height bound (9.1.8).

Proof of (9.1.8). Let ε, η be a solution of equation (9.1.6). We first consider
the case q > 0. Pick u ∈ Zq with T (u) 6= 0, let j ∈ {1, . . . , D} and L :=
Ku,j . Putting S as above, we have ϕu,j(B) ⊆ OS and ϕu,j(B

∗) ⊆ O∗S . Hence
it follows from (9.1.6) that

εj(u) + ηj(u) = 1, εj(u), ηj(u) ∈ O∗S, (9.3.3)
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where εj(u), η(u) are the images of ε, η under ϕu,j . Applying Theorem 4.3.1
with α = β = 1, H = 1 to equation (9.3.3), we get

max(h(εj(u)), h(ηj(u))) ≤ c1PSRS(1 + log∗RS/ logPS) (9.3.4)

with
c1 = s2s+3.527s+27(log(2s))d

2(s+1)
L (log∗(2dL))3,

where s is the cardinality of S.

We estimate from above the upper bound (9.3.4). By (9.1.5), g ∈ A0\{0}
has degree at most d4 and height at most h4. Hence

|g(u)| ≤ dq4e
h4 max(1, |u|)d4 =: R(u). (9.3.5)

Since dL := [L : Q] ≤ D, the cardinality s of S is at most D(1 +w) where w
denotes the number of prime divisors of g(u). In view of the inequality from
prime number theory w ≤ O(log∗ |g(u)|/ log∗ log∗ |g(u)|), we obtain

s ≤ O

(
D log∗R(u)

log∗ log∗R(u)

)
. (9.3.6)

From this it is easy to deduce that

c1 ≤ expO(D log∗D log∗R(u)). (9.3.7)

We now estimate PS and RS . By (9.3.5) we have

PS ≤ QS ≤ |g(u)|D ≤ expO(D log∗R(u)). (9.3.8)

To estimate RS , we use (9.3.2). Using Lemma 7.4.5 and d3 ≤ d4, we infer
that

|DL| ≤ D2D−1(dq4e
h4 max(1, |u|)d4)2D−2 ≤ expO(D log∗D log∗R(u)),

and this gives

|DL|1/2(log∗ |DL|)D−1 ≤ expO(D log∗D log∗R(u)).
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Together with the estimates (9.3.6), (9.3.8) for s and QS , this yields

RS ≤ expO(D log∗D log∗R(u) + s log∗ log∗Q)

≤ expO(D log∗D log∗R(u)). (9.3.9)

Collecting now (9.3.7)–(9.3.9), we infer that the right hand side of (9.3.4) is
bounded above by expO(D log∗D log∗R(u)). So we obtain from (9.3.4) that

h(εj(u)), h(ηj(u)) ≤ expO(D log∗D log∗R(u)). (9.3.10)

We apply Lemma 7.4.7 with N := 4D2(q + d4 + 1)2. From the already
established (9.1.7) it follows that deg ε, deg η ≤ N . Further, in view of d4 ≥
d3 we haveN ≥ 2Dd3+2(d4+1)(q+1). Hence indeed, we can apply Lemma
7.4.7 with this value of N . It follows that the set

S := {u ∈ Zq : |u| ≤ N, T (u) 6= 0}

is not empty. For u ∈ S , j = 1, . . . , D, we deduce from (9.3.5) and (9.3.10)
that

h(εj(u)) ≤ expO(D log∗D(q log d4 + h4 + d4 log∗N))

≤ expO(N1/2(log∗N)2 + (D log∗D)h4),

and so by Lemma 7.4.7

h(ε) ≤ expO(N1/2(log∗N)2h4).

For h(η) we obtain the same upper bound. This gives (9.1.8) for q > 0.
Next assume that q = 0. In this case A0 = Z, K = Q(w) is a number

field containing B = Z[w, g−1], where w is an algebraic integer with minimal
polynomial F(X) = XD + F1X

D−1 + · · · + FD ∈ Z[X] over Q, and g is
a non-zero rational integer. By assumption, log |g| ≤ h4, log∗ |Fj| ≤ h4 for
j = 1, . . . , D. Denote by w(1), . . . , w(D) the conjugates of w over Q and let
L := Q(w(j)) for some j. By a similar argument as in the proof of Lemma
7.4.5, we obtain |DL| ≤ D2D−1e(2D−2)h4 . The isomorphism defined by w 7→
w(j) maps Q(w) to L and B to OS , where S consists of the infinite places of
L and of the prime ideals of OL that divide g. The estimates (9.3.5)–(9.3.9)
remain valid if we replace R(u) by eh4 . Hence for any solution ε, η of (9.1.6)

h(ε(j)), h(η(j)) ≤ expO((D log∗D)h4),
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where ε(j), η(j) are the jth conjugates of ε, η, respectively. Now an application
of Lemma 7.4.2 with G = F ,m = D, βi = ε gives

h(ε) ≤ expO((D log∗D)h4).

We obtain the same upper bound for h(η), whence (9.1.8) follows. The proof
of Proposition 9.1.1 has been completed.

9.3.2 Thue equations

Concluding the proof of Theorem 2.3.1, it remains to prove (9.1.15) from
Proposition 9.1.3.

Proof of (9.1.15). Let x, y be a solution of equation (9.1.13) in B. Consider
first the case q > 0. We keep the notation of Chapter 7 and that of the intro-
duction of Section 9.3. Recall that T = ∆FFDg and, by (7.4.5) and (7.4.8),

deg T ≤ (nd)expO(r).

Choose u ∈ Zq with T (u) 6= 0, choose j ∈ {1, . . . , D} and denote by
Fu,j, δj(u), xj(u), yj(u) the images of F, δ, x, y under ϕu,j . The coefficients
of Fu,j belong to Ku,j . Let L denote the splitting field of Fu,j over Ku,j , and
S the set of places of L which consists of all infinite places and all finite
places lying above the rational prime divisors of g(u). Note that wj(u) is an
algebraic integer and g(u) ∈ O∗S . Hence ϕu,j(B) ⊆ OS , ϕu,j(B

∗) ⊆ O∗S and
it follows from (9.1.13) that

Fu,j(xj(u), yj(u)) = δj(u), xj(u), yj(u) ∈ OS. (9.3.11)

Since by assumption δ,DF ∈ B∗, we have δj(u) 6= 0 and DF,j(u) 6= 0.
Consequently, Fu,j is without multiple zeros. Then we can apply Theorem
4.4.1 to equation (9.3.11) and we get

max(h(xj(u)), h(yj(u)))

≤ c2PSRS(1 + log∗RS/ log∗ PS) · (c3RL +
hL
dL

logQS + 2ndLH1 +H2)

(9.3.12)
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where H1 = max(1, h(Fu,j)), H2 = max(1, h(δu,j)),

c2 = 250n6s2s+3.5 · 27s+29(log 2s)d2s+4
L (log∗(2dL))3

and c3 = 0 if rL = 0, 1/dL if rL = 1 and 29erL!rL
√
rL − 1 log dL if rL ≥ 2.

We already proved in Subsection 9.2.2 that (9.1.14) in Proposition 9.1.3
holds, i.e.

deg x, deg y ≤ (nd)expO(r). (9.3.13)

Thus we can apply Lemma 7.4.7 with α = x resp. y and

N = max((nd)expO(r), 2Dd3 + 2(q + 1)(d4 + 1))

to get an upper bound for h(x), h(y) which still depends on h(xj(u)), h(yj(u)).
Then, to prove (9.1.15), we have to bound from above the parameters occur-
ring in (9.3.12).

In view of (7.4.5), D ≤ dr (see Lemma (7.2.3) (i)) and q ≤ r we obtain

N ≤ (nd)expO(r). (9.3.14)

Applying Lemma 7.4.7, insertingD ≤ dr and the upper bound h4 ≤ (nd)expO(r)h
from (7.4.5), it follows that there are u ∈ Zq, j ∈ {1, . . . , D} with

|u| ≤ (nd)expO(r), T (u) 6= 0 (9.3.15)

and

max(h(x), h(y))

≤ (nd)expO(r) max(h(xj(u)), h(yj(u))). (9.3.16)

We proceed further with these u, j to derive upper bounds for the parameters
corresponding to those which occur in (9.3.12).

Write F (X, Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n and put

degF := max
0≤k≤n

deg ak, h(F ) := max
0≤k≤n

h(ak).

Notice that by Lemma 7.2.6 applied to δ and the coefficients of F with the
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choice d0 = d, h0 = h, we have

degF, degδ ≤ (2d)expO(r) (9.3.17)

h(F ), h(δ) ≤ (2d)expO(r)h. (9.3.18)

It follows from Lemma 7.4.6, q ≤ r,D ≤ dr, (7.4.5) (9.3.17), (9.3.18) and
(9.3.15) that

h(Fu,j) ≤ D2 + q(D log d3 + log degF ) +Dh3 + h(F )+

+ (Dd3 + degF ) log max(1, |u|)
≤ (nd)expO(r)h. (9.3.19)

Similarly, replacing F by δ, we obtain

h(δj(u)) ≤ (nd)expO(r)h. (9.3.20)

We recall that dL and DL denote the degree and discriminant of L over
Q. Since [Ku,j : Q] ≤ D, we have dL ≤ Dn!. Let G(X) := F (X, 1) and
let ϑ1, . . . , ϑn be the zeros of G. We have n′ = n if a0 6= 0 and n′ = n − 1
otherwise. Then L = Ku,j(ϑ1, . . . , ϑn′). Let dKu,j , dLi denote the degree and
DKu,j , DLi the discriminant of the number field Ku,j resp. Li := Ku,j(ϑi),
i = 1, . . . , n′. Then by Lemma 4.1.10 we have

|DL| ≤
n′∏
i=1

|DLi |dL/dLi . (9.3.21)

We now estimate |DL|. First notice that by Lemma 7.4.5, using the esti-
mates q ≤ r, D ≤ dr, (7.4.4), (7.4.5), (9.3.15), we obtain

|DKu,j
| ≤ D2D−1(dq3e

h3 max(1, |u|)d3)2D−2

≤ exp((nd)expO(r)h). (9.3.22)

Further, by Lemma 4.1.11 and the estimates D ≤ dr, (9.3.19), (9.3.22) we get

|DLi | ≤ n(2n−1)De(2n2−2)h(Fu,j)|DKu,j
|[Li :Ku,j ]

≤ exp{[Li : Ku,j](nd)expO(r)h}.
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Inserting this into (9.3.21) and using dLi = [Li : Ku,j] · dKu,j we have

|DL| ≤ exp{(nd)expO(r)hndL/dKu,j
}

≤ exp{n!(nd)expO(r)h}. (9.3.23)

We follow now similar arguments as in the above proof of (9.1.8) concern-
ing unit equations. The polynomial g has degree at most d4 and logarithmic
height at most h4 which satisfy (7.4.5). Further, g(u) 6= 0 and by q ≤ r and
(9.3.15)

|g(u)| ≤ dq4e
h4 max(1, |u|)d4 ≤ exp{(nd)expO(r)h}. (9.3.24)

The cardinality s of S is at most dL(1 + w), where w denotes the number of
distinct prime divisors of g(u). By prime number theory

s = O(dL log∗ |g(u)|/ log∗ log∗ |g(u)|). (9.3.25)

Together with (9.3.24), D ≤ dr and dL ≤ n!dr, this implies that c2 can be
estimated as

c2 ≤ exp{n!(nd)expO(r)h}. (9.3.26)

Next, we estimate PS, QS and RS . In view of (9.3.24), dL ≤ n!dr we have

PS ≤ QS ≤ |g(u)|dL ≤ exp{n!(nd)expO(r)h}. (9.3.27)

To estimate RS , we use (9.3.2). Then, by (9.3.23) and dL ≤ n!dr we obtain

|DL|1/2(log∗ |DL|)dL−1 ≤ exp{n!(nd)expO(r)h}. (9.3.28)

Further, (9.3.25) and (9.3.27) imply

(logQS)s ≤ exp

{
O

(
dL

log∗ |g(u)|
log∗ log∗ |g(u)|

(log dL + log∗ log∗ |g(u)|)
)}

.

Together with (9.3.24) this yields

RS ≤ exp{n!(nd)expO(r)h}. (9.3.29)

Combining (9.3.2) with RS replaced by RL (when logQS < 1) with (9.3.28)
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and RL > 0.2052 (see Friedman (1989) or Section 4.1), we obtain

max(hL, RL) ≤ exp{n!(nd)expO(r)h}. (9.3.30)

Finally, using rL < dL ≤ n!dr, we deduce that

c3 ≤ expO(dL log∗ dL) ≤ exp{n!(nd)expO(r)}. (9.3.31)

From the estimates (9.3.21), (9.3.22), (9.3.26), (9.3.28), (9.3.29), (9.3.30)
it follows that the upper bound in (9.3.12) is a sum and product of terms which
are all bounded above by exp{n!(nd)expO(r)h}. Consequently,

h(xj(u)), h(yj(u)) ≤ exp{n!(nd)expO(r)h}.

Inserting this into (9.3.16), we get the upper bound (9.1.15) for q > 0.

Now assume that q = 0. Then A0 = Z, K = Q(w), B = Z[w, g−1],
where w is an algebraic integer with minimal polynomial F(X) = XD +
F1X

D−1 + · · ·+FD ∈ Z[X] over Q, and g is a non-zero rational integer. By
assumption (7.4.4), (7.4.5) we may assume that log |g| ≤ h4, log∗Fj ≤ h4

for j = 1, . . . , D. Denote by w(1), . . . , w(D) the conjugates of w over Q, and
let Kj := Q(w(j)) for j = 1, . . . , D. One can prove by a similar argument as
in the proof of Lemma 7.4.5 that |DKj | ≤ D2D−1e(2D−2)h4 . For α ∈ K, we
denote by α(j) the conjugates of α over Q, corresponding to w(j).

Instead of Lemma 7.4.7 we use Lemma 7.4.2, applied with G = F , m =
D and β(j) = x(j) or y(j). Inserting (7.4.4), (7.4.5), this yields the estimate

max(h(x), h(y)) ≤ (nd)expO(r)
(
h+ max

1≤j≤D
max(h(x(j)), h(y(j)))

)
.

(9.3.32)

We proceed further with the index j for which the maximum is attained.

Now we can follow the argument above for the case q > 0, except that in
all estimates we have to take q = 0, and replace max(1, |u|) by 1,Ku,j byKj ,
g(u) by g, Fu,j by Fj , where Fj is the binary form obtained by taking the j-th
conjugates of the coefficients of F , and g(u) by g. This leads to an estimate

h(x(j)), h(y(j)) ≤ exp{n!(nd)expO(r)h},

and combined with (9.3.32), this implies again (9.1.15) which completes the
proof of Proposition 9.1.3.
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9.3.3 Hyper- and superelliptic equations

It remains to prove (9.1.19) from Proposition 9.1.4. The computations will be
similar to those as in the above proof of (9.1.15) but with some simplifications.

Proof of (9.1.19) of Proposition 9.1.4. Take a solution x, y of equation (9.1.16)
in B. Consider again first the case q > 0. We use once more the polyno-
mial T := ∆FFDg as in (7.4.7). Take again u ∈ Zq with T (u) 6= 0,
choose j ∈ {1, . . . , D}, and denote by Fu,j, δj(u), xj(u), yj(u) the images
of F, δ, x, y under the specialization ϕu,j . In contrast to our arguments for
Thue equations, now we do not have to deal with the splitting field of F . Put
L := Ku,j and choose for S the set of places of L which consists of all in-
finite places and the finite places lying above the rational prime divisors of
g(u). Then ϕu,j(B) ⊆ OS , and

Fu,j(xj(u)) = δj(u)yj(u)m, wherexj(u), yj(u) ∈ OS. (9.3.33)

We note that by assumption δ,DF ∈ B∗, hence δj(u) 6= 0 and Fu,j has non-
zero discriminant. Since Fu,j has the same number of zeros and the same
degree as F , the degree of Fu,j is n ≥ 3 if m = 2 and n ≥ 2 if m ≥ 3.
Thus we can apply Theorems 4.5.1 and 4.5.2 to equation (9.3.33) according
as m = 2 or m ≥ 3. Then we obtain

h(xj(u)), h(yj(u)) ≤

{
c4|DL|8n

2
Q20n3

S e50n4dLĥ ifn ≥ 3,

cm
3

5 |DL|2m
2n2
Q3m2n2

S e8m2n3dLĥ ifn ≥ 2,m ≥ 3,

(9.3.34)

where c4 = (4ns)212n4s, c5 = (6ns)14m3n3s and ĥ is defined by (4.5.3).
It follows by precisely the same argument as in the case of Thue equations

that there are u ∈ Zq and j ∈ {1, . . . , D} which satisfy (9.3.15) and (9.3.16).
We proceed further with these u, j.

We estimate from above the parameters occurring in the bounds in (9.3.34).
First, we obtain the same estimates as in (9.3.19) and (9.3.20). These imply

ĥ ≤ (n+ 1)h(Fu,j) + h(δj(u)) ≤ (nd)expO(r)h. (9.3.35)

Further, we have similarly to (9.3.23)

|DL| ≤ exp{(nd)expO(r)h} (9.3.36)
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and similarly to (9.3.24)

|g(u)| ≤ exp{(nd)expO(r)h}. (9.3.37)

Now the set S consists of places of L instead of the splitting field of Fu,j over
K. Because of [L : Q] ≤ D, we have s ≤ D(1 + w), where w is the number
of distinct prime divisors of g(u). This implies, instead of (9.3.25),

s = O(D log∗ |g(u)|/ log∗ log∗ |g(u)|). (9.3.38)

Inserting (9.3.37) and D ≤ dr, we obtain for the quantities c4, c5 in (9.3.34)

c4, c5 ≤ exp{(nd)expO(r)h}. (9.3.39)

Lastly, by D ≤ dr and (9.3.37) we have

PS ≤ QS ≤ |g(u)|D ≤ exp{(nd)expO(r)h}. (9.3.40)

We now use (9.3.34). By inserting (9.3.35), (9.3.36), (9.3.39) and dL ≤
D ≤ dr into (9.3.34), we get

h(xj(u)), h(yj(u)) ≤ exp{m3(nd)expO(r)h}. (9.3.41)

Finally, inserting this into (9.3.16), we obtain (9.1.19) in the case q > 0.
Now let q = 0. For α ∈ K, write α(j) for the conjugate of α corresponding

to w(j) and let Fj be the polynomial obtained by taking the jth conjugates of
the coefficients of F . We simply follow the above arguments, replacing every-
where q by 0, max(1,u) by 1,Ku,j byKj = Q(w(j)), Fu,j by Fj , xj(u), yj(u)
by x(j), y(j), and g(u) by g ∈ Z. Instead of (9.3.16) we have to use (9.3.32).
Thus we obtain the same estimate as (9.3.41), but with x(j), y(j) instead of
xj(u), yj(u). Via (9.3.32) we obtain (9.1.19). This completes our proof for
Proposition 9.1.4.

Proof of Proposition 9.1.5. Assume first that q > 0. Let x ∈ B, y ∈ B ∩ Q,
m ∈ Z≥2 be a solution of equation (9.1.16) such that y 6= 0 and y is not a root
of unity. Choose again u, j such that they satisfy (9.3.15), (9.3.16). Note that
yj(u) is a conjugate of y since y ∈ Q. Hence it is not 0 or a root of unity.

By applying Theorem 4.5.3 to equation (9.3.33) we get

m ≤ c6|DL|6nP n2

S e11ndLĥ, (9.3.42)
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where c6 = (10n2s)40ns. By (9.3.37) and (9.3.38) the constant c6 satisfies

c6 ≤ exp{(nd)expO(r)h}.

Further, we have the upper bounds (9.3.35) for ĥ, (9.3.36) for |DL| and (9.3.40)
for PS . Inserting these estimates into the upper bound in (9.3.42), we get
m ≤ exp{(nd)expO(r)h}. In the case q = 0, we obtain the same estimates, by
making the same modifications as in the proof of Proposition 9.1.4. Our proof
is complete.

9.4 The Catalan equation
In this section we complete the proof of Theorem 2.5.1 on the Catalan equa-
tion (2.5.1) xm − yn = 1 in x, y ∈ A and integers m,n with m,n > 1
and mn > 4. We follow mostly the proofs of Brindza (1993) and Koymans
(2017).

As before,A = Z[z1, . . . , zr] denotes an integral domain finitely generated
over Z, with quotient field K. Then A ∼= Z[X1, . . . , Xr]/I, where I is the
ideal of polynomials f ∈ Z[X1, . . . , Xr] such that f(z1, . . . , zr) = 0. Let
d ≥ 1, h ≥ 1 and assume again that I = (f1, . . . , fM) with deg fi ≤ d,
h(fi) ≤ h for i = 1, . . . ,M .

Proof of Theorem 2.5.1. Let x, y,m, n be an arbitrary solution of equation
(2.5.1) with non-zero x, y ∈ A, not roots of unity, and with integers m,n such
that m,n > 1 and mn > 4. We keep the notation and assumptions from the
beginning of Sections 9.3 and 9.4. Further, by Proposition 7.2.7 there exists a
non-zero g ∈ A0 such that

A ⊆ B = A0[w, g−1]

and

deg g ≤ (2d)expO(r), h(g) ≤ (2d)expO(r)h. (9.4.1)

We shall work in this larger ring B to bound m and n.
First consider the case q = 0. Then we have A0 = Z, K0 = Q, K is

a number field of degree D ≤ dr and DK is the discriminant of K. Since
|DK | ≤ |D(F)| and, as was seen in the proof of Lemma 7.4.5, |D(F)| ≤
D2D−1H(F)2D−2, where H(F) denotes the maximum of the absolute values
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of the coefficients of F , we infer that

|DK | ≤ exp((2d)expO(r)h).

Let S denote the set of infinite places and of the finite places of K corre-
sponding to the prime ideal divisors, say p1, . . . , pw, of g. Write s = |S| and
let PS, QS be as in (9.3.1). In view of (9.4.1) it follows that s ≤ (2d)expO(r)h,
PS ≤ exp((2d)expO(r)h) and QS ≤ |g|d ≤ exp((2d)expO(r)h). Using the
estimates for s, PS, QS and combining them with Theorem 4.6.1, we obtain
(2.5.2).

Consider now the case q > 0. Fix an algebraic closure K0 of K0, and let
ki be the algebraic closure of Q(X1, . . . , Xi−1, Xi+1, . . . , Xq) inK0. Thus A0

is contained in ki[Xi]. Define

Li := ki(Xi, w
(1), . . . , w(D)),

where w(1), . . . , w(D) are the conjugates of w over K0.
First assume that x ∈ ki for i = 1, . . . , q. Then, by Lemma 9.2.1, x and

y belong to the algebraic number field Q ∩ K. We are now going to apply
Theorem 4.6.1.

Let u = (u1, . . . , uq) ∈ Zq, and put |u| = max(|u1|, . . . , |uq|). As in
Section 7.4, we extend the ring homomorphism from a subring of K0 to Q,

ϕu : α 7→ α(u) : {g1/g2 : g1, g2 ∈ A0, g2(u) 6= 0} → Q,

defined by the substitution X1 7→ u1, . . . , Xq 7→ uq, to a ring homomorphism
from B to Q for which we need to impose some restriction on u. Denote by
∆F the discriminant of F , and let T = ∆FFDg. Obviously T ∈ A0. Since
∆F is a polynomial of degree 2D− 2 with integer coefficients in F1, . . . ,FD,
it follows that deg T ≤ (2d)expO(r).

Lemma 7.4.4 implies that

S := {u ∈ Zq : |u| ≤ N, T (u) 6= 0}

is non-empty, provided that N = (2d)expO(r) and the constant implied by
the O-symbol is sufficiently large. Take u ∈ S and consider the polyno-
mial Fu(X) := XD + F1(u)XD−1 + · · · + FD(u). It has distinct zeros, say
w1(u), . . . , wD(u), which are all different from 0. Then, for j = 1, . . . , D,

X1 7→ u1, . . . , Xq 7→ uq,u 7→ wj(u)
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defines, as was claimed in Section 7.4, a ring homomorphism ϕu,j from B to
Q. The image of α ∈ B under ϕu,j is again denoted by αj(u). It is clear that
ϕu,j is the identity on B ∩Q. Consequently, if α ∈ B ∩Q, then ϕu,j has the
same minimal polynomial as α and hence it is conjugate to α.

Consider the algebraic number field Ku,j := Q(wj(u)) and denote by
DKu,j

its discriminant for j = 1, . . . , D. By Lemma 7.4.5 we have

[Ku,j : Q] ≤ D, |DKu,j
| ≤ D2D−1(dq3e

h3 max(1, |u|)d3)2D−2,

where

d3 = max(d, degF1, . . . , degFD), h3 = max(d, h(F1), . . . , h(FD)).

We have d3 ≤ (2d)expO(r), h3 ≤ (2d)expO(r)h which, together with D ≤ dr,
gives

|DKu,j
| ≤ exp((2d)expO(r)h).

Fix now any of j = 1, . . . , D. In Ku,j denote by S the set consisting of
the infinite places and of the finite places corresponding to the prime ideal
divisors of g(u). Then ϕu,j mapsB to the ring of S-integers ofKu,j . To apply
Theorem 4.6.1 we still need to bound PS, QS and s.

It is easy to see that for any u ∈ Zq

log |g(u)| ≤ q log deg g + h(g) + deg g log max(1, |u|)

which together with (9.4.1) and with the choice of N gives

|g(u)| ≤ (2d)q expO(r) · exp((2d)expO(r) · h) · (2d)(2d)expO(r)

≤ exp((2d)expO(r) · h).

Thus we get

QS ≤ |g(u)|D ≤ exp((2d)expO(r)h), (9.4.2)

PS ≤ exp((2d)expO(r)h) (9.4.3)

and

s ≤ (2d)expO(r)h. (9.4.4)

Combining Theorem 4.6.1 with the bounds in (9.4.2) to (9.4.4) we obtain
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again (2.5.3).

Finally, we deal with the case x /∈ ki for some i. Fix such an i. Let S
denote the set of valuations of Li over ki such that v(Xi) < 0, v(g) > 0.
Let v be any valuation of Li over ki with v /∈ S. Then v(Xi) ≥ 0. We recall
that w is integral over ki[Xi]. This implies that v(w) ≥ 0. We also have that
v(g) ≤ 0, whence v(g−1) ≥ 0. Consequently, the ring B = A0[w, g−1] is a
subring of the ring of S-integers OS of Li.

Since x, y ∈ A and A ⊆ B, it follows that x, y ∈ OS\ki. Now in view of
Theorem 5.3.1, (i), we get

mHLi(x), nHLi(y) ≤ 6(|S|+ 2gLi/ki − 2). (9.4.5)

Putting Ki = ki(Xi, w), ∆i = [Li : k(Xi)] and using the fact that x, y ∈ Ki

and [Ki : ki(Xi)] ≤ D we infer that

HLi(x) = [Li : Ki]HKi(x) ≥ [Li : Ki] ≥ ∆i/[Ki : ki(Xi)] ≥ ∆i/D

and similarly for HLi(y). Together with (9.4.5) this gives

max(m,n) ≤ 6D

∆i

(|S|+ 2gLi/ki − 2). (9.4.6)

We are now going to estimate from above |S| and gLi/ki . Every valuation
of ki(Xi) can be extended to at most ∆i valuations of Li. Thus Li has at
most ∆i valuations with v(Xi) < 0 and at most ∆i degXi g valuations with
v(g) > 0. Using also deg g ≤ (2d)expO(r) from Proposition 7.2.7, we deduce
that

|S| ≤ ∆i + ∆i degXi g ≤ ∆i(1 + deg g) ≤ ∆i(2d)expO(r). (9.4.7)

Further, Li being the splitting field of F over ki(Xi), by Lemma 5.1.1 and
Proposition 7.2.5 we obtain

gLi/ki ≤ ∆iDmax
j

degXi Fj ≤ ∆iDmax
j

degFj ≤ ∆iD(2d)expO(r).

(9.4.8)

Thus it follows from D ≤ dr, (9.4.6), (9.4.7) and (9.4.8) that

max(m,n) ≤ (2d)expO(r)
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which completes the proof of (2.5.3) and hence that of Theorem 2.5.1.
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Chapter 10

Proofs of the results from Sections
2.6–2.8; reduction to unit
equations

In Section 10.1 we prove our central results Theorem 2.6.1 and Corollary
2.6.2 on decomposable form equations, stated in Section 2.6, together with
the corollaries stated in that section. Their proofs are based on Theorem 2.2.1
on unit equations. In fact, we apply Győry’s method to reduce the decompos-
able form equation under consideration to unit equations in two unknowns,
which was originally developed in an effective form over number fields e.g.
in Győry (1976,1981a), Győry and Papp (1978), and, in an ineffective form,
over arbitrary finitely generated domains in Győry (1982). We make this fully
effective and quantitative by employing some of the degree-height estimates
from Chapter 8.

In Section 10.2 we prove the results for norm form equations stated in
Section 2.7, and in Section 10.3 the results for discriminant form equations
and discriminant equations stated in Section 2.8. These are all consequences
of Theorem 2.6.1.

10.1 Proofs of the central results on decompos-
able form equations

Keeping the notation of Sections 2.6 and 8.1, we assume that A, δ, L =
(`1, . . . , `n) satisfy the conditions of Theorem 2.6.1. Denote as before by G(L)
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the triangular graph of L, defined by (2.6.4), and let L1, . . . ,Lk be the vertex
systems of the connected components of G(L), and [Lj] the K-vector space
generated by Lj , for j = 1, . . . , k.

Proof of Theorem 2.6.1. Take x ∈ Am such that

F (x) = `1(x) · · · `n(x) = δ, there is ` ∈ [L1] ∩ · · · ∩ [Lk] with `(x) 6= 0.
(2.6.7)

We have to show that the coset x+ZA,F is represented by x̃ ∈ Z[X1, . . . , Xr]
m

with (2.6.8). The proof is divided into a couple of steps.

Step 1. Construction of certain scalar multiples `′i of `i, for i = 1, . . . , n, and
a finitely generated domain A′ ⊃ A, such that `′1(x), . . . , `′n(x) are units of
A′.

Write
`i = αi,1X1 + · · ·+ αi,mXm for i = 1, . . . , n.

Put
R := 2mn · νmnd, R′ := 2mn · ννmnd.

LetG be the extension ofK generated by the αi,j (i = 1, . . . , n, j = 1, . . . ,m).
We may assume that also δ ∈ G, since otherwise (2.6.7) cannot hold. By
Corollary 8.3.4, there is θ ∈ G, such that G = K(θ), θ has monic minimal
polynomial Fθ ∈ A[X] over K, and

θ
int
≺ (RexpO(r),RexpO(r)h). (10.1.1)

Further, letting E := [G : K], we have

αi,j =
E−1∑
t=0

ai,j,tθ
t, δ =

E−1∑
t=0

btθ
t,

with bi,j,t, bt ∈ K, bt, bi,j,t ≺ (R′ expO(r),R′ expO(r)h) (10.1.2)

for i = 1, . . . , n, j = 1, . . . ,m, t = 0, . . . , E − 1. We clear the denominators
of the ai,j,t, bt. According to the definitions, we have for all i, j, t that

ai,j,t =
g′i,j,t(z1, . . . , zr)

g′′i,j,t(z1, . . . , zr)
, bt =

g′t(z1, . . . , zr)

g′′t (z1, . . . , zr)
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where g′t, g
′
i,j,t, g

′′
t , g

′′
i,j,t are polynomials in Z[X1, . . . , Xr] of total degree at

mostR′ expO(r) and logarithmic height at mostR′ expO(r)h. Now define

γ0 :=
E−1∏
t=0

g′′t (z1, . . . , zr),

γi :=
E−1∏
t=0

m∏
j=1

g′′i,j,t(z1, . . . , zr) for i = 1, . . . , n.

Then by Lemma 4.1.7 and E ≤ νmn,

γ0, γ1, . . . , γn
int
≺ (R′ expO(r),R′ expO(r)h). (10.1.3)

Define the quantities{
a′i,j,t := γ0γiai,j,t,

α′i,j :=
∑E−1

t=0 a
′
i,j,tθ

t = γ0γiαi,j, `
′
i :=

∑m
j=1 α

′
i,jXj = γ0γi`i

(10.1.4)

for i = 1, . . . , n, j = 1, . . . ,m, t = 0, . . . , E − 1, and
b′t := γn0 γ1 · · · γnbt for t = 0, . . . , E − 1,

δ′ :=
E−1∑
t=0

b′tθ
t = γn0 γ1 · · · γnδ.

(10.1.5)

With this construction we have

a′i,j,t, b
′
t ∈ A for all i, j, t (10.1.6)

and

`′1(x) · · · `′n(x) = δ′. (10.1.7)

Further, by Lemma 4.1.7,

a′i,j,t, b
′
t

int
≺ (R′ expO(r),R′ expO(r)h). (10.1.8)

Now let A′ := A[θ, δ′−1] = Z[z1, . . . , zr, θ, δ
′−1]. Then from (10.1.6) it is
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clear that `′1(x), . . . , `′n(x) ∈ A′ and subsequently by (10.1.7),

`′i(x) ∈ A′∗ for i = 1, . . . , n. (10.1.9)

To apply Theorem 2.2.1, we need an ideal representation forA′. By (10.1.1),
the generator θ of G has monic minimal polynomial over A,

Fθ = XE + p1(z1, . . . , zr)X
E−1 + · · ·+ pE(z1, . . . , zr),

where p1, . . . , pE are polynomials in Z[X1, . . . , Xr] of total degree at most
RexpO(r) and logarithmic height at mostRexpO(r)h. Let

fM+1 := XEr+1 + p1X
E−1
r+1 + · · ·+ pE .

Then using E ≤ νmn we get

deg fM+1 ≤ RexpO(r), h(fM+1) ≤ RexpO(r)h. (10.1.10)

Further,

A[θ] ∼= Z[X1, . . . , Xr, Xr+1]/I ′, with I ′ := (f1, . . . , fM , fM+1).

The quantity δ′ corresponds to the residue class modulo I ′ of
∑E−1

t=0 b̃tX
t
r+1,

where b̃t ∈ Z[X1, . . . , Xr] is a representative for bt, of total degree at most
R′ expO(r), and logarithmic height at most R′ expO(r)h. By Lemma 9.1.2 we
have

A′ ∼= Z[X1, . . . , Xr, Xr+1, Xr+2]/(f1, . . . , fM , fM+1, fM+2) (10.1.11)

where

fM+2 := Xr+2

( E−1∑
t=0

b̃tX
t
r+1

)
− 1.

Using again E ≤ νmn we infer that fM+2 has total degree at most R′ expO(r)

and logarithmic height at most R′ expO(r)h. Combined with (10.1.10) and our
assumptions deg fi ≤ d, h(fi) ≤ h this gives

deg fi ≤ R′ expO(r), h(fi) ≤ R′ expO(r)h for i = 1, . . . ,M + 2. (10.1.12)
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Step 2. Let `i, `j with i 6= j be connected by an edge in G(L). Then

`i(x)

`j(x)
≺
(

exp
(
R′ expO(r)h

)
, exp

(
R′ expO(r)h

))
. (10.1.13)

To prove this, we first assume that `i, `j are linearly dependent over K. Then
`i(x)/`j(x) is equal to the quotient of a coefficient of `i and a coefficient of
`j . So by Corollary 8.3.3 and (8.3.2), we have

`i(x)

`j(x)
≺ ((2ν2d)expO(r), (2ν2d)expO(r)h),

which is much stronger than what we want to prove.

Next assume that `i, `j are linearly independent over K. Here we have
to apply our Theorem 2.2.1 on unit equations. There is q 6= i, j such that
`i, `j, `q are linearly dependent overK. Then clearly, `′i, `

′
j , `
′
q are also linearly

dependent over K. In fact, we have

λi`
′
i + λj`

′
j + λq`

′
q = 0,

where λi, λj , λq are certain 2×2-determinants of the coefficients of `′i, `
′
j , `
′
k.

By (10.1.4) we have

λi = λ̃i(z1, . . . , zr, θ, δ
′−1),

where λ̃i ∈ Z[X1, . . . , Xr, Xr+1, Xr+2] is a polynomial of total degree at most
R′ expO(r) and logarithmic height at mostR′ expO(r)h. We have something sim-
ilar for λj and λq. Clearly,

λi ·
`′i(x)

`′j(x)
+ λq ·

`′q(x)

`′j(x)
= −λj,

while `′i(x)/`′j(x), `′q(x)/`′j(x) ∈ A′∗ by (10.1.9). Now invoking (10.1.11),
(10.1.12) and applying Theorem 2.2.1 we obtain

`′i(x)

`′j(x)
= g(z1, . . . , zr, β, δ

′−1),

where g is a polynomial in Z[X1, . . . , Xr, Xr+1, Xr+2] of total degree and
logarithmic height at most exp

(
R′ expO(r)h

)
. An application of (8.3.2) and
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Corollary 8.3.3 yields

`′i(x)

`′j(x)
≺
(

exp
(
R′ expO(r)h

)
, exp

(
R′ expO(r)h

))
.

Finally, using `i(x)/`j(x) = (γj/γi)(`
′
i(x)/`′j(x)), estimate (10.1.3) and again

(8.3.2) and Corollary 8.3.3, we arrive at (10.1.13).

Step 3. Let `i, `j belong to the same connected component of G(L). Then we
have again (10.1.13).

There is a sequence `i0 , `i1 , . . . , `is with i0 = i, is = j of length s ≤ n of
which any two consecutive linear forms are connected by an edge in G(L).
Now apply Step 2 and Corollary 8.3.3 to

`j(x)

`i(x)
=

s−1∏
t=0

`it+1(x)

`it(x)

to finish Step 3.

Step 4. Let `i, `j be any two distinct linear forms from L with i 6= j. Then we
have again (10.1.13).

This is clear if G(L) is connected, so assume that its number k of connected
components is > 1. By assumption, there is ` ∈ [L1] ∩ · · · ∩ [Lk] such that
`(x) 6= 0. We can partition {1, . . . , n} into I1 ∪ · · · ∪ Ik such that

Lt = (`s : s ∈ It) for t = 1, . . . , k.

Notice that [L1] ∩ · · · ∩ [Lk] consists of the linear forms ` of the shape∑
s∈I1

cs`s = · · · =
∑
s∈Ik

cs`s (10.1.14)

for certain c1, . . . , cn ∈ K. We recall that in general, if A is an a×b-matrix
of rank t, say, with elements from a field L, then the solution space of vectors
x ∈ Lb with Ax = 0 has a basis consisting of vectors whose coordinates are
t×t-subdeterminants of A. In particular, the linear subspace of K

n
, consist-

ing of the vectors c = (c1, . . . , cn) satisfying (10.1.14), has a basis, consisting
of vectors whose coordinates are determinants of order at most m, with ele-
ments from the coefficients of±`i (i = 1, . . . , n). So by Corollary 8.3.3, these
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coordinates have degree-height estimates

≺
(
(2mνm

2

d)expO(r), (2mνm
2

d)expO(r)h
)
.

This basis contains a vector c = (c1, . . . , cn) such that the linear form ` given
by (10.1.14) does not vanish at x. Now suppose for instance that `i ∈ L1,
`j ∈ L2. Then

`(x)

`i(x)
=
∑
s∈I1

cs
`s(x)

`i(x)
.

By Corollary 8.3.3 and what we established in Step 3, we get

`(x)

`i(x)
≺
(

exp
(
R′ expO(r)h

)
, exp

(
R′ expO(r)h

))
.

We get a similar estimate for `(x)/`j(x). Another application of Corollary
8.3.3, in combination with (8.3.2), completes Step 4.

Step 5. For i = 1, . . . , n we have

`i(x) ≺
(

exp
(
R′ expO(r)h

)
, exp

(
R′ expO(r)h

))
. (10.1.15)

To prove this, observe that

`i(x)n = δ
n∏
j=1

`i(x)

`j(x)
.

Now apply Step 4 and Proposition 8.3.2.

Step 6. Completion of the proof.

Write βi := `i(x) for i = 1, . . . , n. Note that βi ∈ G, so degK βi ≤ νmn for
i = 1, . . . , n. By Corollary 8.3.5, there is x′ = (x′1, . . . , x

′
m) ∈ Am such that

`i(x
′) = βi for i = 1, . . . , n

and

x′i
int
≺
(

exp
(
R′ expO(r)h

)
, exp

(
R′ expO(r)h

))
for i = 1, . . . ,m,

which means precisely that x′ has a representative x̃′ ∈ Z[X1, . . . , Xr]
m with
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s(x̃′) ≤ exp
(
R′ expO(r)h

)
, which is (2.6.8). Further, x′ − x ∈ ZA,F , so in

fact, x̃′ represents the coset x + ZA,F . This completes the proof of Theorem
2.6.1.

Proof of Corollary 2.6.2. We prove only the effective part of the statement of
Corollary 2.6.2.

Let α be either δ or one of the coefficients of `1, . . . , `n. Then an effec-
tive representation for α is given, and from this, we can compute effective
representations for α2, . . . , α[G:K]. There is a divisor ν of [G : K] such that
1, α, . . . , αν are linearly dependent over K. Using the effective representa-
tions for the αi, we can determine the smallest such ν, a K-linear relation
between 1, α, . . . , αν , the monic minimal polynomial of α over K and fi-
nally, a degree-height estimate for α. Now Theorem 2.6.1 gives an effectively
computable number C such that every ZA,F -coset of solutions of (2.6.7) is
represented by some x̃ ∈ Z[X1, . . . , Xr]

m with s(x̃) ≤ C.
There are only finitely many such tuples x̃ which can be determined ef-

fectively, say x̃1, . . . , x̃s. These represent tuples x1, . . . ,xs ∈ Am. Now using
the effective representations of δ and the coefficients of `1, . . . , `n, one can
check for each xi whether F (xi) = δ.

Using the effective representations forG and the coefficients of `1, . . . , `n,
one can compute the triangular graph G(L) and thus, the vertex systemsL1,. . .,Lk
of its connected components. The intersection V := [L1] ∩ · · · ∩ [Lk] was
defined as a K-vector space, but since the Li consist of linear forms with co-
efficients from G, the space V is defined by a system of linear equations with
coefficients from G. By solving this system using standard linear algebra, one
can decide whether V is non-zero and if so, compute a basis B of V , consisting
of linear forms from G. If for one of the xi mentioned above there is ` ∈ V
with `(xi) 6= 0, then there is such ` ∈ B and one can find it by computing
`(xi) for all ` ∈ B. Thus, for each xi it can be checked whether it satisfies
(2.6.7).

Finally, using the effective representations, one can decide for each pair
xi, xj with i, j = 1, . . . , s whether xi, xj lie in the same ZA,F -coset, i.e.,
`t(xi) = `t(xj) for t = 1, . . . , n. This shows that one can compute a finite set,
consisting of one representative for each ZA,F -coset of solutions of (2.6.7).

Proof of Corollary 2.6.3. By dividing F and δ by one of the coefficients of
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F , we can transform (2.3.1) into an equation

F ′(x, y) = `1(x, y) · · · `n(x, y) = δ′,

where δ′ and the coefficients of F ′ lie in K and are all represented by pairs in
Z[X1, . . . , Xr]

2 of total degree at most d and logarithmic height at most h, and
where each `i is either of the form Y , or of the form X − αY , with α ∈ K.
Since F is divisible by at least three pairwise non-proportional linear forms,
the system L = (`1, . . . , `n) is triangularly connected. Further, the module of
(x, y) ∈ A2 with `i(x, y) = 0 for i = 1, . . . , n is equal to {0}. Lastly, each
of the above α has degree at most n over K, and by Proposition 8.2.3 it is
represented by a tuple of degree at most (nd)expO(r) and logarithmic height
at most (nd)expO(r). Now an application of Theorem 2.6.1 immediately gives
the bound (2.6.9), and then using Proposition 2.1.1 one can determine the
solutions.

Proof of Corollary 2.6.4. Recall that every solution x = (x1, x2, x3) ∈ A3

of the double Pell equation (2.6.10) is a solution of the decomposable form
equation (2.6.12), with the decomposable form F given by (2.6.14) and δ
given by (2.6.13). It is easily shown that the linear factors of the decompos-
able form F in (2.6.12) form a triangularly connected system, and moreover,
ZA,F = {0}. Further, by Proposition 8.3.2 and Corollary 8.3.3, both δ and the
coefficients of the linear factors of F are represented by tuples of degree at
most (2d)expO(r) and logarithmic height at most (2d)expO(r)h. An application
of Theorem 2.6.1 directly gives the bound (2.6.15), and the solutions can be
found by means of Proposition 2.1.1.

10.2 Proofs of the results for norm form equa-
tions

Proof of Theorem 2.7.1. Denote by L the set of conjugates of the linear form
` := α1X1 + · · ·+αmXm with respect to K ′/K. The coefficients of the linear
forms in L all have degree at most n = [K ′ : K] over K. Further, α1, . . . , αm
and their conjugates over K are all represented by tuples of degree at most
d and height at most h. The rank of L is equal to m, since α1, . . . , αm are
assumed to be linearly independent over K. So with F := NK′/K(α1X1 +
· · · + αmXm), the module ZA,F is {0}. Letting L1, . . . ,Lk denote the vertex
systems of the connected components of G(L), we verify below that Xm ∈
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[L1] ∩ · · · ∩ [Lk]. Once this has been done, Theorem 2.7.1 follows directly
from Theorem 2.6.1, taking ν = n.

First observe that any two distinct conjugates of ` are linearly indepen-
dent, since K ′ = K(α1, . . . , αm). Partition the linear forms in L into subsets
such that `′, `′′ belong to the same subset if the coefficients of X1, . . . , Xm−1

in `′, `′′ coincide. Then we get a partition L′1, . . . ,L′k′ of L with k′ denoting
the degree of K ′′ := K(α1, . . . , αm−1) over K. Further, in view of the con-
dition that αm be of degree ≥ 3 over K ′′, each of the sets L′1, . . . ,L′k′ has
cardinality at least 3. As is easily seen, any three linear forms from the same
set L′i are linearly dependent, hence any two linear forms from the same set
L′i are connected by an edge in G(L). That is, each set L′i is contained in the
vertex system of one of the connected components of G(L). Next, the differ-
ence of any two linear forms from the same set L′i is proportional to Xm. This
shows

Xm ∈ [L′1] ∩ · · · ∩ [L′k′ ] ⊆ [L1] ∩ · · · ∩ [Lk].

As mentioned above, this completes the proof of Theorem 2.7.1.

Proof of Corollary 2.7.2. By assumption, an irreducible monic polynomial
P ∈ K[X] is given such thatK ′ ∼= K[X]/(P ). Denote byG the splitting field
of P and put E := [G : K]. Notice that G is the normal closure of K ′/K. By
Corollaries 6.2.5 and 6.2.6 we can compute θ such that G = K(θ), together
with the monic minimal polynomial of θ over K, and express α1, . . . , αm and
their powers as K-linear combinations of 1, θ, . . . , θE−1. With these expres-
sions we can compute whichK-linear combinations of powers of αi are 0 and
thus, compute the monic minimal polynomial of αi over K for i = 1, . . . ,m.
These monic minimal polynomials have all their roots in G and we can com-
pute these using Theorem 6.2.3. In this way, we can compute the conjugates
of α1, . . . , αm over K. Consequently, the conjugates of the linear form ` are
effectively given. Now Corollary 2.6.2 applies to equation (2.7.1) and the as-
sertion follows.

Proof of Corollary 2.7.3. Let x = (x1, . . . , xm) ∈ Am be a solution of (2.7.1),
and denote bym′ the greatest integer with xm′ 6= 0. Ifm′ ≥ 2, Corollary 2.7.2
applies withm′ instead ofm, while form′ = 1 we getN(α1)xn1 = δ, whence,
by Theorems 6.2.3 and 6.3.2, we can check that x1 ∈ K and x1 ∈ A.
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10.3 Proofs of the results for discriminant form
equations and discriminant equations

Let Ω be a finite étale K-algebra with [Ω : K] = n. Recall that Ω is given
in the form K[X]/(P ), where P ∈ K[X] is monic and separable of degree
n. Thus Ω = K[θ], with P (θ) = 0. Let G be the splitting field of P and θ(i)

(i = 1, . . . , n) the zeros of P in G. We can express α ∈ Ω as

α =
n−1∑
j=0

ajθ
j with aj ∈ K for j = 0, . . . , n− 1.

Thus, the images of α under the n K-homomorphisms of Ω are given by

α(i) =
n−1∑
j=0

aj(θ
(i))j (i = 1, . . . , n).

By Vandermonde’s identity we have det(θ(i))j−1)i,j=1,...,n 6= 0. This implies
that

α(1) = · · · = α(n) ⇐⇒ a1 = · · · = an−1 = 0

⇐⇒ α ∈ K. (10.3.1)

In what follows, let ω1, . . . , ωm ∈ Ω.

Proof of Theorem 2.8.1. Let `(i) := ω
(i)
1 X1 + · · · + ω

(i)
mXm for i = 1, . . . , n,

and `i,j := `(i) − `(j) for i, j = 1, . . . , n, i 6= j. We want to apply Theorem
2.6.1 to equation (2.8.3) in the form

F (x) :=
n∏

i,j=1
i 6=j

`i,j(x) = (−1)n(n−1)/2δ in x ∈ Am. (10.3.2)

Let L denote the system of the linear forms `i,j . We first show that L is trian-
gularly connected. Indeed, using `i,i′ + `i′,i′′ + `i′′,i = 0 for any three distinct
i, i′, i′′ ∈ {1, . . . , n}, one infers that if {i, j}, {i′, j′} are any two distinct
subsets of {1, . . . , n}, then `i,j , `i′,j′ are connected by an edge in G(L) if
{i, j} ∩ {i′, j′} 6= ∅. If {i, j} ∩ {i′, j′} = ∅, then there are edges from `i,j
to `i′,j and from `i′,j to `i′,j′ , implying that `i,j and `i′,j′ belong to the same
connected component of G(L).
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Next, using (10.3.1) it follows that

x ∈ ZA,F ⇐⇒ `i,j(x) = 0 for all i, j

⇐⇒ `(1)(x) = · · · = `(n)(x)⇐⇒ `(x) ∈ K ⇐⇒ x ∈ ZA,D.

Notice that there are n(n − 1) linear forms `i,j and that their coefficients
ω

(i)
t − ω

(j)
t have degree at most n2 over K. Now Theorem 2.8.1 is proved by

applying Theorem 2.6.1 with k = 1, with n(n − 1) instead of n and with n2

instead of ν to equation (10.3.2).

Proof of Corollary 2.8.2. Recall that Ω is given in the form K[X]/(P ), with
P an effectively given, monic separable polynomial in K[X]. Further, a set
of A-module generators ω1, . . . , ωm ∈ Ω ofM is effectively given. Similarly
as in the proof of Corollary 2.7.2, we can compute an effective representation
for the splitting field G of P , as well as effective representations for ω(i)

j , for
i = 1, . . . , n, j = 1, . . . ,m. So the coefficients of the linear forms `i,j defined
in the proof of Theorem 2.8.1 are effectively given. So by Corollary 2.6.2,
we can compute a finite set of solutions x ∈ An of (2.8.2), consisting of one
representative from each ZA,D-coset. But this means precisely that we can
compute a finite set of solutions ξ ∈M of equation (2.8.2), consisting of one
element from eachM∩K-coset.

Proof of Corollary 2.8.3. By Corollary 2.8.2, we can effectively compute a
full system of representatives, say {ξ1, . . . , ξs}, for the O ∩K-cosets of solu-
tions of

DΩ/K(ξ) = δ in ξ ∈ O. (10.3.3)

Further, by Corollary 6.3.9, we can compute a full system of representatives,
say {η1, . . . , ηt}, for the cosets of O ∩K modulo A. Then the finite set {ξi +
ηj : i = 1, . . . , s, j = 1, . . . , t} is an effectively computable full system of
representatives for the A-cosets of solutions of (10.3.3).

In the proof of Theorem 2.8.4 we shall need the following.

Lemma 10.3.1. For every integral domain A of characteristic 0 which is
finitely generated over Z and every two monic polynomials f, f ′ ∈ A[X],
all effectively given, we can determine effectively whether f, f ′ are strongly
A-equivalent.
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Proof. It suffices to consider the case when f, f ′ have equal degrees. Write
f(X) = Xn + a1X

n−1 + · · · , f ′(X) = Xn + b1X
n−1 + · · · . We have to

check whether there is an a ∈ A such that f ′(X) = f(X + a). Comparing
the coefficients of Xn−1 we see that for such a we must have na = b1 − a1.
Using Theorem 6.3.2 we can check whether a ∈ A and then whether indeed
f ′(X) = f(X + a).

Proof of Theorem 2.8.4. Let A,G, δ, n be effectively given and satisfy the
conditions of Theorem 2.8.4. Denote by AK the integral closure of A in K
and by AG the integral closure of A in G. Let f be a polynomial with

D(f) = δ, f is monic, f ∈ A[X],
deg f = n, f has all its zeros in G. (2.8.6)

Write
f = (X − ξ1) · · · (X − ξn).

Then

ξ1, . . . , ξn ∈ AG, ξ1 + · · ·+ ξn ∈ A, (10.3.4)∏
1≤i<j≤n

(ξi − ξj)2 = δ. (10.3.5)

For arbitrary ξ1, . . . , ξn with (10.3.4), (10.3.5), we write ξ := (ξ1, . . . , ξn),
fξ := (X − ξ1) · · · (X − ξn). It is important to notice that conversely, if ξ
satisfies (10.3.4), (10.3.5) then fξ satisfies all conditions in (2.8.6), except
that it need not belong to A[X].

Two tuples ξ′ = (ξ′1, . . . , ξ
′
n), ξ′′ = (ξ′′1 , . . . , ξ

′′
n) with (10.3.4), (10.3.5) are

said to lie in the same A-coset if

ξ′1 − ξ′′1 = · · · = ξ′n − ξ′′n ∈ A.

Notice that in this case, the corresponding polynomials fξ′ , fξ′′ are strongly
A-equivalent. We show that there are only finitely many A-cosets of tuples
ξ with (10.3.4), (10.3.5), and determine a full system of representatives, and
subsequently select those tuples ξ from this system for which fξ ∈ A[X].
Then every polynomial f with (2.8.6) is strongly A-equivalent to one of these
fξ.

By Theorem 6.3.6, AG is finitely generated as an A-module, and we can
effectively determine a system ofA-module generators forAG, say {ω1, . . . , ωm}.
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Thus, we can express ξ1, . . . , ξn with (10.3.4) as

ξi = `i(x) := xi,1ω1 + · · ·+ xi,mωm (i = 1, . . . , n− 1),
ξn = `n(x) := x0 − `1(x)− · · · − `n−1(x)

(10.3.6)

where

x = (x1,1, . . . , x1,m, . . . , xn−1,1, . . . , xn−1,m, x0) ∈ Am(n−1)+1,

and then (10.3.5) translates into the decomposable form equation

F (x) :=
∏

1≤i,j≤n
i 6=j

(`i(x)− `j(x)) = (−1)n(n−1)/2δ in x ∈ Am(n−1)+1.

(10.3.7)

Completely similarly as in the proof of Theorem 2.8.1, one shows that the
system of linear forms

L := (`i − `j : 1 ≤ i, j ≤ n, i 6= j)

is triangularly connected. Further, we have

x ∈ ZA,F ⇐⇒ `1(x) = · · · = `n(x).

By Corollary 2.6.2, equation (10.3.7) has only finitely many ZA,F -cosets of
solutions, and a full system of representatives of these can be determined
effectively. Notice that if x = (. . . , x0) ∈ ZA,F , then

`1(x) = · · · = `n(x) = 1
nx0 ∈ 1

nA ∩ AG = 1
nA ∩ AK .

Translating this back to (10.3.4), (10.3.5), we see that the tuples ξ with (10.3.4),
(10.3.5) lie in only finitely many ( 1nA∩AK)-cosets. Moreover, a full system of
representatives for these cosets can be determined effectively. Let C be such a
full system of representatives. By Corollary 6.3.7, there are only finitely many
cosets of 1

nA ∩ AK modulo A, and a full system of representatives of these
can be determined effectively. Let C ′ be such a system. From C and C ′ we
compute

C ′′ := {ξ + a∗ : ξ ∈ C, a ∈ C ′} where a∗ := (a, . . . , a)︸ ︷︷ ︸
n times
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which is a full system of representatives for the A-cosets of tuples ξ with
(10.3.4), (10.3.5). From the tuples ξ ∈ C ′′ we effectively select those for which
fξ ∈ A[X]; namely, using the effective representations of the coefficients of
fξ we can first decide whether fξ ∈ K[X], and then subsequently whether
fξ ∈ A[X] by means of Theorem 6.3.2. Further, using Lemma 10.3.1, from
the fξ with the remaining ξ we select a maximal set of pairwise not stronglyA-
equivalent polynomials. What is left is a finite, full system of representatives
for the strong A-equivalence classes of polynomials f with (2.8.6).
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[69] K. Győry (1978b), On polynomials with integer coefficients and given
discriminant V., P -adic generalizations, Acta Math. Acad. Sci. Hungar
32, 175–190.
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[75] K. Győry (1982), On certain graphs associated with an integral do-
main and their applications to diophantine problems, Publ. Math. De-
brecen 29, 79–94.
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Glossary of frequently used
notation

General notation

|A| cardinality of a finite set A
log∗ x max(1, log x), log∗ 0 := 1.
�, � Vinogradov symbols; A(x) � B(x) or B(x) �

A(x) means that there is a constant c > 0 such that
|A(x)| ≤ cB(x) for all x in the specified domain.
The constant cmay depend on certain specified pa-
rameters independent of x

�a,b,... the positive constants implied by �a,b,... depends
only on a, b, . . . and are effectively computable

O(·) c× the expression between the parentheses, where
c is an effectively computable positive absolute
constant. The cmay be different at each occurrence
of O(·)

Z, Z>0, Z≥0 integers, positive integers, non-negative integers
Q, R, C rational numbers, real numbers, complex numbers
gcd greatest common divisor
D(f) discriminant of a polynomial f(X)
K algebraic closure of a field K
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A integral domain (i.e., commutative ring with 1 and
without divisors of 0)

A∗ unit group (multiplicative group of invertible ele-
ments) of A

AG integral closure of A in an extension G of the quo-
tient field of A

A[X1, . . . , Xn] ring of polynomials in n variables with coefficients
in A

A[α1, . . . , αn] {f(α1, . . . , αn) : f ∈ A[X1, . . . , Xr]}, A-algebra
generated by α1, . . . , αn

ξ +M {ξ + η : η ∈ M}, M-coset, where M is an A-
module and ξ belongs to an A-module containing
M

M′/M quotient A-module of two A-modules M′,M,
where M′ ⊇ M; M′/M consists of the M-
cosets ξ +M with ξ ∈ M′, and is endowed with
addition (ξ1 +M) + (ξ2 +M) := (ξ1 + ξ2) +M
and scalar multiplication a · (ξ +M) := aξ +M,
for ξ1, ξ2, ξ ∈M′ and a ∈ A

H(Q), L(Q) maximum of the absolute values resp. the sum
of the absolute values of the coefficients of Q ∈
Z[X1, . . . , Xn]

degQ, h(Q) the total degree of Q ∈ Z[X1, . . . , Xn], resp. the
logarithmic height logH(Q) of Q

s(Q) max(1, degQ, h(Q)), the size of Q

Finite étale algebras over fields
Ω/K finite étale algebra over a field K, i.e., a direct

product L1 × . . . × Lq of finite separable field ex-
tensions of K

[Ω : K] dimK Ω
x 7→ x(i) non-trivial K-algebra homomorphisms Ω→ K
DΩ/K(α) discriminant of α ∈ Ω over K
AΩ integral closure of an integral domain A with quo-

tient field K in a finite étale K-algebra Ω
O A-order of Ω, i.e., a subring of AΩ containing A

and generating Ω as a K-vector space
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Algebraic number fields
ordp(a) exponent of a prime number p in the unique prime

factorization of a ∈ Q, and ordp(0) =∞
|a|p p−ordp(a), p-adic absolute value of a ∈ Q
|a|∞ max(a,−a), ordinary absolute value of a ∈ Q
Qp p-adic completion of Q, Q∞ = R
MQ {∞} ∪ {primes}, set of places of Q
OK , DK , hK , RK ring of integers, discriminant, class number, regu-

lator of a number field K
p, a non-zero prime ideal, fractional ideal of OK
[α] = αOK fractional ideal generated by α
ordp(a) exponent of p in the unique prime ideal factoriza-

tion of a
ordp(α) exponent of p in the unique prime ideal factoriza-

tion of (α) for α ∈ K, with ordp(0) :=∞.
NK(a) absolute norm of a fractional ideal a of OK (writ-

ten as N(a) if it is clear which is the underlying
number field)

MK set of places of a number field K
| · |v (v ∈MK) normalized absolute values of K, satisfying the

product formula, with |α|v := NK(p)−ordp(α) if
α ∈ K and p is the prime ideal of OK correspond-
ing to the finite place v

Kv completion of K at v
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S∞ set of infinite (archimedean) places
S finite set of places of K, containing S∞
OS {α ∈ K : |α|v ≤ 1 for v ∈ MK\S}, ring of

S-integers, written as ZS if K = Q
O∗S {α ∈ K : |α|v = 1 for v ∈ MK\S}, group of

S-units, written as Z∗S if K = Q
NS(α)

∏
v∈S |α|v, S-norm of α ∈ K

RS S-regulator
PS , QS max{NK(p1), . . . , NK(pt)},

∏t
i=1 NK(pi), where

p1, . . . , pt are the prime ideals of OK correspond-
ing to the finite places of S

|x|v (v ∈MK) maxi |xi|v, v-adic norm of x = (x1, . . . , xn) ∈ Kn

Hhom(x)
(∏

v∈MK
|x|v
)1/[K:Q], absolute homogeneous

height of x ∈ Kn

H(x)
(∏

v∈MK
max(1, |x|v)

)1/[K:Q], absolute height of
x ∈ Kn

H(α)
(∏

v∈MK
max(1, |α|v)

)1/[K:Q], absolute height of
α ∈ K

hhom(x), h(x), h(α) logHhom(x), logH(x), logH(α), absolute loga-
rithmic heights (x ∈ Kn, α ∈ K)

h(P ) h(xP ), xP vector consisting of the non-zero coef-
ficients of a polynomial P ∈ K[X1, . . . , Xn]

Function fields
k field of constants (always algebraically closed)
k((z)) field of Laurent series in z
gK/k genus of function field K with constant field k

(K/k is always assumed to be of transcendence
degree 1)

MK set of (normalized discrete) valuations ofK, trivial
on k

v(x) (v ∈MK) mini v(xi), v-adic norm of x = (x1, . . . , xn) ∈ Kn

Hhom
K (x) −

∑
v∈MK

v(x), homogeneous height of x ∈ Kn

HK(x)
∑

v∈MK
max(0,−v(x)), height of x ∈ K

S a finite subset ofMK
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OS {α ∈ K : v(α) ≥ 0 for v ∈ MK\S}, ring of
S-integers

O∗S {α ∈ K : v(α) = 0 for v ∈ MK\S}, group of
S-units

Finitely generated domains
A = Z[z1, . . . , zr] {f(z1, . . . , zr) : f ∈ Z[X1, . . . , Xr]}, finitely

generated integral domain over Z with quotient
field K = Q(z1, . . . , zr)

A ' Z[X1, . . . , Xr]/I I := {f ∈ Z[X1, . . . , Xr] : f(z1, . . . , zr) = 0},
finitely generated ideal in Z[X1, . . . , Xr]

I = (f1, . . . , fM) ideal representation for A
α̃ ∈ Z[X1, . . . , Xr] representative for α ∈ A if α = α̃(z1, . . . , zr)
A effectively given if an ideal representation (f1, . . . , fM) for A is

given
α ∈ A effectively given
(computable)

if a representative for α is given (can be computed)

{z1 = X1, . . . , zq = Xq} transcendence basis for K = Q(z1, . . . , zr) over Q
A0 = Z[X1, . . . , Xq] subring of A with unique factorization
degα, h(α) for α ∈ A0 the total degree and logarithmic height of α
K0 = Q(X1, . . . , Xq) quotient field of A0

K = K0(w) where w ∈ A, integral over A0 with degree D over
K0

degα (α ∈ K) max(degPα,0, . . . , degPα,D−1, degQα), where
Pα,0, . . . , Pα,D−1, Qα ∈ A0 are relatively prime,
and α = Q−1

α

∑D−1
j=0 Pα,jω

j

h(α) (α ∈ K) max(h(Pα,0), . . . , h(Pα,D−1), h(Qα))
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