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Preface

Diophantine number theory (the study of Diophantine equations, Diophantine
inequalities and their applications) is a very active area in number theory with
a long history. This book is about discriminant equations, an important class
of Diophantine equations with close ties to Diophantine approximation, alge-
braic number theory and Diophantine geometry. Discriminant equations in-
clude equations of the type

D(f)=96, D(F)=96

to be solved in polynomials f € A[X], or in binary forms (i.e., homogeneous
polynomials) F € A[X, Y], where A is an integral domain, ¢ is a non-zero
element of A and where D(f), D(F) denotes the discriminant of f, resp. F.
In general, the solutions to these equations can be divided in a natural way
into equivalence classes, and obvious questions that arise are whether there are
only finitely many such classes, whether these classes can be determined effec-
tively or explicitly, and to give estimates for the number of such classes. These
problems are closely connected with problems from algebraic number theory
related to algebraic numbers of given discriminant, power integral bases, resp.
monogenic orders, with problems from Diophantine approximation concern-
ing root separation of polynomials, and also with problems from Diophantine
geometry, related to reduction of algebraic curves.

The present monograph gives a comprehensive and up to date treatment of
discriminant equations and their applications. It brings together many new re-
sults on this topic, as well as existing results that are scattered in the litera-
ture or not easily accessible. The main results answer the questions formulated
above. They provide effective finiteness theorems on the equivalence classes of
solutions, practical algorithms to solve such equations, as well as explicit upper
bounds for the number of equivalence classes. For applications, we give effec-
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X Preface

tive bounds for the representatives of the equivalence classes in completely
explicit form.

Certain results concerning discriminant equations and their applications were
already presented, mostly in special or weaker form, in the books [Delone and
Faddeev (1940)], [Gy&ry (1980b)], [Smart (1998)], [Gaal (2002)] and in the
survey papers [Gyory (1980d, 2000, 2006)] and [Petho (2004)].

Our monograph builds further on the book [Evertse and Gyéry (2015)], enti-
tled “Unit Equations in Diophantine Number Theory,” that has also been pub-
lished by Cambridge University Press. The results on unit equations presented
there are the most important tools that are used in the present volume. The
proofs of these results are mostly based on the Thue-Siegel-Roth-Schmidt the-
ory from Diophantine approximation and Baker’s theory from transcendence
theory. The contents of our book on unit equations as well as the present one
are an outgrowth of research, done by the two authors since the 1970-s.

The book is aimed at anybody (graduate students and experts) with basic
knowledge of algebra (groups, commutative rings, fields, Galois theory) and
elementary algebraic number theory. For convenience of the reader, in the first
part of the book we have summarized the algebraic number theory and ad-
vanced algebra that is used in the book. Further, we have given a summary of
the theory of unit equations.
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Summary

We first give a brief historical overview and then outline the contents of our
book.

We denote by D(f), D(F), the discriminant of a univariate polynomial f,
resp. binary form F'. Discriminant equations include equations of the shape

D(f) = ¢ in monic polynomials f € A[X], (D

D(F) = ¢ in binary forms F € A[X, Y], 2)

where A is a given integral domain and ¢ is a non-zero element of A. One may
view Lagrange as the initiator of the study of discriminant equations. From his
work [Lagrange (1773)] it follows that there are only finitely many GL(2, Z)-
equivalence classes of irreducible binary quadratic forms with integral coef-
ficients and given non-zero discriminant. Here two binary forms Fi,F, €
Z[X, Y] are called GL(2, Z)-equivalent if F»(X,Y) = +F(aX+bY,cX+dY) for
some matrix (¢ Z) € GL(2,A). Hermite [Hermite (1851)] proved an analogue
for binary cubic forms.

It is an old problem to decide whether a given number field K is monogenic,
that is, whether its ring of integers Ok can be expressed as Z[a] for some
a € Og. Quadratic number fields are monogenic, but Dedekind [Dedekind
(1878)] gave an example of a non-monogenic cubic field. One may view the
problem whether a number field is monogenic as a special case of equation
(1), since Ox = Z[«] if and only if the monic minimal polynomial f, of @ has
discriminant D(f,) = Dg, where Dk denotes the discriminant of K.

Delone [Delone (1930)] and Nagell [Nagell (1930)] considered the discrim-
inant equation (T)) for cubic monic polynomials f € Z[X]. They proved inde-
pendently of each other that up to strong Z-equivalence, there are only finitely
many irreducible cubic monic polynomials with integral coefficients and given
non-zero discriminant 6. Here, two monic polynomials fi, f> € Z[X] are called

X1



xii Summary

strongly Z-equivalent if f,(X) = fi(X + a) for some a € Z. Clearly, they have
the same discriminant. For quartic polynomials, the above assertion was later
proved by Nagell [Nagell (1967, 1968)]. The proofs of Delone and Nagell are
ineffective.

Birch and Merriman [Birch and Merriman (1972)] and Gy6ry [Gy6ry (1973)]
showed independently of each other the close connection between discriminant
equations and unit equations in two unknowns, these are equations of the type

ax+By=1inx,ye A" 3)

where A is an integral domain with quotient field K of characteristic 0 and «, 8
are non-zero elements of K. There is a vast theory on such equations, which
has been discussed in our book [Evertse and Gy&ry (2015)]. By a result of
Lang [Lang (1960)], equations of type (B) have only finitely many solutions
if A is any domain of characteristic O that is finitely generated as a Z-algebra.
Later it was shown that for such domains it is possible, at least in principle, to
determine all solutions. Further, in the case that A is contained in an algebraic
number field there are practical algorithms to find all solutions, and there are
also uniform upper bounds for the number of solutions depending only on the
rank of A™.

Birch and Merriman [Birch and Merriman (1972)] extended the results of
Lagrange and Hermite to not necessarily irreducible binary forms of any de-
gree. Among other things, they proved that there are only finitely many GL(2, Z)-
equivalence classes of binary forms F € Z[X, Y] of given degree and given
non-zero discriminant. The main idea was to reduce equation (2)) to unit equa-
tions of the shape (3), where the unknowns are units from the ring of integers
of some huge number field. The proof of Birch and Merriman is ineffective,
because in the reduction to unit equations there are some ineffective steps. In-
dependently, Gydry [Gydry (1973)] generalized in an effective way the results
of Delone and Nagell on equation (I)) for monic irreducible cubic polynomials
mentioned above to monic polynomials of any degree that are not necessarily
irreducible. Also by making a reduction to unit equations in two unknowns,
he gave a fully effective proof of the fact that for any given, non-zero integer &
there are only finitely many strong Z-equivalence classes of monic polynomials
f € Z[X] satisfying (T)). GyGry’s result implies, among other things, an effec-
tive procedure to decide whether a given number field K is monogenic, and
more generally, it allows to determine in principle all @ such that Og = Z[«].
Combining this with practical algorithms for solving unit equations of the form
(@), nowadays it is possible to find all such @ in concrete number fields of de-
gree at most 6 with not too large discriminant. We should remark here that both
Birch and Merriman and Gy&ry have extended their results to binary forms, re-
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spectively monic polynomials of given degree over the S -integers of a number
field.

Our book is about the developments during the last 40 years, that arose from
the results on discriminant equations mentioned above. Below, we give a brief
summary of the contents of our book.

The book is organized as follows. Part[[ consists of preliminary material. In
Chapters[TH3] we have collected the necessary tools from algebra and algebraic
number theory. A feature of this book is that we consider equations (1)), ()
not just for irreducible polynomials or binary forms, but also for reducible
ones. To handle these, we need some background on finite étale algebras over
fields, these are direct products of finite field extensions. In Chapter [T] we have
provided a more detailed overview of such algebras since for this material
we could not find a convenient reference. In Chapters [2| and [3| on Dedekind
domains and algebraic number fields we have gathered the definitions and facts
needed in this monograph; for most proofs we have referred to the literature.
Chapter [] gives an overview of the results on unit equations needed in this
book. For the proofs of those, we refer to our book [Evertse and Gy6ry (2015)].

Discriminant equations concerning monic polynomials and algebraic inte-
gers are discussed in Part II, consisting of Chapters [SHIT] while Part IIT with
Chapters [[2HI8]is devoted to discriminant equations concerning binary forms.
In each of these two parts there are new results which were not yet published.

For convenience of the reader, in Parts IT and III we proceed gradually, from
the simpler to the more general, more complicated cases. Further, before dis-
cussing the general results of a chapter, we first present the most important
results and their applications in the classical situation when the ground field
is Q. At the end of several chapters there are Notes in which some historical
remarks are made and further related results, generalizations and applications
are mentioned.

In Chapter [5] we start with some basic theory on discriminant equations for
monic polynomials and integral elements of finite étale algebras, and discrimi-
nant form and index form equations. We illustrate, in their simplest ineffective
and qualitative form, the basic ideas of the proofs of the general finiteness
results obtained in [Gy&ry (1982)] for monic polynomials and their conse-
quences over finitely generated domains over Z, these are integral domains
that contain Z and are finitely generated as a Z-algebra. Here our main tool
is Lang’s finiteness result for unit equations (3). Chapter [6] contains Gy6ry’s
[Gybry (1973, 1974, 1976)] effective finiteness theorems over Z, with the best
explicit bounds to date for the sizes of the solutions, on equation (I)) and on re-
lated discriminant form and index form equations. These theorems are proved
by making a reduction to unit equations in two unknowns and using the ef-
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fective results from Chapter[d] An important application of these results is an
algorithm that decides whether an order of an algebraic number field is mono-
genic, i.e., of the form Z[a], and to determine all @ with this property. The
results described above allow to solve the equations under consideration in
principle but not in practice. A combination of the proofs of Chapter [6] with
some reduction algorithms provides in Chapter [7]a practical algorithm for the
resolution of these equations in concrete cases. Various applications are given,
among others to power integral bases.

In Chapter [§] the results of Chapter [6] are generalized, with less precise
bounds and algorithms, to the case when the ground ring is the ring of §-
integers in a number field K. The main results are effective finiteness theorems
in explicit form on discriminant equations in monic polynomials and, equiva-
lently, in integral elements of a finite étale K-algebra. The latter result is new.
Several applications are established. The proofs depend again on some effec-
tive results from Chapter [d] concerning unit equations.

The main results of Chapter [J] give uniform upper bounds for the number
of equivalence classes of solutions to discriminant equations, both in monic
polynomials with coefficients in the ring of S -integers of a number field K,
and in integral elements from an étale K-algebra. Some applications are also
presented. Most of the results of this chapter are new. In the proofs we use the
bound of Beukers and Schlickewei, recalled in Chapter @ for the number of
solutions of unit equations in two unknowns. Another feature of Chapter [J]is a
proof of the fact that every finite étale Q-algebra has only finitely many three
times monogenic orders. Here an order O is called k times monogenic if there
are k elements ay,...,a; € O, with; + a; ¢ Z for 1 <i < j < k such that
O =Z[ay] = --- = Z[ay]. This extends work of the authors and Bérczes, see
[Bérczes, Evertse and Gy6ry (2013)].

In Chapter [T0] some effective finiteness theorems from Chapter [§] are gener-
alized to discriminant equations in monic polynomials with coefficients from
an arbitrary, effectively given, integrally closed and finitely generated integral
domain A over Z of characteristic 0, and in elements of an A-order of a finite
étale K-algebra. Here K denotes the quotient field of A. Their proofs depend
on general effective results on unit equations in two unknowns, see [Evertse
and Gy6ry (2013)] or [Evertse and Gy&ry (2015), chap. 8].

In Chapter [1 1| we discuss two further applications of the theory discussed
above. The first application gives a method to decide whether a given number
field K has a canonical number system, i.e., an integer a of K such that every
integer of K can be expressed uniquely as Y/_, b;a’ with rational integers b;
from the range {0, 1, ..., [Ng/q(a)|—1}. Further it provides a method to compute
all such @. The second deals, among other things, with determining effectively
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a set of Z-algebra generators of minimal cardinality for an order of a finite
étale Q-algebra. In fact, combining the work from the previous chapters with
ideas from [Pleasants (1974)] and [Kravchenko, Mazur and Petrenko (2012)]
we show among other things, that given an order O of a finite étale Q-algebra,
one can effectively compute the smallest » such that there exist a1, .. ., a, with
O =Zlay,...,a,] and if so, compute such a1, ..., @,.

Birch and Merriman [Birch and Merriman (1972)] proved in an ineffective
way that there are only finitely many GL(2, Og)-equivalence classes of bi-
nary forms F € Og[X, Y] with given degree and given non-zero discriminant,
where Og denotes the ring of S -integers of a number field. Here, two binary
forms Fy, F, with coefficients in a commutative ring A are called GL(2,A)-
equivalent if F5(X,Y) = eF(aX+bY,cX+dY) for some unit € € A* and matrix

a Z) € GL(2, A). Evertse and Gy6ry [Evertse and Gydry (1991a)] established
an effective version of this theorem, allowing to determine the equivalence
classes in principle. Further, together with Bérczes (see [Bérczes, Evertse and
Gy6ry (2004)]) they obtained an explicit upper bound for the number of equiv-
alence classes. Part[ITl] deals with refinements and extensions of these results.

In the first chapter of Part in Chapter [I2] we introduce some terminol-
ogy and give a brief overview of the qualitative finiteness results for binary
forms of given discriminant. In Chapter [I3] we extend the reduction theory
of Hermite [Hermite (1851)] and Julia [Julia (1917)] to binary forms whose
coefficients lie in the ring of S -integers of a number field. In Chapter [I4] we
give by means of an alternative proof, a much better and completely explicit
version of the effective result of Evertse and Gy6ry mentioned above, by com-
bining the reduction theory from Chapter [I3| with the effective results on unit
equations from Chapter [d] This explicit result gives, for every reduced binary
form F € Og[X, Y] (i.e., of minimal height in its GL(2, Os)-equivalence class)
of non-zero discriminant D(F’), an upper bound for the height of F in terms
of D(F) and the degree of F. Several applications and a generalization to de-
composable forms are also presented. In Chapter [I5] we give a semi-effective
analogue of the main result of Chapter [I4} which gives, for every reduced bi-
nary form F € Ogl[X, Y], an upper bound for the height of F which is much
sharper in terms of D(F’), but ineffective in the other relevant parameters.

In Chapter |16| we introduce an Og-algebra associated with a binary form
F € Og[X,Y], its invariant order, and prove some basic properties. In par-
ticular, two GL(2, Oy )-equivalent binary forms have the same invariant order.
This is used in Chapter where we first give an explicit upper bound for
the number of GL(2, Os)-equivalence classes of binary forms F € Os[X, Y]
with given invariant order, and second an explicit upper bound for the number
of GL(2, Oyg)-equivalence classes of binary forms F € Og[X, Y] with given



XVi Summary

non-zero discriminant and with a given splitting field. Also in Chapter[I7] we
consider binary forms with coefficients in an integrally closed integral domain
A D Z that is finitely generated as a Z-algebra. It is shown that there are only
finitely many GL(2, A)-equivalence classes of binary forms F' € A[X, Y] with
given invariant order.

Finally, in Chapter |18| we discuss some applications of results of Chapters
and First we consider the problem of giving good lower bounds for
the differences between the zeros of a polynomial. By an elementary result of
Mahler [Mahler (1964b)], we have for any two distinct zeros o, € C of a
polynomial f € Z[X] that |@ — 8| > c(n)H(f)'™ where H(f) is the height,
i.e., the maximum of the absolute values of the coefficients of f, and c(n) a
positive number depending only on n. We deduce other lower bounds with a
better dependence on H(f). Second we present an effective result of von Kénel
[von Kinel (2011, 2014a)], which gives, for hyperelliptic curves, an effective
version of Shafarevich’ Conjecture/Faltings’ Theorem, which states that there
are only finitely many isomorphism classes of algebraic curves of given genus
over a given number field that have good reduction outside a given finite set of
primes.

Certain topics related to the subject of the book are not discussed here and
many references are left out owing to lack of space. For instance, we do not
deal in detail with discriminant equations over function fields or discriminant
equations over integral domains of positive characteristic.
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Finite étale algebras over fields

We give a brief introduction to finite étale algebras over a given field K, these
are direct products L; X - - - X L, of finite separable field extensions L, ..., L,
of K. Such algebras play a central role in this monograph. There is a more
general notion of finite étale algebra over a commutative ring. In the special
case that this ring is a field this definition is equivalent to ours. A convenient
reference is [Lenstra Jr. (2001), chap. 11]. Other suitable references for finite
étale algebras over fields are [Cohen (2000), §2.1.2] and [Bourbaki (1981),
chap. 5]. For technical convenience, we restrict ourselves to the case that K
has characteristic 0.

1.1 Terminology for rings and algebras

We agree here on the terminology for rings and algebras to be used throughout
this book.

By a ring we will always mean a commutative ring with unit element. We
denote the zero element and unit element of a ring A by 04 and 14, or just by
0 and 1 if it is clear in which ring we are working. The additive group of a
ring A is denoted by A*, and its unit group (group of multiplicatively invertible
elements) by A*.

A subring of A is always supposed to have the same unit element as A. For
a homomorphism of rings ¢ : A — B we always require that ¢(14) = 1p.

An integral domain is a commutative ring with unit element and without
divisors of zero. The quotient field of an integral domain A consists of the
quotients a/b with a,b € A, b # 0, where two quotients a/b, c¢/d are identified
if ad = bc.

A module over a ring A is always assumed to satisfy 14m = m for every
element m of the module.



4 Finite étale algebras over fields

Let A be a ring and B a commutative, associative A-algebra with unit el-
ement, i.e., B is a commutative ring whose additive group has an A-module
structure. If ay,...,a, € B, we denote by Al«j,...,a,] the smallest subring
of B containing A and «y,...,a,. It consists of all polynomial expressions
glay,...,a,) with g € A[X,...,X,]. We say that @ € B is integral over A if
there is a monic polynomial f € A[X] with f(a) = 0. The elements in B that
are integral over A form a subring of B, the integral closure of A in B. In case
that A = K is a field, we use the term ‘algebraic’ instead of ‘integral’ and call
the ring of elements of B algebraic over K the algebraic closure of K in B.

An integral domain A is said to be integrally closed if every element of the
quotient field of A that is integral over A in fact belongs to A.

Let K be a field, and € a commutative, associative K-algebra with unit ele-
ment. We define the degree of Q over K, notation [Q : K], to be the dimension
of Q) as a K-vector space in case this is finite.

Let @ € Q be algebraic over K. Then the set of polynomials g € K[X] with
g(a) = 0 form a non-zero ideal of K[X]. This ideal is principal. Any generator
of this ideal is called a minimal polynomial of a over K. The unique monic
generator of this ideal is called the monic minimal polynomial of a over K,
notation f,. The degree of f, is called the degree of a over K. Since the K-
algebra homomorphism g — g(a) from K[X] to K[«] has kernel (f,), one has

Kla] = K[X]/(fo), [Kla]: K] = deg f,. (1.1.1)

In particular, if Q is finite dimensional over K, then every @ € Q is algebraic
over K and [K[a] : K] < [Q: K].

1.2 Finite field extensions

Let K be a field of characteristic 0. We fix an algebraic closure K > K of K. We
recall that a finite extension L of K is a field extension of K that as a K-vector
space has finite dimension over K. This dimension is then denoted by [L : K]
and called the degree of L over K.

Let L be a finite extension of K. Then there exists an irreducible monic
polynomial f € K[X] such that L = K[X]/(f). If [L : K] = n, then there
are precisely n distinct injective homomorphisms from L to K leaving the ele-
ments of K fixed; these are called the K-isomorphisms of L into K. We usually
denote these K-isomorphisms by x — x (i = 1,...,n), and call the images
aV,...,a"™ of @ € L under these K-isomorphisms the conjugates of a over
K.
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If M > L O Kis atower of finite extensions, then [M : K] = [M : L]-[L : K],
and every K-isomorphism of L into K can be extended in precisely [M : L]
ways to a K-isomorphism of M into K.

We introduce the characteristic polynomial, trace, norm and discriminant
with respect to a finite field extension L/K. The characteristic polynomial,
trace and norm of @ € L relative to the extension L/K are defined by

ZikaX) = [ [X =),

i=1
n n

Tryg(a) = Z a?,  Npx(a):= 1_[ a",
=1 i=1

respectively, where again, n = [L : K] and o'V, ..., ™ denote the conjugates
(in K) of @ over K. The characteristic polynomial of @ over K is a power of
the monic minimal polynomial of @ over K, therefore its coefficients belong to
K. Consequently, for any symmetric polynomial P € K[X,...,X,] we have
P@V,...,a™) € K. So in particular, Trz/x(@), Np/k(a) belong to K. Notice
that Try k is K-linear and Ny k is multiplicative. Further, for a € K we have
Tryjk(a) = na, Npx(a) = a". The trace and norm are transitive with respect to
towers of field extensions, that is, if M is a finite extension of L, we have for
aeM,

Tryk(@) = Tryx(Tryy(@),  Nyyk(a) = Npyg(Nuy(@)).

We mention that the above defined characteristic polynomial of « is equal to
the characteristic polynomial of the K-linear map x — ax from L to L. Thus,
Trr x(a) is the trace, and Ny, g () the determinant of this map.
We define the discriminant of a tuple wy, ..., w, € Lby
DL/K((U] e, Wy) = det(TrL/K(a),-a)j))

i,j=1,...,n

. 2
_ (det(w;w)i,j:l ) .

,,,,,

This quantity clearly belongs to K. Further, the discriminant is non-zero if and
only if {wy, ..., w,} form a K-basis of L.
The discriminant of a € L is defined by

Dpjk(@) = Dyx(La,...,a" ).
By Vandermonde’s identity, this can be expressed otherwise as

Dyx(a) = l_[ (@ — V)2,

1<i<j<n
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This quantity is non-zero if and only if L = K(a).

1.3 Basic facts on finite étale algebras over fields

Let for the moment K be any field and take finite field extensions Ly, ..., L,
of K. The direct (K-algebra) product of Ly, ..., L, notation L; X --+ X L, is
defined as the set of tuples

{(al,...,o/q): aq €L1,...,a'q ELq},

endowed with coordinatewise addition, multiplication and scalar multiplica-
tion with elements of K. The zero element and unit element of L X --- X L,
are (0,...,0) and (1,..., 1), respectively, while the unit group of this algebra
consists of the tuples (a1, ...,a,) with @; # O fori = 1,...,g. The elements
# (0,...,0) outside the unit group are the zero divisors of the algebra.

Definition A finite étale K-algebra is a K-algebra that is isomorphic to a
direct product of finitely many finite separable extensions of K. [ ]

In the remainder of this chapter, K will be a field of characteristic 0. We fix
an algebraic closure K of K. Let Q be a finite étale K -algebra, i.e., there exist
a finite number of finite (automatically separable) extensions Ly, ..., L, of K
and a K-algebra isomorphism

0: QDL x--- XL, (1.3.1)

We denote by Oq, 1o the zero element and unit element of Q. The degree
[Q : K] of Q over K, i.e., the dimension of Q as a K-vector space, is equal to
[Q:K]= Z?:I[L,- 1 K].

We can embed K into Q by means of a — a - 1. It will be often convenient
to view K as a subalgebra of Q by identifying a € K with a - 1. In that case,
the zero element and unit element of Q are simply the zero element 0 and unit
element 1 of K.

If K is a finite extension of some subfield E, then O may be viewed as a
finite étale E-algebra as well, and

[Q:E]=[Q:K] - [K:E]

where [K : E] is the degree of K over E.

Below we give another characterization of finite étale K-algebras. A poly-
nomial f € K[X] of degree n is called separable, if over an extension of K it
factorizes as a(X — ay) - - - (X — @,) with distinct a1, . .., @,. Recall that we are
assuming throughout that K is of characteristic 0.
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Proposition 1.3.1 Let Q be a finite-dimensional K-algebra. Then the follow-
ing two statements are equivalent:

(i) Q is a finite étale K-algebra with [Q : K] = n.

(ii) There is a separable polynomial f € K[X] of degree n such that Q =
KIX1/(f).

We denote the K-algebra K[X]/(f) by Q(f).

Proof (1)=(ii). Suppose that Q = L; X---XL,, where Ly, ..., L, are finite ex-
tensions of K. Since K is of characteristic 0, we can choose distinct irreducible
monic polynomials fi,..., f; € K[X]such that L; = K[X]/(f)) fori=1,...,q.
Let f = fi--- f;. Then f has degree Z:’zl deg f; = n, f is separable, and by the
Chinese Remainder Theorem for polynomials,

Q = K[X]/(f1) x--- X K[X]/(fg) = K[X]/(f).

(i1)=(). Suppose that Q = K[X]/(f) for some separable polynomial f € K[X]
of degree n which we may assume to be monic. Then f can be expressed as
a product f; - - - f, of distinct monic irreducible polynomials in K[X] and then
K[X]1/(f) is a direct product of K[X]/(f;) (i = 1,...,q) which are all finite
extensions of K. O

Corollary 1.3.2 Let Q be a finite étale K-algebra. Then there is 6 € Q such
that Q = K[6].

Such an element 6 is called a primitive element of Q over K.

Proof There is a K-algebra isomorphism ¢ : Q = K[X]/(f), with f € K[X]
separable. Take for 6 the inverse under ¢ of the residue class of X modulo f.
Then Q = K[0]. ]

By a K-homomorphism from a finite étale K-algebra € to an extension field
L of K we mean a non-trivial K-algebra homomorphism from Q to L. Such a
K-homomorphism cannot be injective if Q is not a field.

Proposition 1.3.3 Let Q be a finite étale K-algebra with [Q : K] = n. Then
there are precisely n distinct K-homomorphisms from Q to K. Moreover, an el-
ement of Q is uniquely determined by its images under these homomorphisms.

Proof We give two different constructions that will both be used later.

First choose a monic, separable polynomial f € K[X] such that Q = K[X]/(f).
Let 6 be the inverse image of the residue class of X under this isomorphism so
that Q = K[f] and f(6) = 0. The polynomial f has n distinct zeros in K,
say 81, ...,6", and each assignment 6 — 6% (i = 1,...,n) defines a K-
homomorphism from Q to K. On the other hand, a K-homomorphism from
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Q to K necessarily has to map 6 to a zero of f in K, so there are no other
K-homomorphisms.

For the other construction, choose finite extensions Ly, ..., L, of K and an
isomorphism ¢ : Q = Ly X --- X L,. Fori=1,...,q, there are precisely n; :=
[L; : K] distinct K-isomorphisms L; into K, Tils-.., 0y say. For @ € Q, write
pl@) = (ay,...,a,) where @; € L; fori = 1,...,q. This gives rise to precisely
n distinct K-homomorphisms « = oyj(a;) (i = 1,...,q, j=1,...,n;) from Q
to K. The images o7;;(a;) of these homomorphisms determine «, ..., a,, and
hence «, uniquely, since fori = 1,...,q, j = 1,...,n; the map o;; is injective
onL;. O

Let Q be a finite étale K-algebra and denote by x — x® (i = 1, ..., n) the K-
homomorphisms of Q to K. The images of Q under these K-homomorphisms
are finite extension fields of K. In fact, if Q is isomorphic to a direct product
Ly x---XL, of finite field extensions of K, these are the conjugates of L, ..., L,
over K. In case that Q = K[X]/(f) with f € K[X] separable the compositum
of these extension fields is the splitting field of f over K.

Example Let f = X(X>+ X + 1) and Q = Q[X]/(f). Then Q = K[6], where
6 := X (mod f). We have Q = Q X Q(p) where p is a primitive cube root of
unity, and the three Q-homomorphisms of Q are given by 8 — 0, 8§ — p,
06— pz.

Below we use that every o € Gal(K/K) permutes the K-homomorphisms of

Q. ie, x> o(x?) (i =1,...,n)is a permutation of x — x? (i =1,...,n).

Corollary 1.3.4 Let f € K[X], and @ € Q. Then f(a) = 0 = f(@?) =0
fori=1,...,n

Proof  Apply the last assertion of Proposition[I.3.3]to f(a). m]

Corollary 1.3.5 Let € Q and let o (i € I) be the distinct elements among
oW, ..., a™. Then for the monic minimal polynomial of « over K we have

JoX) = [Tier(X = ).
Proof Let g(X) := [Tie;(X — a®). The elements of Gal(K/K) permute o
(i € I. Hence g is invariant under the action of Gal(X/K) and so it belongs to

K[X]. Now apply Corollary O

Corollary 1.3.6 Suppose [Q : K] = n. Let f € K[X] be a non-zero polyno-
mial of degree m. Then f has at most m"* zeros in Q.

Proof Letf,...,B, be the distinct zeros of f in K. Let 8 be any zero of f in
Q. Then by Corollary we have 89 € {By,...,8,} fori =1,...,n. So for
the tuple (B, ..., B™), hence for 3, there are at most 7" < m" possibilities. O
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The upper bound m" in the above lemma is best possible. For instance,
let Q = K X --- X K (n-fold direct product) and f = (X —ay)--- (X — ap),
where ay,...,a, are distinct elements of K. Then all (by,...,b,) with b; €
{ai,...,a,}fori=1,...,n give zeros of f in Q.

1.4 Resultants and discriminants of polynomials

In this section we recall the basic properties of the resultant of two polynomials
and the discriminant of a polynomial. In the next section, we introduce the
discriminant of a basis of an étale algebra, and show how the discriminant of a
polynomial can be interpreted as such.

Let K be a field and

f=aX"+---+a,, g=byX"+---+b, € K[X]

two polynomials of degrees n > 0, m > 0, respectively. We define the resultant
of f and g to be the determinant of order m + n given by

ao DEEEY an
ap ay
R = 1.4.1
GO =l (1.4.1)
bO bm

where the first m = deg g rows consist of the coefficients of f, and the last
n = deg f rows of the coefficients of g. In case that one of f, g (but not both)
has degree 0, we can still use the above determinant to define R(f, g): if f = ao
is constant we obtain R(f, g) = ag, while if g = by we obtain R(f, g) = bg. If
both f, g are constant, we define R(f, g) := 1.

We recall some properties of the resultant. Assume again that f and g have
degrees n > 0, m > 0, respectively. Then

R(f,g) = 0 & f, g have a common zero in K, (14.2)

where K denotes an algebraic closure of K. Indeed, by straightforward linear
algebra, R(f,g) = O if and only if there exist polynomials u,v € K[X] of
degrees at most m — 1, n — 1, respectively, not both 0, such that uf + vg = 0,
and the latter holds if and only if f, g have a root in common. Writing

f=aX=01)---(X=6), g=0bo(X=p1)(X=pm)
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with 0y,...,0,, 01,...,0m € K, one deduces easily that

n

R(f.9) = apby| | ]ﬂ[w,» -p))
j=1

i=1 j
=agg(01)---g6,)
= (=D""byf(e1) - flom) - (1.4.3)

We define the discriminant of a linear polynomial to be equal to 1, and the
discriminant of a polynomial

f=a X"+ +a,=ayX—-6))---(X -0, € K[X]
of degree n > 2 (where 0y,...,6, € K and ap # 0), to be

D(f) := a'? ]—[ (6 - 0)>. (1.4.4)

1<i<j<n

Notice that D(f) = 0 if and only if f has a zero in K of multiplicity at least 2.
Denoting by f” the derivative of f, we have

R(f, f) =ay ' £/ f(6)

n n

=a ' [ [ ®-0)=1"2anep),

i=1 j=1, j#i

hence D(f) = (=1)"""D2a;'R(f, ). We obtain an expression for R(f, f’) as
a determinant of order 2n — 1 by substituting f” for g in (T.4.1). By subtracting
in this determinant n times the first row from the n-th row, and then developing
with respect to the first column, we obtain

D(f) - (_1)1+n(n—1)/2A (145)

where A is the determinant of order 2n — 2 given by

aO a] ... DY an
ao al .« . “ e an
a; 2a, <o+ na,
nagy (n—Da; -+ a, ’
nag (m-1a; - ap

with on the first n—2 rows ay, . . ., a,, on the (n—1)-th row a;, 2a,, . . ., na,, and
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on the last n — 1 rows nay, ..., a,—;. This shows that D(f) is a homogeneous
polynomial of degree 2n — 2 in Z[ay, . . ., a,].
Now suppose that f = f; - - - f,, where fi, ..., f, are non-constant polynomi-

als in K[X]. Then one deduces easily from (I.4.3), (T.4.4) that

pp=[]pe- [ RS (1.4.6)
i=1

I<i<j<r

1.5 Characteristic polynomial, trace, norm, discriminant

We generalize the notions of characteristic polynomial, trace, norm and dis-
criminant defined above from finite field extensions to finite étale K-algebras
by taking K-homomorphisms instead of K-isomorphisms. Let QO be a finite
étale K-algebra. We view K as a K-subalgebra of Q. Suppose that [Q : K] = n.
Let x = x (i = 1,...,n) denote the K-homomorphisms from Q to K. Further,
lety, L,...,L;be asin .

Take a € Q. We define the characteristic polynomial of @ over K by

ZoykaX) = [ (X = a®).

i=1

Since Gal(K/K) permutes o'V, ..., ", the polynomial Zq/k. is invariant
under the action of Gal(K/K) and so it belongs to K[X]. By Corollary ,
this implies Zq/k.o(@) = 0.

Let (@) = (ay,...,a,) with @; € L; fori = 1,...,q. From the second
construction in the proof of Theorem[I.3.3] we infer at once that

q
ZorkaX) = [ | Z1,k:0,0. (1.5.1)

j=1
The trace and norm of @ over K are defined by

(n)

Trox(@) =aV +---+a"™, Ngg(a)=al---a™.

Completely analogously to the case of field extensions, the above defined char-
acteristic polynomial of « is equal to the characteristic polynomial of the K-
linear map x +— ax from Q to Q, and Trq/x(a), No/k(a) are the trace and
determinant of this map, respectively.

Both the trace and norm of @ belong to K, and from the definitions of trace
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and norm it follows at once that

TrQ/K(aa + bﬁ) = aTrQ/K(a) + bTVQ/K(ﬂ),
Nok(eB) = Najk(@)Na/x(B)

fora,b € K, a, € Q, and moreover that
Trok(a) = na, Ngix(a)=a"foraeK.
Further, if p(@) = (a1, ...,a,) witha; € Ly fori=1,..., g, we have
q q
Tra(@) = ). Trx(@)), No(@) =] | Nex(@). (1.5.2)
j=1 Jj=1

Again completely similarly as for field extensions, we define the discrimi-
nant over K of a tuple (wy, . .., w,) in Q (where as before n := [Q : K]) by

, 2
= (det(a);'))i’jzl n) .

Assume that {w1, ..., w,} is a K-basis of Q, and let 8y, ...,0, € Q. Then §; =

.....

coefficient matrix of 6, ...,0, with respect to w1, ...,w,. Then we have the
basis transformation formula for discriminants,

Dok (01,...,6,) = (det M)* - Dok (Wi, .., w,) . (1.5.3)

Now let wii,...,win, € Lifori =1,...,q, and let wy,...,w, € Q be the
elements

e (0. wijoo . ,0)) =1 =1, ) (1.5.4)

in some order, with w;; on the i-th place, and 0 on the other places. Then

q
DQ/K(CL)l, ey wn) = 1_[ DL,-/K (w,-,l, ey w,-,n,.) . (155)
i=1

The discriminant of @ € Q over K is defined by
Doyx(@) = Dok (La,?,....a""). (1.5.6)

Then by Vandermonde’s identity,

Dox@ =[] (@ —a)’. (1.5.7)

1<i<j<n
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Notice that
Dox(ua + a) = u”"*Dgx(a) forue K*, a € K. (1.5.8)

We prove a simple lemma. We denote as usual by f, the monic minimal
polynomial of @ € Q over K.

Lemma 1.5.1 Let @ € Q. Then the following conditions are equivalent:
(l) DQ/K(Q) * O

(ii) W, ..., ™ are distinct.
(iii) Fo(X) = (X = @D)-- - (X — @),
(iv) Q = K[a].

(v) Q = K[X]/(f,) as K-algebras.

Proof (i) (ii). Clear.
(ii)=(iii). The quantities o'V, ..., @™ are all zeros of f,, and f, has degree
[K[a] : K] < n. This implies (iii) at once.
(iii)=(iv). We know that [K[a] : K] = degf, = n = [Q : K]. Hence
Kla] = Q.

(iv)=(ii). The quantities 'V, . . ., @™ determine the n distinct K-homomorph-
isms of €, hence must be distinct.
(iv)e(v). Clear from (T.I.T). i

Recall that the discriminant of a polynomial f = ao [T, (X — ;) is given by
D(f) := 1if n = 1, and by D(f) := a3" > [, (@; — @;)* if n > 2. The second
part of the corollary below will be used in the theory of invariant orders of
binary forms, to be discussed in Section

Corollary 1.5.2 (i) Let Q = K[a]. Then D(f,) = Dox().

(ii) Let f = apX" + a1 X" + --- + a, € K[X] with ag # 0 be separable, let
Q = K[X]/(f) and a = X (mod f). Then D(f) = Dq/x(1, w1, ..., w,-1), where

w; = apd + a !

Proof (i). Combine (I.4.4), (1.5.7) and Lemma|[I.5.1
(ii) We have f = aq f,. Apply (i) and (1.5.3). |

Corollary 1.5.3 Let wy,...,w, € Q. Then {wy,...,w,} is K-linearly inde-
pendent if and only if Dok (w1, . .., w,) # 0.

+--+aiqa fori=1,...,n.

Proof Choose a such that Q@ = K[a]. Then Corollary[1.5.3]is a simple conse-
quence of Lemma|[I.5.1]and (I.5.3). m|

As above, let Q be a finite étale K-algebra with [Q : K] = n and denote by
x> x? (i =1,...,n) the K-homomorphisms of Q to K.
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Proposition 1.5.4 Let Y be a K-subalgebra of Q.

(i) There is a such that \ = K[a] and for each such a, the number of distinct
elements among oV, ... o™ is precisely [T : K].

(ii) Y is a finite étale K-algebra.

Proof Let us assume for the moment that there is @ with T = K[a]. By
Corollary [T.3.5] the monic minimal polynomial f, of « is separable and f, =
[Tie/(X — @'?), where a” (i € I) are the distinct elements among o'V, ..., a™.
By (I.I.1) and Proposition[I.3.1] K[a] = K[X]/(f,) is a finite étale K-algebra,
and [K[a] : K] =deg f, = |I|.

It remains to show that there is indeed a with Y = K[«]. Let [T : K] = m and
choose a K-basis {w;, ..., w,} of T. Augment this to a K-basis {wy, ..., w,} of
Q. By Corollary @ we have det (a)l(»j))lgi’ j<n # 0. This implies that the set
of vectors (a)(lj), .,a),;{)) (j = 1,...,n) has rank m, and so in particular, that
there are at least m distinct ones among these vectors. One easily shows that
there are rational integers ay, . .., a,, such thatif @ := qjw; + - - - + a,,Wp, then
there are at least m distinct elements among o'V, ..., a®™. Let the number of
these distinct elements be m’. By the above, [K[a] : K] = m’ > m. But clearly,
Kla] € Y, so we have in fact K[a] = Y. O

Corollary 1.5.5 Q has only finitely many K-subalgebras.

Proof Let Y be a K-subalgebra of Q, with [T : K] =: m, say. By Proposition
1.5.4] there is « such that ' = K[a]. Further, among o'V, ...,a™ there are
precisely m distinct elements. Define another K-subalgebra of €,

T i={eQ: & =9V, j} c{l,...,n} witha? = o},

Again by Proposition [I.5.4]there is 8 such that 1" = K[B] and [Y” : K] is equal
to the number of distinct elements among SV, . .., 8", implying [T’ : K] < m.
On the other hand, T € I”. Hence Y = Y. As a consequence, 1" depends only
on a partition of {1,...,n} into pairwise disjoint subsets, namely the one for
which i, j belong to the same subset if and only if «? = a. Since {1,...,n}
has only finitely many partitions, there are at most finitely many possibilities
for T. O

1.6 Integral elements and orders

Let A be an integrally closed integral domain with quotient field K of charac-
teristic 0, and let Q be a finite étale K-algebra.
Recall that an element o € Q is said to be integral over A if there is a monic
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polynomial f € A[X] such that f(a@) = 0. The elements @ € Q integral over A
form a ring, denoted by Aq, which is called the integral closure of A in Q. If in
particular A = Z, we denote the integral closure in Q by Oq. Let ¢, Ly, ..., L,
be as in (I.3.1). For @ € Q we write again (@) = (ai,...,a,) with a; € L;
fori =1,...,q. Then if f € A[X] is a monic polynomial such that f(a@) = 0
then f(a;) =0fori =1,...,q. Hence if « is integral over A, then a; is integral
over A fori = 1,...,m. Conversely, suppose that @; € L; is integral over A,
and let f; € A[X] be a monic polynomial with fi(e;) = Ofori =1,...,m. Put
f = fi-+: fu Then f is a monic polynomial in A[X] and f(a) = 0. Hence «
is integral over A. This implies that the isomorphism ¢ from induces a
ring isomorphism

Ag & Ap, XX AL, (1.6.1)
where Ay, is the integral closure of A in L;.

Lemma 1.6.1 Let @ € Q and denote by oV, ..., a™ the images of a under
the K-homomorphisms Q — K. Then the following assertions are equivalent.

(i) a is integral over A.

(ii) &V, ..., a"™ are integral over A.
(iii) %Q/K;(Y € A[X].

(iv) fo € A[X].

Proof (i)=(ii). Choose a monic f € A[X] with f(a) = 0, Then also f(a'”) =
Ofori=1,...,nby Corollary[I.3.4]

(ii)=(iii),(iv). Clearly, the coefficients of Zq/k., are integral over A, and
also, they belong to K. Hence they belong to A since A is integrally closed. It
follows in the same manner that f, € A[X], using Corollary @

(iii),(iv)=(1). Clear, since « is a zero of both Zq/k. and f,. m|

The lemma clearly implies that
Tro/k(@) € A, Nojk(a) €A, Doik(a) €A
if @ € Q is integral over A, and

Dok (w1, ..., w,) = det (TVQ/K(wtwj))

1<i,j<n

if wy,...,w, € Q are integral over A.

We keep our assumptions that A is an integrally closed integral domain with
quotient field K of characteristic 0, and that € is a finite étale K-algebra with
[Q : K] = n. Further we assume that K C Q.

Definition An A-order of Q is a subring of Aq that contains A and contains
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a K-basis of Q. An A-order of Q is called free if it is free as an A-module, i.e.,
if as an A-module it is generated by a K-basis of Q. [ |

In particular, Ag itself is an A-order, the maximal A-order of Q2.
We finish with some useful lemmas.

Lemma 1.6.2 Let O be an A-order of Q. Further, let {w;,...,w,} be any
K-basis of Q contained in O and put D := Dqk(wy, ..., w,). Then O is con-
tained in the free A-module with basis {D~'w,...,D 'w,).

Proof Take a € ©. Then @ = }!, x;w; for certain xi, ..., x, € K. Applying
the K-homomorphisms of 2 and then Cramer’s rule we obtain x; = a;/A fori =
1,...,n, where A = det(a)l("j)) and g; is the determinant obtained by replacing
the i-th column of A by the column with entries o'V, ..., a". Consequently,

n

a = ZaiA -D7lw;.

i=1
Now ;A € K, by Lemma it is integral over A, and so @¢;A € A for
i=1,...,nsince A is integrally closed. Our lemma follows. O

Lemma 1.6.3 In addition to the above assumptions, assume that A is a prin-
cipal ideal domain. Let again O be an A-order of Q. Then D is a free A-module
of rank n, with A-basis {1, w, ..., w,} for certain wy, .. .,w, € O.

Proof We use that if .# is a free A-module of rank n, say, and .4 is an
A-submodule of .Z, then ./ is also a free A-module. Further, .# has a basis
{B1,...,B,) such that {d|8,,...,d,B,}is an A-basis of .4, for certain elements
di,...,d, of Asuchthatd|ds|--|d,.

Together with the previous lemma, this implies that O is a free A-module of
rank at most n. Further, O contains a K-basis of Q, so it must have rank equal
to n. We can choose a basis of © containing 1 since A C O. O
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Dedekind domains

In this chapter, we give an overview of the most important facts about Dedekind
domains used in this monograph, mostly without proofs. Our basic reference
is [Lang (1970), chaps. LIII].

2.1 Definitions

We start with some general terminology. Let A be an integral domain with
quotient field K. By a fractional ideal of A we mean a subset a of K, for which
there exists a non-zero element b of A such that b - a is an ideal of A.

For ay,...,a, € K we denote by (a1,...,a,) (or (ay,...,a,)A) the frac-
tional ideal {})1| x;a; © Xi,..., %, € A} of A generated by «,...,@,. A frac-
tional ideal that is generated by one element is said to be principal.

Given a non-zero fractional ideal a of A and a,8 € K, we write @ = 8 (mod
a)ifa—B € a.

If L is a finite extension of K, we denote by A, the integral closure of A in
L. More generally, if Q is a finite étale K-algebra, we denote by Ag the integral
closure of A in Q. Every fractional ideal a of A can be extended to a fractional
ideal aAp of Ay, this is the smallest fractional ideal of A; containing a.

Let . be a multiplicative subset of A, ie., 0 ¢ ¥, 1 € &, and for all
a,fB € . we have aff € .. Then

FTA = x: xeA, ye S

is an integral domain with quotient field K containing A, called the localiza-
tion of A away from .# . The elements of . are units of .~ A. Every fractional
ideal a of A can be extended to a fractional ideal . ~'a := {y‘lx PX€E€EQYE Y}
of S71A.

17
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Definition Let A be an integral domain with quotient field K. Then A is called
a Dedekind domain if it has the following properties:

- A is integrally closed in its quotient field;
- A is Noetherian, that is, the ideals of A are finitely generated;
- every prime ideal of A different from (0) is a maximal ideal of A. [ |

In what follows, by a prime ideal of a Dedekind domain we always mean a
prime ideal different from (0).

Obviously, every fractional ideal of A is finitely generated as an A-module,
and conversely, every finitely generated A-submodule of K is a fractional ideal
of A.

Important examples of Dedekind domains are principal ideal domains, rings
of integers or S -integers of algebraic number fields and discrete valuation do-
mains.

2.2 Ideal theory of Dedekind domains

Let A be a Dedekind domain with quotient field K. The sum or greatest com-
mon divisor a + b of two fractional ideals a, b of A is the A-module consisting
of all sums x + y with x € a, y € b. The product ab of a and b is defined to be
the A-module generated by all products xy with x € aand y € b. The inverse of
a non-zero fractional ideal a of A is defined by a’l:={x e K: xa CA). The
sum and product of two fractional ideals of A, and the inverse of a non-zero
fractional ideal of A are again fractional ideals of A.

We denote by Z2(A) the collection of prime ideals of A different from (0).

The following result comprises the ideal theory for Dedekind domains:

Theorem 2.2.1 (i) The non-zero fractional ideals of A form an abelian group
with product and inverse as defined above, and with unit element A = (1).
(ii) Every non-zero fractional ideal a of A can be decomposed uniquely as a
product of powers of prime ideals
a= ]_[ pord(® (2.2.1)
peP(A)

where the exponents ord,(a) are rational integers, at most finitely many of
which are non-zero.

(iii) A non-zero fractional ideal a of A is contained in A if and only if ord,(a) >
0 for every p € Z(A).

Proof See [Lang (1970), chap. 1, §6]. O
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The group of non-zero fractional ideals of A is denoted by /(A). The non-
zero principal fractional ideals of A form a subgroup of /(A), which we denote
by P(A). The quotient group CI(A) := I(A)/P(A) is called the class group of
A.

In what follows we put ord,(a) := oo for p € Z(A) if a = (0).

The following consequences are straightforward:

Corollary 2.2.2 Let a, b be two fractional ideals of A. Then
ord,(ab) = ord,(a) + ord,(b) for p € F(A),
a € b & ordy(a) > ord,(b) for every p € Z(A),
ord,(a + b) = min(ord,(a), ord,(b)) for p € Z(A).
For p € Z(A), x € K we define
ord,(x) := ord,((x)). 2.2.2)

From Corollary it follows easily that ord, is a discrete valuation on K,
ie.,

ord,(0) = oo, ord,(K*) =7Z,
ord,(xy) = ord,(x) + ord,(y) for x,y € K, (2.2.3)
ord,(x +y) > min(ord,(x), ord,(y)) for x,y € K.

Further we have

Corollary 2.2.3 (i)A={xe€ K : ord,(x) = 0 forevery p e Z(A)}.
(ii) For every x € K* there are only finitely many p € Z(A) with ord,(x) # 0.

Finally, we have the following Strong Approximation Theorem or Chinese
Remainder Theorem for Dedekind domains:

Theorem 2.2.4 Let .7 be a finite subset of Z(A), and 3, € K, m, € Z for
p € .. Then there exists x € K such that

ordy(x —B,) = m, forpe.”, ordy(x) >0 forpe PA)\.7.
Proof See [Bourbaki (1989), p. 497]. O
The proofs of the following consequences are left to the reader.

Corollary 2.2.5 Let A be a Dedekind domain. Then every fractional ideal of
A is generated by at most two elements.

Corollary 2.2.6 A Dedekind domain that has only finitely many prime ideals
is a principal ideal domain.
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2.3 Discrete valuations

Recall that a discrete valuation on a field K is a surjective map v : K — ZU{oco}
with the following properties:

v(0) = 0 and v(x) € Zif x € K*;
v(xy) = v(x) + v(y) for x,y € K;
v(x +y) = min(v(x), v(y)) for x,y € K.
Let K be a field, and v : K — Z U {oo} a discrete valuation. We define the local
ring of v by
A, :={xeK: v(x) >0}

This ring has precisely one maximal ideal, that is,
p,:={xe K: v(x)>0}.

Notice that the unit group of A, is A} = A, \ p,. The residue class field of v is
defined by

kv = Av/pw

Since by definition, a discrete valuation assumes all values of Z U {oo}, there
is 1 € K with v(r) = 1. Such an element is called a uniformizer or local
parameter of v. It is easy to verify that A, is a principal ideal domain, and that
for any local parameter &, (1) (n € Z) are the non-zero fractional ideals of A,,.

An integral domain is called a discrete valuation domain if it is the local
ring of a discrete valuation v defined on its quotient field.

Let A be a Dedekind domain with quotient field K. By (2.2.3), the functions
ord, (p € #(A)) given by (2.2.2)) define discrete valuations on K. The discrete
valuation domain corresponding to ord,, is

A, :={xe€ K : ord,(x) > 0}.

This is called the local ring or localization of A at p. From the Chinese Re-
mainder Theorem [2.2.4] one easily deduces that for the residue class field &,
of ord, one has

ko = Alp. (2.3.1)
Clearly, Corollary (i) can be translated into

A= ﬂ A, (2.3.2)
peP(A)

That is, A is the intersection of discrete valuation domains.
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2.4 Localization

Let A be a Dedekind domain with quotient field K and .’ a multiplicative
subset of A. The localization .#~'A of A away from .7 is again a Dedekind
domain with collection of prime ideals

{Y’lp: pe@(A),Yﬂpz(/)}

and a — . 'a defines a surjective homomorphism from I(A) to I(.#~'A)
where the kernel consists of all fractional ideals of A composed of prime ideals
having non-empty intersection with .#.

Examples 1. Take . = p;---p, \ {0}, where py, ..., p, are prime ideals of
A. Then by an application of the Chinese Remainder Theorem for Dedekind
domains,

SVA={xeK: ordy(x) > 0forp ¢ {p,....ps}}.

2. Let p be a prime ideal of A. Define .#, := A \ p. Then by the Chinese
Remainder Theorem for Dedekind domains, we have

YD’IA ={xe K : ordy(x) > 0} = A,.

2.5 Integral closure in finite field extensions

Let K be an infinite field, and L a finite extension of K. Denote by A; the
integral closure of A in L. Then Ay is also a Dedekind domain [Lang (1970),
chap. 1, §2, Prop. 6; chap. 1, §3, Prop. 10]. We mention here that if .’ is a
multiplicative subset of A, then .#'A; is the integral closure of .7 "'A in L
[Lang (1970), chap. 1, §3, Prop. 8].

Every fractional ideal a of A can be extended to a fractional ideal aA; of Ay,
and the map a — aAj gives an injective group homomorphism from /(A) into
I(AL). The extension of a prime ideal p of A can be decomposed in a unique
way as a product of powers of prime ideals of A;, that is,

8

pAL = 1_[ %:"i’
i=1
where By, ..., P, are distinct prime ideals of A; and ey,...,e, are positive
integers. The exponent ¢;, henceforth denoted by e(‘B;|p), is called the ramifi-
cation index of B; over p. The residue class ring Az /*B; is a finite field extension
of A/p. The degree [AL/B; : A/p] of this extension, called the residue class
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degree of B; over p, is denoted by f(*B;|p). We recall some properties of the
ramification indices and residue class degrees.

Proposition 2.5.1 Let L, p, By,..., B, be as above, but assume in addition
that K has characteristic 0.

(i) We have 55, e(Bilp)f(Biln) = [L : K.
(ii) Assume that L/K is Galois. Then for any two i,j € {1,...,g} there is

o € Gal(L/K) such that B; = oB;. Further, e(P1lp) = --- = e(PB,|p) and
FEBilp) =+ = f(Belp).

Proof For (i) see [Lang (1970), chap. 1, §7, Prop. 21] and for (ii) [Lang
(1970), chap. 1, §7, Cor. 2]. O

Proposition 2.5.2 (transitivity in towers) Let M D L D K be a tower of finite
field extensions, let B be a prime ideal of Ay in the prime ideal factorization of
Ay and Q a prime ideal in the prime ideal factorization of PAy. Then

e(QIp) = e(QIP) - e(Blp),  f(QIp) = f(QIP) - F(Blp).
Proof See [Lang (1970), chap. 1, §7, Prop. 20]. O

2.6 Extensions of discrete valuations

We consider the problem of extending discrete valuations to extension fields.
Let K be an infinite field and v : K — Z U {co} a discrete valuation. We define

in the usual manner the local ring, maximal ideal and residue class field of v
by

A, ={xeK:v(x)>20}, p,:={xeK:v(x)>0}, k, :=A,/p,.

First we consider transcendental extensions. Let again K be an infinite field
with discrete valuation v. For a non-zero polynomial

= Z aiy,...,i)X0 - X" € K[Xy,..., X,]

(with [ a finite subset of (Zs()"), we define
v(P) := min{v(a(iy,...,i,)) : (i1,...,i) €1},
and further, we put v(0) := co.

Proposition 2.6.1 (Gauss’ Lemma for discrete valuations) Let P, Q be poly-
nomials in K[ Xy, ...,X,]. Then

v(PQ) =v(P) +v(Q), v(P+ Q) = min(v(P), v(Q)).
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Proof We prove only v(PQ) = v(P) + v(Q). After multiplying P, Q with suit-
able elements of K*, we may assume that v(P) = v(Q) = 0. Then the reduc-
tions P, Q of P, Q modulo p, are non-zero polynomials in k,[X1, . .., X,]. Hence
P -0 # 0, which implies v(PQ) = 0. O

Proposition implies that v can be extended to a discrete valuation on
K(Xi,...,X,), also denoted by v, given by v(R) = v(P) — v(Q) for R = P/Q
with P, Q € K[X,...,X,], O #0.

Let A be a Dedekind domain with quotient field K. For a polynomial P €
K[Xi,...,X,], we denote by (P) the fractional ideal of A generated by the
coeflicients of P.

Corollary 2.6.2 (Gauss’ Lemma for Dedekind domains) For any two poly-
nomials P, Q € K[X1,...,X,] we have (PQ) = (P)(Q).

Proof Apply Proposition with ord, for every p € Z(A). O

Let again K be a field with discrete valuation v, L a finite extension of K,
and V a discrete valuation on L. We say that V lies above v or v below V,
notation Vv, if there is a positive real e, which is necessarily an integer, such
that V(x) = ev(x) for x € K. We call e(V|v) := e the ramification index of V
over v. Let

Ay:={xeL: V(x)20}, py:={xeL: V(x)>0}, ky :=Ay/py

be the local ring, maximal ideal, and residue class field of V. Then ky is a finite
extension of k,, and we call f(V|v) := [ky : k,] the residue class degree of V
over v.

Example Let A be a Dedekind domain with quotient field K, p a prime ideal
of A and v = ord,. Further, let as above L be a finite extension of K. Then the
discrete valuations on L lying above v are V; := ordg, (i = 1,..., g), where ‘B,
(i=1,...,g) are the prime ideals of A; occurring in the factorization of pA;,
and we have e(Vi|v) = e(P;|p), fF(Vilv) = f(Bylp) fori=1,...,¢g.

Proposition 2.6.3 Let K be a field of characteristic 0, v a discrete valuation
on K, and L a finite extension of K.

Then there are only finitely many discrete valuations on L lying above v, and if
Vi,..., Vg are these valuations, we have

g

D eV fvib) = [L: K].

i=1
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Moreover, the integral closure A, 1 of A, in L is a principal ideal domain, and
Ayp={xeL: Vi(x)>20fori=1,...,g}

Proof Obvious from the example, and Proposition Corollary (@),
and Corollary O

2.7 Norms of ideals

Let K be an infinite field, L a finite extension of K and A ¢ K a Dedekind
domain with quotient field K.

Definition We define the norm of a prime ideal P of A, by 4, a(P) =
p/®P where p is the prime ideal of A such that B occurs in the prime ideal
factorization of pA;. Then the norm 94, 4(A) of an arbitrary non-zero frac-
tional ideal U of Ay is defined by multiplicativity, i.e.,

Na, @) = [ ] pZaw/Ewrord 2.7.1)
peP(A)

where the sum in the exponent is over all prime ideals of Ay dividing p. Thus,
4, /4 defines a homomorphism from the group of non-zero fractional ideals
of Ay to the group of non-zero fractional ideals of A. For completeness, we set
94,/4((0)) := (0). u

Proposition 2.7.1 Assume that K has characteristic 0. Let L be a finite ex-
tension of K of degree n. Then:

(l) ‘JEAL/A(aAL) = NL/[((O’)AfOFCZ e L.

(ii) Let p be a prime ideal of A, and ‘B, . .., B, the prime ideals of Ay dividing
p. Then for every a € Ay,

g
ordy(Np k(@) = ) f(Bilp)ordy, (@).
i=1
(iii) Ma, ja(aAr) = alLK) for every fractional ideal a of A.
(iv) Let M be a finite extension of L. Then RNa,, a(€) = Na, a(Na,, /4, (C)) for
every fractional ideal € of Ay,.

Proof For (i), see [Lang (1970), chap. I, §7, Prop. 22]. Assertion (ii) follows
from (i) and 2.71). For (iii), see [Lang (1970), chap. I, §7, Cor. 1]. Assertion
(iv) follows from Proposition [2.5.2] O
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2.8 Discriminant and different

Let K be a field of characteristic 0, and A a Dedekind domain with quotient
field K. Further, let Q be a finite étale K-algebra with [Q : K] = n. Since A is
Noetherian, its integral closure Ag in Q is finitely generated as an A-module.

Definition The discriminant ideal d4,,4 of Aq over A is defined as the ideal
of A generated by all numbers Dq/k (a1, ...,a,) wWith a1, ..., @, € Aq. [ ]

From Proposition[2.10.1]below, which is formulated in a more general form for
lattices, it follows that if ¢ is any finite set of A-module generators of Aq, then

D4,/4 1s already generated by the numbers Dq k(ay,...,a,) with @y, ..., a, €
% . In particular, if Ag is a free A-module and {ay, ..., @,} is an A-basis of Ag,
we have

Dag/a = (Dayk(ay, ..., ap)).

From Proposition |2.10.2] below it follows that if Q is K-isomorphic to a
direct product L; X - - - X L, of finite extension fields of K, then

q
Dag/a = ]—[ D4y, /A
i=1

Let L be a finite extension field of K.

Definition The different D4, /4 of Ay over A is the fractional ideal of Ay
whose inverse satisfies

D u=f{x€L: Tryk(xy) € Aforally € AL}
Note that DZZ/A 2 Ar. Hence Dy, /4 is in fact an ideal of Aj. n
The different and discriminant ideal of A; /A are related as follows:
Proposition 2.8.1 24,4 = N4, 4(Da, 4)-
Proof See [Lang (1970), chap. III, §3, Prop. 14]. O
We have collected some properties of the different and discriminant ideal.

Proposition 2.8.2 (i) Let M > L D K be a tower of finite field extensions of
K and Ay, Ay the integral closures of A in L, M, respectively. Then

Day/ax = Dayja, Da,jag-

(ii) Let L, M be finite extensions of K and LM their compositum. Then

DALM/AL 2 QAL/A'
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(iii) Let L be a finite extension of K, p a prime ideal of A and P a maximal
ideal of Ay, dividing p. Then ordy(Dy, /a) = e(Blp) — 1 + r, where

r=0 ifordg(e(Plp)) =0, 1 <r < ordg(e(Plp)) otherwise.

Proof For (i) see [Lang (1970), chap.IIl, §1 ], for (ii) see [Stark (1974),
Lemma 6] and for (iii) see [Neukirch (1999), chap. 2, Prop. 9.6]. O

Corollary 2.8.3 (i) Let M D L O K be a tower of finite extensions of K. Then
Daya = Ry a0

(ii) Let Ly, ..., L, be finite extensions of K and M their compositum. Then
M:L;
DAy /A 2 l_le /A], Da,/4 C E“ /A]forl =1,.

(iii) Let L be a finite extension of K of degree n, and p a prime ideal of A. Then

ordy(da,/a) <n if pNZ =(0),
ord,(d4,/4) < n (1 + ord,(p) - %) if N Z = (p) with p a prime number.
p

Proof (i) Combine Propositions[2.8.1][2.8.2]and [2.7.1]
(ii) From Proposition [2:8.2(i),(ii) we infer that

,
DAM/A 2 l_[ DAL‘./A-

i=1
Now the first assertion of (ii) follows at once by taking the norm of M over K
and applying Propositions [2.8.T]and [2.7.1] The second assertion of (ii) follows
from (i).
(iii) Let By, . . ., ‘B, be the prime ideals of A that divide p and write e;, f; for
e(Plp), £(PBilp), respectively. Combining Lemma[2.8.2 with Proposition [2.8.T}
(2777T) and Proposition 2.5.2} we obtain

8
ordp(da,/4) = Z fiordsy, (Da, 4)

i=1

zgl f(ei + ordy,(e) = zg: fiei(1+ ordy(er))
i=1

1

IA

i=1
(Zg: f,e, 1 + max ordp(e,)) = n(l + ma); ordp(el))

i=1 sisg

If pNnZ = (0) we have ordy(e;) = O0fori=1,...,g. If pNZ = (p) with p a
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prime number, write ¢; = p""el’. with k; € Zyg and p t e]. Thenfori =1,...,g,
using e¢; < n,
logn
ordy(e;) = ordy(p)k; < ordp(p)1 £ .
ogp
In both cases, assertion (iii) follows. m]

2.9 Lattices over Dedekind domains

Let K be a field of characteristic 0 and V a K-vector space of finite dimension
n. Further, let A be a Dedekind domain with quotient field K.

Definition An A-lattice of V is a finitely generated A-submodule of V con-
taining a K-basis of V. An A-lattice of V is called free if it is generated by a
K-basis of V. In that case it is a free A-module of rank n = dimg V. [ ]

For instance, the A-lattices of K are precisely the non-zero fractional ideals of
A, and the free A-lattices of K the non-zero principal fractional ideals of A.
For any two A-lattices .#, A of V, there are a,b € K* with

aN S MCbN. (2.9.1)

Indeed, choose finite sets of generators of .#, .4, respectively. We can express
the generators of .4 as K-linear combinations of the generators of .#. By
multiplying the generators of .4~ with a suitable non-zero a € A, they become
A-linear combinations of the generators of .#. Hence a.#" C .# . The other
inclusion follows in a similar manner.

If A is a principal ideal domain, then every A-lattice .# of V is free of rank
n. Indeed, let .# be an A-lattice of V. Then by applying (2.9.1) with .#" any
free A-lattice of V, we see that .# contains and is contained in a free A-lattice
of rank n, and so must itself be free of rank #.

Let p be a prime ideal of A and denote by A, the localization of A at p. Let
A be an A-lattice of V. Then the localization of .# at p, given by

My = Ay M
is an A,-lattice of V. It is free, since A, is a principal ideal domain.

Proposition 2.9.1 We have .# = ﬂ M.

peP(A)
Proof 1t is clear that .# C (e (a)-#,. We prove the other inclusion. Let
@ € (e a) Hy. By expressing a as a K-linear combination of a basis of V
contained in .#, we see that there exists non-zero D € A with Da € .# . Let
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S be the finite set of prime ideals p of A with ord,(D) > 0. For p € S there is
a, € A, \ {0} with a;la € ./ . Let a be the fractional ideal generated by D and
a;', forall p € S. Then éa € # for ¢ € a. Now we have ord,(a) < ord,(D) =0
for p € Z(A)\ S and ordy(a) < ordp(agl) < Oforp € S, hence 1 € a.

Consequently, @ € Z . O

Proposition 2.9.2 Let A be an A-lattice of V, let .7 be a finite set of prime
ideals of A, and for v € .7, let Ny be an Ay-lattice of V. Then there is a unique
A-lattice M of V such that

Ay =N, forpe S,
Ayl =AMy forpe P(A)\ ..

Proof Put A 1= Ay A for p € P(A) \ .. According to Proposition [2.9.1}
if an A-lattice .# with the required properties exists, then it must be equal to
Npe 74y, So it is certainly unique. Now define .# to be this intersection. We
first show that .# is an A-lattice of V. By (2.9.1), for p € .7 there is a, € K*
with a,. 4, C Ay, 4. Let b be a non-zero element of A such that b/a, € A for
p € . Then b.#; C Ay for p € Z(A), and together with Proposition[2.9.1]
this implies that b.#Z C 5. So ./ is finitely generated. On the other hand,
by (2.9.0) there is a non-zero ¢ € A such that c.4g C A, for p € .7, implying
c N C A .Hence K.# = V. This shows that .# is an A-lattice of V.

It is clear that A,.Z C A; for p € Z?(A). We have to prove the other
inclusions. Fix a non-zero b € .Z. Let p € Z(A) and take & € A4,. By
the Chinese Remainder Theorem, there is a € A such that ord,(a) = 0 and
ordy(a) > —ord,(b) for ¢ € P(A) \ {p}. Then a € A%, and £ € a'.4; for

p?
q€ P(A). Hence ¢ € a™'.# C A, . This completes our proof. O

We now define the index ideal of one lattice in another. Recall that if V is

a finite-dimensional Q-vector space and .#1, .#, are two Z-lattices of V with
Mo C M1, then the index of .#; in .# is given by

(A, : M) = | M| Ao
If{wy,...,wu}, {01, .., 0,} are Z-bases of .41, .4, respectively, we have
[ : 5] = | det M|,

where M is the coeflicient matrix of 6y, ..., 6, with respect to wy, ..., w,, i.e.,
M = (a;j), where a;; € Zand 6; = }V_, a;jw; fori, j=1,...,n.

Now let again A be a Dedekind domain with quotient field K, V a K-vector
space of finite dimension n, and .#1, .#, two A-lattices of V with .4, C ..
Let p € Z(A). Then the localizations .#;, := A,.#; (i = 1,2) are free A,-
modules of rank n. Choose A,-bases {wy,...,w,} and {6,...,6,} of 4,
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My, respectively. Then there is an n X n-matrix M = (a;;) with entries in

A, such that 6; = Z’}:I a;jw;fori, j=1,...,n and we define

1y (A, M) = ord,(det M).

Replacing {w;, ..., w,} and {6, ..., 6,} by other A,-bases of .#/, .#> has the
effect that M is multiplied on the left and on the right with matrices from
GL(n, A,), and this does not affect the value of ¢,(.#;, .#>). So the latter quan-
tity does not depend on the choices of the bases. Notice that ¢,(.#, #>) > 0,
and that

(A, M) =0 = My, = Moy (2.9.2)

We show that ¢,(#,, .#>) = 0 for all but finitely many p € Z(A). Indeed,

by (2.9.0) there is a € K* such that a.#; C .#,. There are only finitely many

p € Z(A) such that ord,(a) # 0, and for the remaining p we have 4, , = 4> ,.
We now define the index ideal of .#, in ./, by

[y )y = [ ] ot (2.9.3)
peZ(A)

This is clearly an ideal of A. Moreover, by (2.9.2) we have for every prime
ideal p of A,

Moy G My & P2 [ M M, (2.9.4)

Suppose that both .7/, .#, are free. Choose A-bases {w1, ..., w,}, {01, ...,0,}

of .4, #,, respectively, and let M be the coefficient matrix of y,...,6, in
terms of wy, ..., w,. Then

(A . A4 = (det M). (2.9.5)

We finish with a useful lemma.

Proposition 2.9.3 Let A be a Dedekind domain with quotient field K, V a
finite dimensional K-vector space and M, M, two A-lattices of V with # 2
M>. Then

[./%1 : ./%2],4 '/f] - %2.

Proof Leta € [# : 4>]s. We have to prove that a.#| C .#,. In view of
Proposition [2.9.1] it suffices to show that a.#) , C .4, for all p € P (A).
Take p € H(A). Let {wy,...,w,}, {61,...,0,} be bases of A, ,, M ,, re-
spectively. Let M be the coefficient matrix of 61, ..., 8, in terms of wy, ..., wW,.
Then M has its entries in A,. Put A := det M. Then the matrix AM~" has its
entries in A,. Since ordy(a) > t,(A,, #>) = ordy(A), we have aA™! € A,.
Hence aM~! has its entries in A,. Now aM™! expresses aw, . . ., aw, in terms
of 0y,...,0,. This implies a.#, , C >4, as required. O
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2.10 Discriminants of lattices of étale algebras

Discriminants of lattices over Q. Let Q be a finite étale Q-algebra of degree
[Q : Q] = n. Let .# be a Z-lattice of Q. Then .# has a Z-basis, {wi,...,w,}
say, and we may define the discriminant of .# by

D/// = DQ/Q(a)l,...,wn). (2101)

Any two bases of .# can be expressed into each other by means of a basis
transformation matrix from GL(n,Z). So in view of the basis transformation
formula for discriminants (T.5.3), this is independent of the choice of the basis.

Denote by Oq the integral closure of Z in Q. By Lemma[I.6.3] Oq is a free
Z-module with a basis of the shape {1, ws, ..., w,}, hence it is a Z-lattice of Q.
The discriminant of Q is defined by

DQ = DOQ.
We have Q = L; X --- X L, for certain finite extensions Ly, ..., L, of Q. Then
q
Do = HDL,. (2.10.2)
i=1

Indeed, assume without loss of generality that Q = L; X --- X L, and let n; :=
[L; : Q] fori = 1,...,q. By (L6.I) we have Oq = O, x --- X Or,. So we
can make a Z-basis {wy,...,w,} of Oq by taking for i = 1,...,q a Z-basis
{wii,...,wipy} of O, and then

O,....wijn-. 0 0) (=1, j=1,....nm)

with w;; on the i-th place, and 0 on the other places. Now (2.10.2) is an imme-
diate consequence of the product decomposition (1.5.3)).

Let .\, ./ be any two Z-lattices of Q with .#| 2 #,. Let {wy, ..., w,},
{61,...,60,} be Z-bases of .#,, .#>, respectively. Then the index [.#] : .#5] of
Mo in A is equal to |det M|, where M is the coefficient matrix of 6y,..., 6,
with respect to wy, . .., w,. Now the basis transformation formula for discrim-
inants (I.5.3) yields at once

Dy, = [y . M5 D yg,. (2.10.3)

Discriminants of lattices over Dedekind domains. Let A be a Dedekind do-
main with quotient field K of characteristic 0, Q a finite étale K-algebra with
[Q: K] =n, and .# an A-lattice of Q.
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Definition The discriminant ideal d_4 4 of .# over A is defined as the frac-
tional ideal of A generated by the numbers Dg,k (a1, ..., a,) withay,...,a, €
M. [

To prove some properties of the discriminant, we will heavily use that for
every p € Z(A), the localization ./, is a free A,-module. We start with the
following proposition.

Proposition 2.10.1 Ler .# be an A-lattice of Q.

(i) Let 4 be a finite set of A-module generators for 4. Then d 4 4 is generated
by the set

& ={Dgk(Wi,...,W,) : Wi,...,w, €Y}
In particular, if A/ is a free A-module with basis {wy, ..., w,}, then

D 4 = (Da/x(wi, ..., wy)).

(ii) Let p € P(A) and let {wy, . .., w,} be an Ay-basis of M. Then

ordy(d_z/4) = ordy(Da/k (w1, . . ., Wy)).

Proof (i). Denote by a the fractional ideal of A generated by 7. Let p €
P(A). Clearly, ord,(d_z/4) < ord,(a). We have to prove the reverse inequality.
The set ¢ also generates .#, as an Ap,-module. Choose 6,,...,6, € ¢4 such
that ¢ := ord,(Dq/k (61, ..., 6,)) is minimal. Then ord,(a) = 6.
Leta € 4. Then o = ;le x;6; with x; € K for j = 1,...,n. By the basis
transformation formula for discriminants @ we have for j=1,...,n,

X5 =0;/0

where 0; is the discriminant of the tuple obtained by replacing 6; by a in
01,...,0,. Hence ord,(x;) > 0. So all elements of ¢, but then also all ele-
ments of .#,, are A,-linear combinations of 6y,...,6,. Hence {6,...,0,} is
an A,-basis of .#,. By expressing a1, ...,a, € .# as Ay-linear combinations
of 61,...,6, and applying the basis transformation formula for discriminants
(T.53) we obtain ord,(Dg/k (a1, - . ., @,)) > 6. So indeed, ord,(d_4,4) > 6. This
proves (i).

(ii). (.3.3) implies that ord,(Dg/k (w1, . . ., w,)) = 6. O

Proposition 2.10.2  Suppose Q is K-algebra isomorphic to a direct product
Ly x .-+ X L, of finite extensions of K. Then

q
Dygg/a = 1_[ Day /A
i=1
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Proof Putn; :=[L;: K]fori=1,...,qand assume without loss of generality
that Q = Ly x ---x L, Let p € #(A). Fori = 1,...,q choose an A,-basis
{wil, ..., wiy) of Ay, 1.e., the integral closure of A, in L;. Let {wy, ..., w,} be
the set consisting of all tuples

(0.... 0. n0) G=1,....q. j=1,....m),

fori =1,...,q, j = 1,...,n;, where w;; is the i-th coordinate, and the other
coordinates are 0. By (1.6.1), for the integral closure A, o of A, in Q we have
Apg = App, X+ X Apqu, hence {w,...,w,} is an A,-basis of A, o. By the
product decomposition (1.5.5)) we have

q
DQ/K(wlv R wn) = 1_[ DL,'/K((UZ'l’ ey wi,n,')s
i=1

which together with Proposition 2.10.T]implies

q

Ordp(bAn/A) = Z Ordv(DALi/L,-)-
i=1

This proves our proposition. O
Proposition 2.10.3 Let .#,, ., be two A-lattices of Q. Then
Dania = M 2 MO D a4

Proof Letp € Z(A). By applying the basis transformation formula for dis-
criminants with bases {wy, ..., wy}, {01,...,0,} of A\, M, respec-
tively, and with the coefficient matrix of 6y, ..., 6, in terms of wy, ..., w,, we
obtain at once

Ordp(b///z/A) = ZOI‘dp([Lﬂ] : %2],4) + Ordp(b//[l/A).

This implies our proposition. O
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Algebraic number fields

We have collected some basic facts on algebraic number fields (finite field ex-
tensions of Q). Our main references are [Lang (1970)] and [Neukirch (1999)].
The ring of integers of an algebraic number field K, that is the integral closure
of Z in K, is denoted by Ok. This is a Dedekind domain, and so every non-
zero fractional ideal of Ok can be expressed uniquely as a product of powers
of prime ideals.

3.1 Definitions and basic results

3.1.1 Absolute norm of an ideal

Let K be an algebraic number field of degree d. Recall that the norm 9ty /z(a)
of a fractional ideal a of Ok is a fractional ideal of Z. Hence there is a non-
negative rational number a such that 9Np, z(a) = (a). This number a is called
the absolute norm of a, notation Ng(a). It is obvious that the absolute norm is
multiplicative. From Proposition (1), (iii), we obtain at once:

Nk (@) = INgjo(a)| for @ € K7, }
G.1.1)

Nk (@) = a9 for a € Q*.

Moreover, if L is a finite extension of K and a a fractional ideal of Ok, then by
Proposition (iii),
N.(a0p) = Ng(a)lFK], (3.1.2)

If p is a prime ideal of Ok dividing a prime number p, we have Ng(p) =
plP) =10k /|. More generally, for any ideal a of Ox we have

Nk(a) = |Ok/al. (3.1.3)

33
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3.1.2 Discriminant, class number, unit group and regulator

Let K be an algebraic number field of degree d over Q. There are d distinct
isomorphic embeddings of K in C, which we denote by o, . .., 0y; further we
will write @ := (@) for @ € K. We assume that among these embeddings
there are precisely r| real embeddings, i.e., embeddings o with o(K) C R,
and r, pairs of complex conjugate embeddings, i.e., pairs {0, 0} where o (@) =
Fa/) for « € K. Thus, d = r; + 2ry and after reordering the embeddings

we may assume that o; (i = 1,...,ry) are the real embeddings and {07, 074, }
(i=r +1,...r + rp) the pairs of complex conjugate embeddings.
Viewed as a Z-module, Oy is free of rank d. Taking any Z-basis {wy, . . ., w4}

of Ok, we define the discriminant of K by

2
— — ()
Dk = Dgjo(wi, ..., wq) = (det (a)j )i,j:l ’’’’ d) .

This is a non-zero rational integer which is independent of the choice of the
basis.

Let M > L > Q be a tower of algebraic number fields with [M : L] = n. The
relative discriminant of M over L is defined by

Dp/L = Doyj0.s

i.e., the ideal of Oy, generated by all numbers Dy (a1, ..., a,) withay,...,a, €
Oy Then Corollary [2.8.3] (i) specializes to

Dy = N(oyyr) - DI, (3.1.4)

We recall some basic facts. Denote by 1(Ok) the group of fractional ideals,
and by P(Ok) the group of principal fractional ideals of O.

Theorem 3.1.1 The class group Cl(Ok) = I1(Ok)/P(Ok) of Ok is finite.

The cardinality of this class group is called the class number of K, and we
denote this by hg.

We denote by W the group consisting of all roots of unity in K. This is a
finite, cyclic subgroup of K*. We denote the number of roots of unity of K by
wg.

We recall the following fundamental theorem of Dirichlet concerning the
unit group O} of Ok. A full lattice of a real vector space V is a free Z-module
generated by a basis of V.

Theorem 3.1.2 The map

LOGy : £+ (eylogleV],... e, 1y, log e ™))
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(Where ej = 1 for j=1,...riand e; = 2 for j = ri + 1,...,r + ;) defines
a surjective homomorphism from O to a full lattice of the real vector space
given by

(X=(X1,eesXpar) ERT? 0 Xy + -0+ X4, = 0}
with kernel Wy.
The following consequence is immediate:
Corollary 3.1.3 Putr=rg:=r +r,— 1. Then
Oy =Wk xZ'.

More explicitly, there are €1,...,&, € Oy such that every € € Oy can be
expressed uniquely as

— roh b
e={gl...&g"

where ( is a root of unity in K and by, . .. b, are rational integers.
The number rx (denoted by r if there is no confusion about the number field
to which it refers) is called the unit rank of K. A set of units {&1,...,&,} as

above is called a fundamental system of units for K. We define the regulator of
K by

Rk = |det(ej log Isgj) I))

ij=1,..rl”

This regulator is non-zero, and independent of the choice of g1, ..., &,.

3.1.3 Explicit estimates

We recall from the literature some estimates for the field parameters defined
above. As before, K is an algebraic number field of degree d, and by r; and r,
we denote the number of real embeddings and the number of pairs of complex
embeddings of K.

For the number of roots of unity wg of K we have

wk <20dloglogd ifd > 3. (3.1.5)

This follows from the observation that the number ¢ (wg) (where ¢ denotes
Euler’s totient function) divides d, and from the lower bound for ¢ following
from [Rosser and Schoenfeld (1962), Thm. 15].

For the class number and regulator of K we have

hxRx < |Dg|'? (log” D)™™ . (3.1.6)

The first inequality of this type was proved by Landau [Landau (1918)]. The
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above version follows from [Louboutin (2000)] and (3.1.5); see (59) in [Gy&ry
and Yu (2006)]. The following lower bound for the regulator was obtained in
[Friedman (1989)]:

Rk > 0.2052. (3.1.7)
Combined with (3.1.6), this gives
max(hg, Rk, hxRg) < 5|Dk|"? (log" [Dkl)*~" . (3.1.8)

We recall some useful estimates for discriminants. By an inequality due to
Minkowski (see [Lang (1970), p.120]) we have

7d  d\2

\Dk| > (Z) (E) . (3.1.9)
Further, by specializing Proposition (ii), we obtain that if K is the com-

positum of algebraic number fields Ki, ..., K,, then

[K:K1] | KKl
Dg|Dy, DK,, (3.1.10)
and

DY Dy fori=1,....q, (3.1.11)
where Dk, denotes the discriminant of K; fori = 1,..., g. Finally, we recall that

if Ky, ..., K, are number fields, then for the étale Q-algebra Q = Ky X --- x K,
we have (see (2.10.2))

Dq = Dg, -+ Dg .

q

(3.1.12)

3.2 Absolute values: generalities

For the general theory of absolute values we refer to [Neukirch (1999), chap.
2]. Here, we give only the basic definitions.

Let K be an infinite field. An absolute value on K is a function |-| : K — Ry
satisfying the following conditions:

(@) |xyl = x| - |yl for x,y € K;
(b) there is C > 1 such that |x + y| < C max(|x|, [y|) for x,y € K;
© |¥y=0= x=0.

These conditions imply that [1| = 1. An absolute value |- | on K is called trivial
if |x] = 1 for x € K*. Then clearly, on finite fields there are no non-trivial
absolute values. Below, all absolute values we will consider are non-trivial.
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Two absolute values | - |1, | - |, on K are called equivalent if there is ¢ > 0 such
that

x> = |xI{ forall x € K.

One can show that an absolute value | -| on K satisfies the triangle inequality
|x+y| < |x|+]y| for x,y € K if and only if condition (b) holds with C < 2. Thus,
every absolute value is equivalent to one satisfying the triangle inequality.

An absolute value | -| on K is called non-archimedean if it satisfies the ultra-
metric inequality |x + y| < max(|x], |y]) for x,y € K, and archimedean if it does
not satisfy the ultrametric inequality. For instance if v is a discrete valuation on
K and D > 1, then D" defines a non-archimedean absolute value on K.

Let K be a field with non-trivial absolute value | - | and L an extension of K.
By an extension of | - | to L we mean an absolute value on L whose restriction
toKis|-|.

Let K be a field with absolute value |-|, and {a,};’ , a sequence in K. We say
that the sequence {a,} converges with respect to | - | if there is @ € K such that
|a, — | — 0 as n — oo and we say that {a,} is a Cauchy sequence with respect
to |- |if |a, —a,] — 0 as m,n — oo. The field K is said to be complete with
respect to | - | if every Cauchy sequence of K with respect to | - | converges with
respectto |- |.

If K is not complete with respect to | - |, we can construct an extension K of
K, and an extension of | - | to E such that K is complete with respect to this
extension. The construction is by mimicking the construction of R from Q, i.e.,
by considering the Cauchy sequences of K with respect to | - | and identifying
two such sequences if their difference converges to 0. We call K the completion
of K with respect to | - |. It can be shown that with respect to inclusion, it is the
smallest extension of K that is complete with respect to an extension of | - |.

Notice that equivalent absolute values on K give rise to the same complete
field K.

By a theorem of Ostrowski, if a field K is complete with respect to an
archimedean absolute value | - |, then up to absolute value preserving isomor-
phism, K = R or C, and | - | is equivalent to the ordinary absolute value (see
[Neukirch (1999), chap. 2, Thm. 4.2]).

Let again K be a field with absolute value |-|. In case that K is complete with
respect to | - |, there is a unique extension of | - | to K (see [Neukirch (1999),
chap. 2, Thm. 4.8]).

The completion of a field K with discrete valuation v is the completion of K
with respect to the absolute value D™ for any D > 1. The discrete valuation v
can be extended uniquely to a discrete valuation on this completion.

let K be a field. A place of K is an equivalence class of non-trivial absolute
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values of K. As mentioned above, two equivalent absolute values of K give
rise to the same completion. So we can speak about the completion of K at a
particular place v, which we denote by K,. If L is a finite extension of K and
v, V are places of K, L, we say that V lies above v or v below V, notation Vv, if
the absolute values in V are continuations of those in v. Let o : K — K’ be an
injective field homomorphism and v’ a place of K’. This induces a place v’ o o
of K, which consists of all absolute values |o°(-)| with | - | € V.

3.3 Absolute values and places on number fields

We start with absolute values and places on Q. Define the set
Mg := {co} U {prime numbers}.

By a theorem of Ostrowski (see [Neukirch (1999), chap. 2, Thm. 3.7]), every
non-trivial absolute value on Q is equivalent to one of the following absolute
values:

|aleo := max(a, —a) for a € Q,

lal, := p*“ fora € Q

for every prime number p, where ord,(a) is the exponent of p in the unique
prime factorization of a, i.e., if a = p™b/c with m,b,c € Z and p { bc, then
ord,(a) = m. We agree that ord,(0) = co and |0|, = 0. The absolute value | - |
is archimedean, while the other ones are non-archimedean. So there is one-to-
one correspondence between Mg and the set of places (equivalence classes of
non-trivial absolute values) of Q and we refer to Mg as the set of places of Q.
We call oo the infinite place, and the prime numbers the finite places of Q.

The completion of Q with respect to | - |« is Qo := R. For a prime number p,
the completion of Q with respect to ||, is the field of p-adic numbers, denoted
by Q,. The above absolute values satisfy the Product Formula

l_[ lal, =1 fora € Q"
PEMq

Now let K be an algebraic number field. Denote by My the set of places
of K. A place v of Mk is called infinite if it consists of archimedean absolute
values, or equivalently lies above oo, and finite otherwise. We write

My = MY U MY,

where My is the set of infinite places, and M,O< the set of finite places of K.
Every infinite place of K corresponds to either a real embedding o : K — R (in
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which case the place is called real), or a pair of conjugate complex embeddings
{r,T : K — C} (in which case the place is called complex). The finite places
of K correspond to the prime ideals of Ok.

In every place v € Mg we choose a normalized absolute value | - |,, which is
defined as follows for @ € K:

laly :=|o(a)| if v corresponds to {0 : K — R};
laly = [r(@))* = [f(a))* if v corresponds to {7, : K < C};

lal, := Ng(p) %@ if v corresponds to the prime ideal p of Ok,

where Nk(p) = |Ok/vl is the absolute norm of p, and ord,(@) is the exponent
of p in the prime ideal factorization of (a), where we agree that ord,(0) = co.
We write p,, for the prime ideal of O corresponding to v.

Denote as before the completion of K at v by K,. Then K, = R if v is real,
K, = Cif vis complex, while K, is a finite extension of Q,, if v corresponds to
the prime ideal p of Ok, and p is the prime number with p N Z = (p).

Combining the Product Formula over Q with the identity Ng((@)) = |Ng;o(@)|
for @ € K, where the left-hand side denotes the absolute norm of (), one easily
deduces the Product Formula over K,

]_[ lal, = 1 fora e K*. (3.3.1)
veMg
To deal with infinite and finite places simultaneously, we often use the inequal-
ity

lay + -+ aply < n' max(laily, ..., laaly) (3.3.2)

forv e Mg, ay,...,a, € K, where
s(v) = lif visreal, s(v) = 2 if v is complex, s(v) = 0 if v is finite.

Note that ZveM? s(v) = [K : Q].
Let p : K; — K; be an isomorphism of algebraic number fields. Then

lalyop = lo(@)|, for a € K, v € Mk,. (3.3.3)

Let L be a finite extension of K and v, V places of K, L, respectively with V
lying above v Then the completion Ly of L at V is a finite extension of K. In
fact, [Ly : K,]is 1 or 2 if v, V are infinite, while if v, V are finite and correspond
to the prime ideals p, P of Ok, O,, we have

[Ly : Ky] = e(Blp)f(Blp), (3.3.4)

where e(B|p), f(*B|p) denote the ramification index and residue class degree of
B over p.
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We say that two places V|, V, of L are conjugate over K if there is a K-
automorphism o of L such that V, = V; o 0.

Proposition 3.3.1 Let K be a number field, L a finite extension of K, v a place
of K, and V\,...,V, the places of L above v. Then
(i) laly, = 1l fora e K k=1,....8

8
(ii) [ Tledv, = INx(@)h fora e L,
k=1

8
(iii) ) Ly, : K,] = [L: K],
k7

(iv) z'fL/K is Galois, then 'V, ..., Vy are conjugate to each other, and we have
[Ly, : K\]=[L:K]/gfork=1,...,8

Proof The verification is straightforward if v is an infinite place, and for v a
finite place, assertions (i)-(iv) follow from (3.3.4) and Propositions and
i1l i

3.4 S-integers, S-units and S-norm

Let S denote a finite subset of Mk containing all infinite places. We say that
a € K is an S-integer if |a|, < 1 for all v € Mg \ S. The S -integers form a ring

in K, denoted by Ogs. Its unit group O is called the group of S-units. Notice
that

a €0 & lal, =1forve Mg\S.

For § = My, the ring of S -integers is just O and the group of S -units just O%.
Let py, ..., p, be the prime ideals corresponding to the finite places of S. Then
Oy is just the localization of Ok away from the multiplicative set p; - - - p, \ {0},
hence Og is a Dedekind domain. In the case K = Q, S = {oo, p1, ..., p;} Where
pi,...,p; are prime numbers, we write Zg for the ring of S-integers. Thus,
Zs =Z[(p1--- p) "

The non-zero fractional ideals of Og form a group under multiplication,
which we denote by I(Og). The map a — aOs gives an isomorphism from
the group of fractional ideals of Ok that are composed of prime ideals outside
S to I(Og). In particular, the prime ideals of Oy are pOys for the prime ideals p
of Ok corresponding to the places outside S'.

Denote by P(Os) the group of non-zero fractional principal ideals of Og.
Then the class group CI(Os) := I1(Os)/P(Os) of Oy is a subgroup of the class
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group Clx = Cl(Ok) of K. Denote the cardinality of CI(Og) by hg. Then hg is
a divisor of the class number /g of K.
We introduce some further notation. The S -norm of a € K is defined by

Ns(@) := [ ]la. (3.4.1)
ves
Notice that the S-norm is multiplicative. We extend this to fractional ideals of
Os. The S -norm of a non-zero fractional ideal a of Oy is given by

Ns(a) := Ng(a), (3.4.2)

where a is the unique fractional ideal of Og, composed of prime ideals of Og
corresponding to places outside S, such that a = aOs.

We write (a1, . .., @,)s for the fractional ideal of Og generated by a4, ..., @, €
K. Denoting this fractional ideal by a, we have @ = [],cp,\s Pv", Where
wp, = min, ord, (a;), hence

Ns@= [] Newo> = [] (max(arh,...leh))". (343

vEMg\S veMg\S

In particular, from the Product Formula it follows that Ng(@) = Ns((@)s) for
a € K*. By setting Ng((0)s) := 0, this holds for @ = 0 as well.

Let L be a finite extension of K, and T the set of places of L lying above
those in S. Then

Or ={xeL:|xly<1forVeM;\T}

is the integral closure of Oy in L. Every fractional ideal a of Og can be extended
to a fractional ideal aOr of Oy, and from (3.4.2)), (3.1.2)) one obtains

Ny(aO7) = Ns(a)lK1 for every fractional ideal a of Oy,

44
Nr(@) = Ng(a)FX] for every a € K. } (344

Dirichlet’s Unit Theorem can be extended to S -units as follows.

Theorem 3.4.1 LetS = {vy,...,vs} be a finite set of places of K, containing
all infinite places. Then the map

LOGy : & — ((loglél,, .. .., log|el,,) (3.4.5)

defines a surjective homomorphism from Oy to a full lattice of the real vector
space

x=(x1,....,x) €R: x; +---+x, =0}
with kernel Wg.

Proof See [Lang (1970), chap. V, §1, Unit Theorem)]. O
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This implies at once:
Corollary 3.4.2 We have
Oy = Wi x 27",

More explicitly, there are &,...,e,1 € O such that every € € O can be
expressed uniquely as

=l e (3.4.6)

s—1?

where { is a root of unity in K and by, ...bs_| are rational integers.

A system {gy,...,&,1} as above is called a fundamental system of S -units.
Analogously as for units of Ox we define the S -regulator by
Rs := |det( log ), 1y E
This quantity is non-zero, and independent of the choice of &1,...,&, and
of the choice vi,...,v,_1 from §. In case that § = My, the S-regulator Ry is
equal to the regulator Rx. More generally, we have

Rsg =Rk - [U(S) : P(S)]- | |log Ng(»), (3.4.7)

t
i=1

where py,..., p; are the prime ideals corresponding to the finite places in §,
I(S) is the group of fractional ideals of Og composed of prime ideals from
P1,..., P, and P(S) is the group of principal fractional ideals of Og composed
of prime ideals from py, ..., p,. We note that the index [/(S) : P(S)] is a divisor
of the class number Ag. By combining (3:4.7) with (3.1.6) we obtain

1
Rs < hgRy - | |log Nx(p)
i=1

i=

t
< Dkl (log" IDk)*™" - | [ 1og Nic(py). (34.8)

i=1

By combining (3.4.7) with (3.1.7), we obtain

1 = = >
& 2{ (log3)(log2)  ifd=1, s=1S| >3,

0.2052(log2)*? ifd>2, s > 3. (3.4.9)

3.5 Heights and houses

There are various different notions of height of an algebraic number, a vector
with algebraic coordinates or a polynomial with algebraic coeflicients. Here
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we have made a small selection. The other notions of height needed in this
book will be defined on the spot. Below we fix an algebraic closure Q of Q.

Heights of algebraic numbers. The (absolute multiplicative) height of @ € Q
is defined by
H@) := [ | max(1, jol,) <2

veMg

where K C @ is any number field containing . It follows from Proposition
3.3.1] that this is independent of the choice of K. The (absolute) logarithmic
height of « is given by

h(a) :=log H(@).

Below, we have collected some properties of the absolute logarithmic height.
These can easily be reformulated into properties of the absolute multiplicative
height.

We start with a trivial but useful observation: if K is an algebraic number
field and S a finite subset of Mg containing the infinite places, then

h(a) = [Kf 3 %logmax{l,lalv} (3.5.1)

1
> ——— log Ng(a) for @ € Oy .
[K:Ql g Ns(a) s

The next lemma gives some further properties.

Lemma 3.5.1 Leta,aq,...,a, € @, m € Z and let o be an automorphism of
Q. Then

(i) h(o(@)) = h(a);

(ii) h(ay -+ @) < 2, Way);

(iii) W(ay + -+ + @) <logn + X7, h(w);
(iv) h(a@™) = |mlh(@).

Proof See [Waldschmidt (2000), chap. 3]. m]

The minimal polynomial of & € Q over Z, denoted by P,, is by definition
the polynomial P € Z[X] of minimal degree, having positive leading coefficient
and coefficients with greatest common divisor 1, such that P(@) = 0. Writing
P, = ap(X — a)--- (X — a'P) where d = dega and o'V, ...,a'? are the
conjugates of « in C, we have

1/d

d
H(e) = (jaol ﬂ max(1, V) (3.5.2)
i=1
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i.e., H(a) is the d-th root of the Mahler measure of a (see [Waldschmidt
(2000), Lemma 3.10)]. Writing P, = aoX? + - - - + a4, we have

—%{ log(d + 1) + h(@) < h(P,) < log?2 + h(a), (3.5.3)

where h(P,) = log max(|ag|, - . ., |ag]) (see [Waldschmidt (2000), Lemma 3.11)].
From this we deduce at once Northcott’s Theorem :

Theorem 3.5.2 Let D, H be positive integers. Then there are only finitely
many a € Q such that dega < D and h(a) < H.

v-adic norms and heights of vectors and polynomials. Let K be an algebraic
number field, v € Mg, and denote the unique extension of | - |, to K, also by

| - |,. We define the v-adic norm of a vector X = (xq,...,X,) € Zn by
|X|v = lea ceey xnlv = max(|x1 Iv, vy |xn|v)~
Letx = (x,...,x,) € @n and choose an algebraic number field K such that

x € K". Then the multiplicative height and homogeneous multiplicative height
of x are defined by

H(x) = H(xy,...,x,) = ( 1—[ max(1, |X|v))l/[K:Q],

veMg

1/[K:Q]
H™™(x) = H*"(xy, o) = (] k)

veMg

respectively. By Proposition [3.3.1] these definitions are independent of the

choice of K. For instance, let x € Q" \ {0}. Then we can express this vector
a,

asx =g 1s---5Yn), Where a, b, yy,...,y, are integers with gcd(a, b) = 1 and
gcd(yy,...,yn) = 1, and we have

H(x) = max(|bl, layi|, ..., laya)), H"™(x) = max(|yi], ... |ya])-
We define the corresponding logarithmic heights of x € @n by
h(x) :=log H(x), A"™(x) := log H™"(x) (if x # 0)

respectively. It is easy to see that for x = (x;,...,x,) € @n, e @* and for
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X1,..., X, € @n’
RPOM(x) < h(x), (3.5.4)
max h(x;) < h(x) < ; h(x,), (3.5.5)
h(x) — h() < h(AX) < h(x) + h(Q), (3.5.6)
APmAx) = AT (x), (3.5.7)
h(xX] + - +X,) < h(x;) + logm. (3.5.8)

i=1

We recall a few facts on heights and norms of polynomials. Let K be an
algebraic number field and v € M. Denote the unique extension of | - |, to
fv also by | - |,. For a polynomial P € E[Xl, ..., X,1, we denote by |P|, the
v-adic norm of a vector, consisting of all non-zero coefficients of P. We write
as before s(v) = 1 if visreal, s(v) = 2 if vis complex, and s(v) = 0 if v is finite.

Proposition 3.5.3 Let Py,...,P, € K[Xi,..., X,] be non-zero polynomials
and let n be the sum of the partial degrees of P := Py --- P,,. Then

s o 1Pl

<t <m0,
|P1|V|Pm|v

Proof If v is finite then the term 2" is 1, and so this is Gauss’ Lemma. In
the case that v is infinite this is a version of a lemma of Gel fond. Proofs of
both can be found for instance in [Bombieri and Gubler (2006)], Lemma 1.6.3
and Lemma 1.6.11. ]

For a polynomial P € QlXy, ... , X,1, we denote by H(P), H"™™(P), h(P),
hP°m(P), the respective heights of a vector consisting of the coefficients of P.
Obviously, for polynomials we have similar inequalities as in (3.5.4)-(3.3.9).
From Proposition [3.5.3| we deduce at once:

Corollary 3.54 Let Py,...,P, € @[Xl, ..., Xg] be non-zero polynomials
and let n be the sum of the partial degrees of P := Py --- P,,. Then

~nlog?2 + Z R™(Py) < Bm(P) < Z R™(P,) + nlog 2.

i=1 i=1

Proof Choose a number field K containing the coefficients of Py,..., P,
apply Proposition and take the product over v € M. m|

Corollary 3.5.5 Let P € Q[X] be a monic polynomial of degree n with distinct
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zeros ay,...,a, in Q. Then

~nlog?2 + h(P) < Z h(a;) < h(P) + nlog 2.
i=1
Proof Observe that h(P) = h"™(P) since P is monic and that h(a) = AP (X -

) for & € Q. Applying Corollary to the identity P(X) = [1.,(X — @),
the assertion follows. O

For monic irreducible polynomials P with coefficients in Z, Corollary [3.5.3]
gives a slightly weaker version of (3.5.3).

Houses. We define the house of an algebraic number a by
[@] := max(je"], ... [a“)),

where a1, ..., a@ are the conjugates of a relative to Q(@)/Q, i.e. the max-
imum of the absolute values of the zeros of P, in C. Further we denote by
den(a) the denominator of a, that is the smallest positive rational integer for
which den(@)a is an algebraic integer.

It is easy to see that

a’l"'Q’HSW"'W’ a) + -+, <[a ]+ +[a, 3.5.9)

for any algebraic numbers ay, ..., @,, while
[a]> 1, (3.5.10)
h(a) < logfa] < (dega) - h(a) (3.5.11)

for every non-zero algebraic integer a.

We have collected some useful estimates for houses of algebraic integers
with certain properties. Let again K be an algebraic number field of degree
d and let Dg denote its discriminant. Recall that an element « of K is called
primitive if K = Q(a).

Proposition 3.5.6 There exists @ € Og which is a primitive element of K and
for which[a] < |Dg|'2.

Proof See [Ribenboim (2001), pp. 164-165], except for the case that K = Q
or an imaginary quadratic field where the proof is trivial. O

Proposition 3.5.7 Let a be an ideal of Os and 8 € Og. Then there is an
a € Ok such that

d
B-aca [a]< leK|]/2NS(a)l/d-
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In the proof we need the following.

Lemma 3.5.8 Let abe anon-zero ideal of Og. Then K has a Q-basis {w;, . .., wq}
such that w; € a and

[wi] < 1Dk * Nk fori=1,....d. (3.5.12)
Proof This is a special case of [Mahler (1937), Satz 6]. m]

Proof of Proposition Denote by a the unique ideal of Ok, composed of
prime ideals corresponding to places outside S, for which a = aOg. There is
an S-unit 77 in Ok such that B € Og. Since the fractional ideal () of Ok is
composed of prime ideals corresponding to finite places from S, there is an
7 € Ok withn’ —1 €a. Let 8 = /8. Then B’ — B € a.

By Lemma there exists a Q-basis {wy,...,wy} with w; € a fori =
1,...,d for which holds with a replaced by a. Then there are by, ..., by €
Q with

ﬁ/ =bwy + -+ bywy.

Letay,...,a, be rational integers with |b; —a;| < 1/2fori=1,...,d. Put

= zd](bi — a;)w;.
i=1

Then 8/ — a € @ and hence 8 — « € a. Further, in view of 8/ € Ok we have

@ € Ok. Finally, by (3.5.T1) and Lemma[3.5.8 we get

d
1 d d
[a]< 3 > @] < 1Dl ANk @) = 21Dl Ns(@) .
i=1

3.6 Estimates for units and S -units

Let K be an algebraic number field of degree d with ring of integers O, unit
rank r and regulator R. Denote by wg the number of roots of unity in K. We
have collected the upper bounds for the heights of units and $ -units in a funda-
mental/maximal independent system from [Evertse and Gy6ry (2015), Section
4.3].

Let S = {vi,...,v,} be a finite set of places on K containing all infinite
places. Denote by Os, Og and Ry the ring of S-integers, the group of S-units
and the S-regulator of K, respectively. If in particular S = M, then s = r + 1,
Os = Ok, Oy is just the unit group Oy of K, and Ry = R.
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We define the constants
cri=((s = DY/ (272a7"),
¢ = (s = D/d,
¢ :=29e Vs -2 d*'(log" d) c1 (s = 3),
¢, =29 Vs -2 d*' (log" d) ¢ (s = 3),
c3 1= (((s = DD? /27") (log(3a))™.

Proposition 3.6.1 Let s > 2. There exists in K a fundamental (respectively
multiplicatively independent) system {1, ..., €51} of S-units with the following
properties:

s—1
(i) 1_[ h(e;) < c1Rgs (resp. C/le),'

i=1

(ii) max h(g;) < caRs (resp. c,Rs) if s > 3;
<i<s—

(iii) for such a fundamental system {e,,...,&s_1}, the absolute values of the

entries of the inverse matrix of (log |s,-|v/.), ) . do not exceed cs.
i,j= s—

Proof See [Evertse and Gyory (2015), Prop. 4.3.9]. Recently, for multiplica-
tively independent S -units an upper bound slightly better than (i), with s!/(2d)*~"!
instead of ¢}, has been obtained in [ Vaaler (2014)], see also [Akhtari and Vaaler

(2015)]. O
Let py, ..., p; be the prime ideals corresponding to the finite places in S, and
put

Qs := Ng(p1---p) if1>0, Qs :=1ift=0.
Let hg denote the class number of K, and put
0 ,if r=0,
¢y =4 1/d Jaf r=1,
29er!rVr—1logd ,if r>2.

Proposition 3.6.2 Let 6, (v € S) be reals with 3,5 6, = 0. Then there exists
€ € O such that

Z |loglel, — 6,] < cs4dR + hi log Os .

ves

Moreover, in the special case S = Mg, O = Oy, & can be chosen from the
group generated by independent units having properties specified in (i) and (ii)

of Proposition[3.6.1]
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Proof See [Evertse and Gydry (2015), Proposition 4.3.11] and the subsequent
remark. o

Let hg, Rk denote the class number and regulator of K. For @ € K* define

Mg (a) := max [_[ max(1,|al,), [_] max(1, ;") |.

veMi\S vEMg\S

By the Product Formula we have

Ms@ =[] lal;' = Ns(@) fora e 05\ {0},

veMg\S

where Ns(a) = [],es lel, is the S-norm of a, as defined in Section[3.4]

Proposition 3.6.3 Let a € K* and let n be a positive integer. Then there exists
€ € Og such that

1 h
h(ea) < y log Mg(@) + n (C4RK + FK log QS). 3.6.1)
In particular, if a € Og \ {0} then there exists £ € O such that
" 1 hy
h(e"a) < y log Nsg(@) + n|cyRg + 7 log Qs |- (3.6.2)
Proof See [Evertse and Gy6ry (2015), Prop. 4.3.12]. O

3.7 Effective computations in number fields and étale
algebras

This section contains a collection of algorithmic results on algebraic num-
ber fields, relative extensions of number fields and étale algebras over number
fields, which are used in chapters [6] and[T4] Most of the results are with-
out proof; for more details and proofs we refer to [Borevich and Shafarevich
(1967)], [Pohst and Zassenhaus (1989)] and [Cohen (1993, 2000)]. Our effec-
tive finiteness results in the above mentioned chapters are only of theoretical
importance, hence we did not make an effort to refer here to the best known
algorithms.

When we say that for any given input from a specified set we can deter-
mine/compute effectively an output, we mean that there exists an algorithm
(that is, a deterministic Turing machine) that, for any choice of input from the
given set, computes the output in finitely many steps. We say that an object is
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effectively given if it is given in such a way that it can serve as input for an
algorithm.

In the subsequent chapters we will consider Diophantine equations to be
solved in algebraic numbers not necessarily restricted to a given number field,
and to make sensible statements about whether the solutions of such equa-
tions can be determined effectively we need a constructive description of an
algebraic closure of Q. For such descriptions, see for instance [Frohlich and
Shepherdson (1956), Thms. 7.5, 7.6] and [Rabin (1960), Thm. 7].

We briefly explain the former. Order the polynomials of Z[X] in a sequence
81,82, - ... We first adjoin the zeros of g; to Q, then the zeros of g, not yet in the
field constructed so far, and so forth. More precisely, we construct a sequence
of numbers fields

Q=KQCK1 cKyc--- withK; = K;_1(6;) fori=1,2,...

as follows. Suppose that K;_; has been constructed. Factor g1, g2, ... in K;_;[X]
until one finds g; with an irreducible monic factor f; € K;_;[X] of degree at
least 2 and take K; = K;_1(6;), where 6; is a zero of f;. Using an algorithm to
factor polynomials in K;_;[X], this polynomial f; can be computed explicitly in
the form F;(0y,...,0;_1,X), where F; € Q[Yy,...,Y;_1, X]. In fact, one obtains
a factorization algorithm for K;_;[X] by repeatedly applying [van der Waerden
(1930), §37, pp. 128-131] or the ideas in [Cohen (1993), algorithm 3.6.4],
which both extract a factorization algorithm for K;[X] from one for K;_;[X],
for j=1,2,.... Then

|JKi=02@.6,..)
i=1

is an algebraic closure of Q. We call the resulting field an effectively given
algebraic closure of Q, and we denote it by Q.

Put d; := deg f; fori = 1,2, .... One shows inductively, using division with
remainder for polynomials, that any element e of Q can be expressed uniquely

as
di-1  d,-1
=" a0 O (3.7.1)
=0 =
for some m > 1 with a;,_; € Qforalliy,...,i,, where m = 1 and a;, = 0O for

i1 >0ife € Q andm > 1anda;,,_;, # 0 for some i, > 0if @ ¢ Q. We say
that a is effectively given/computable, if the coefficients a;, _; are given/can be
computed. It is not difficult to show that from given o, 8 € Q one can compute
a =B, af and a/B (if B # 0). Moreover, one can compute the zeros in Q for
a given polynomial P € Q[X]. Indeed, one can enumerate the elements of Q
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given in the form (3.7.1) and just compute P(c) for all a € Q until one finds &
with P(a) = 0. Then one can compute P(X)/(X — @) and repeat the procedure.

In what follows, Q will be an effectively given algebraic closure of Q, and
all number fields occurring below will be subfields of Q. We start with a few
algorithms for algebraic numbers. In the next two subsections we will restrict
to algebraic numbers in a given number field.

(@) For given By,B1,---,Bm € Q one can effectively decide whether there are
bi,...,b, € Qwith By = X1, b;f; and if so, compute such b;. Consequently,
for a given algebraic number @ one can compute its monic minimal polynomial
and degree over Q, and then check if « is an algebraic integer or an algebraic
unit. Indeed, using the representations for By, ...,[Bn one can translate
the relation 8y = X2, b;3; into a system of linear equations over Q in the un-
knowns by, ..., b, whose solvability can be checked and which can be solved
if possible by linear algebra. Then one can compute the monic minimal poly-
nomial of & over Q by checking fori = 1,2 ... whether @' can be expressed as
a Q-linear combination of 1,«, ..., ! and stop if one finds one. Having thus
computed the monic minimal polynomial f € Q[X] of @, one observes that «
is an algebraic integer if and only if f € Z[X], and an algebraic unit if and only
if f € Z[X] and f(0) = £1.

(D If @ € Q is effectively given then one can effectively compute an upper
bound for A(a@) and, if @ is an algebraic integer, for [a| as well. Indeed, we
can compute the minimal polynomial P, € Z[X] of « with relatively prime
coefficients. Then (3.5.3) provides an upper bound for A(a) and, if « is an
algebraic integer, (3.5.11)) provides an upper bound for [a].

(IIT) (Effective Northcott’s Theorem) For given H > 0 and D > 0 one can
determine a finite and effectively determinable subset ¢ of @ such thatif @ € @
and (@) < H, dega < D then a € . For by (3.5.3), the polynomial P,
has degree at most D and coefficients with absolute values at most (2¢).
Compute the zeros in Qof all polynomials in Z[X] with these properties.

3.7.1 Algebraic number fields

An algebraic number field K is said to be effectively given (over Q) if it is given
in the form K = Q(ay,...,a,) where a1,...,a, € @ are effectively given. In
what follows, K is an effectively given algebraic number field. We denote by
Ok the ring of integers of K and by £?(O) its set of prime ideals. Below we
give an overview of the algorithmic results used in this monograph.

(IV) One can compute § € Og with K = Q(6) and the monic minimal poly-
nomial of 6 over Q. Further, for any effectively given @ € Q one can decide
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whether « € K, and if so, compute ay, ..., a,4-1 € Q, with d = deg6, such that
a=a0+a19+---+ad_10d_l. (372)

For let K be given in the form Q(a;,...,,) and let D := []}_, deg ;. Then
[K : Q] =t D" < D. Let 0y,...,0p be the embeddings of K into Q. We
may assume that @, ..., a, € Og. There are integers by, ..., b, with |b;| < D?
for i = 1,...,r such that [, jcp (X br(oi(ar) — oj(ar))) # 0. Then
0 := Y;_, bray is a primitive element of K. To find 6 with its monic minimal
polynomial, compute the monic minimal polynomial for each of the numbers
Yiie1 by with by € Z, |by| < D? and check when the degree of its minimal
polynomial is maximal. Having thus found a primitive element 8 of K, one
observes that an effectively given @ € Q belongs to K if and only if there are
o, .. .,aq4-1 € Q with (3.7.2). One can verify if these exist, and if so compute
them, using (I).

Much of the literature, e.g, [Cohen (1993, 2000)] and [Evertse and Gydry
(2015)] uses the representation of K in the form Q[X]/(P), where P € Z[X] is
a given irreducible monic polynomial, and the representation of @ € K in the
form (3.7.2)) where 6 := X (mod P). As explained in (IV), such a representation
can be computed from the one based on (3.7.1)) given above. Conversely, given
K = Q[X]/(P), one can compute a zero 6 € Q of P in the form @71) and
represent K in the form Q(#). Then from a representation of @ of the form

(372) one can compute one of the form (3.7.1).

(V) For given By,B1,---,8m € @ one can decide if Sy can be expressed as
2, bif; with b; € K and if so compute such b;. Consequently, for every given
a € Q one can determine its monic minimal polynomial and degree over K.
Indeed, for the former one has to verify whether the number S is a Q-linear
combination of 8;6/ (i = 1,...,m, j = 0,...,d — 1) and if so, compute such
a Q-linear combination. This can be done using (I). For the latter, one has to
check for i = 1,2,... whether ' is a K-linear combination of 1,...,a" ! and
if so, compute such.

(VI) For any given P € K[X], one can effectively decide whether it is irre-
ducible over K. Indeed, one may compute a zero of P, compute its monic min-
imal polynomial over K and check if up to a scalar it is equal to P. For more ef-
ficient algorithms, see [Pohst and Zassenhaus (1989)], or [Cohen (1993), §3.6].

(VII) If @ € K is effectively given, then its characteristic polynomial relative
to K/Q and its discriminant relative to K/Q can be effectively determined.

(VIII) For given H > 0 one can determine a finite and effectively determinable
subset 77 of K such that if @« € K and h(a) < H, then @ € 7. Indeed,
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determine the set ¢4 from (III) with D := [K : Q] and check for each of its
elements whether it belongs to K.

(IX) One can determine effectively an integral basis of K, that is a Z-module
basis {1, wy, . .., wy} of the ring of integers Ok of K, and from that the discrim-
inant Dg of K; see e.g. [Cohen (1993), §6.1]. It is easy to see that if @ € K is
effectively given then one can determine by, ..., b, in Q such that

a=b; +bywy+ -+ bywy. (373)

An order O of K is said to be effectively given if a finite set of Z-module
generators for O is effectively given.

(X) If an order O of K is effectively given then one can effectively determine
a Z-basis of the form {1, w»,...,w,} and the discriminant Do of O; see e.g.
[Borevich and Shafarevich (1967), chap. 2, §2].

We say that a fractional ideal a of Ok is effectively given/determinable if a
finite set of generators of a over O is effectively given/determinable. For other
representations of fractional ideals we refer to [Pohst and Zassenhaus (1989),
§6.3] or [Cohen (1993), §4.7].

(XI) If a fractional ideal a of Ok is effectively given then it can be decided
whether a is principal. Further, if it is, one can compute an @ € K such that
a = aOg; see [Cohen (1993), §6.5].

(XTI) For effectively given fractional ideals of Ok one can compute their sum,
product and their absolute norms. Further, one can test equality, inclusion (i.e.
divisibility) and whether an element of K is in a given fractional ideal; see e.g.
[Cohen (1993), §4.7]. Finally, for an effectively given non-zero fractional ideal
of Ok one can compute its inverse (see e.g. [Cohen (1993), §4.8.4]).

(XTII) If a is an effectively given non-zero fractional ideal of Ok then its prime
ideal factorization can be effectively determined; see e.g. [Cohen (2000), §2.3].
In particular, one can decide whether a is an ideal of Ok or whether a is a prime
ideal.

(XIV) For an effectively given non-zero ideal a of Ok, one can effectively
determine a full system of representatives for Og/a. Indeed, by (3.5.11) and
Proposition every residue class modulo a contains an element @ with
h(a) < C, where C is effectively computable in terms of [K : Q], Dk, and
Nk(a). Using (VIII) one can effectively determine a finite set containing all
such a, and using (XIII) one can check for any two elements from this finite
set whether their difference belongs to a.

(XYV) (Effective Chinese Remainder Theorem for number fields). Let . be an
effectively given finite set of prime ideals of Ok. Further, let 8, (p € .¥) be



54 Algebraic number fields

effectively given elements of K, and m, (p € .¥) given integers. Then one can
effectively determine x € K such that

ordy(x — By) = my, forp € ., ordy(x) >0 forpe P(0k)\ L. (3.74)

Indeed, by Theorem there exists x’ with (3.7.4). Note that ord,(x") >
ky, := min(m,, ord,(B,)) for p € .#. Using (XIII), (XII) we can compute
the quantities k,, the ideal [],c.o p~%, and a non-zero element y of this ideal.
Then yx" € Ok. Subsequently, one can compute b := y [[,c. p"™ which is
an ideal of Ok. Using (XIV) one can compute a full system of representatives
for Ok/b. There is y in this set with y = yx’ (modb). Put x := y~'y. Then
x = x' (mod Hpe & ™), hence x satisfies @]} To determine x, compute
¥~y for every y in the full system of representatives for Ok /b computed above
and check if it satisfies (3.7.4), using (XII).

Let S be a finite set of places of K containing all infinite places. We say that
S is effectively given if the prime ideals corresponding to the finite places in
S are effectively given. In what follows, we assume that S is effectively given.
We recall that Og resp. O denotes the ring of S-integers resp. the group of
S -units in K.

(XVI) In view of (XIII) one can decide for any given o € K* whether @ € Oy,
or whether a € O%.

Let a be a fractional ideal of Og, that is, a finitely generated Og-submodule
of K. We say that a is effectively given/determinable if a finite set of generators
of a over Oy is effectively given/determinable.

(XVID) For every fractional ideal a of Og there is a unique fractional ideal @ of
Ok composed of prime ideals of Ok corresponding to places outside S, such
that a = @0g. If a is effectively given then a can be determined effectively, and
conversely. Further, in view of (XI) it can be decided whether a is principal,
and if it is, one can determine an o € K such that a = @Oy. Finally, by (XII)
the product of effectively given fractional ideals of Og can be effectively de-
termined, the inverse of a non-zero fractional ideal of Og can be effectively
determined, and one can test equality and inclusion.

3.7.2 Relative extensions and finite étale algebras

Let K be an effectively given number field, and L a finite extension of K. We
say that L is effectively given over K if K is effectively given, and L is given in
the form L = K(a,...,a,) with ¢, ..., @, effectively given elements of @ In
what follows, we assume that L is effectively given over K.

(XVIII) One can compute # € Oy with L = K(6) and the monic minimal
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polynomial of 8 over K. Further, for any effectively given algebraic number
a one can decide whether @ € L, and if so, compute ay,...,a,-1 € K, with
n = [L : K], such that

a=ag+af+-+a,_0".

The proof is similar to that of (IV), except that now one has to use (V).

(XIX) For any given @ € L, the characteristic polynomial of « relative to L/K
can be effectively determined; see [Cohen (2000), §§2.1,2.2].

Let K be an algebraic number field and Q a finite étale K-algebra. This
means that there are finite extensions Ly, ..., L, of K and a K-algebra isomor-
phism ¢ from Q to L; x --- x Lg; see (I.3.I). Then Q may be viewed as a
finite étale Q-algebra as well. If in particular g = 1, Q is just a finite extension
of K. We say that Q is effectively given over K if K is effectively given over
Qand Ly,..., L, are effectively given over K, and effectively given over Q if
Ly, ..., L, are effectively given over Q. Further, an element a of Q is said to
be effectively given/determinable if in p(a) = (ai,...,a,) the number a; is
effectively given/determinable and «; € L; for i = 1,..., g (recall that this can
be checked). In what follows, suppose that Q is effectively given over K. If a,
B € Q are effectively given/computable then a + 3, af and if § € QF, a/B are
effectively computable.

(XX) By (2.10.2) the discriminant Dg of Q viewed as finite étale Q-algebra
can be effectively determined.

(XXI) If @ € Qs effectively given then using (XIX), (V) and (T.5.1)), its monic
minimal polynomial and characteristic polynomial over K can be effectively
determined.

(XXID) If @ € Q is effectively given then by (II) one can give an effectively
computable upper bound for h(a).

(XXIII) If [Q : K] = nand «ay,...,a, are effectively given elements of Q,
then using linear algebra one can easily decide whether they are linearly in-
dependent over K. If they are so, using and (T3.T)), their discriminant
Dgqjk(ay,...,a,) can be effectively determined. In particular, if o € Q is ef-
fectively given, then Dgq,kx(a) can be effectively determined.

(XXIV) Finally, we say that an Og-order O of Q is effectively given if a finite

set of Og-module generators of O is effectively given. Then, using Proposition
2.10.1|and (XXIII), the discriminant ideal dg, ¢, can be effectively determined.
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Tools from the theory of unit equations

Our results on discriminant equations to be discussed in this monograph are
consequences of effective and ineffective finiteness results for unit equations
in two unknowns and certain generalizations thereof. In this chapter we give,
without proofs, a brief overview of the results on unit equations that are needed
in this book. For further results, proofs and related literature on these equations,
as well as other applications, we refer to [Evertse and Gyéry (2015)].

We consider, among others, equations of the type

ax+By=1inx,yel @n

where I' is a finitely generated multiplicative group in a field K of characteristic
0 and a,f are non-zero elements of K. An important special case is where
I' = A* is the unit group of a finitely generated domain A C K, that is an
integral domain that contains Z and is finitely generated as a Z-algebra. The
fact that for such integral domains the unit group is finitely generated, follows
from a theorem of [Roquette (1957)].

We recall that Siegel [Siegel (1921)] proved implicitly that equations of the
type @) have only finitely many solutions in case that K is an algebraic num-
ber field and I' = Oy is the unit group of the ring of integers Ok of K. Mahler
[Mahler (1933)] proved a similar finiteness result in the case that K = Q and
I' is the multiplicative group generated by —1 and a finite set of prime num-
bers py,..., p;, i.e., I is the unit group of the ring Z[(p; - -~ p)~"1. This was
extended by Parry [Parry (1950)] to the case that K is an arbitrary algebraic
number field and I" the group of S-units in K, for some finite set of places S
containing all infinite places. Finally, Lang [Lang (1960)] proved the following
general result, which we state here for reference purposes.

Theoremd}1 Ler K be an arbitrary field of characteristic 0, and T an arbi-
trary finitely generated subgroup of K*. Then equation @1)) has only finitely

56
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many solutions.

The proofs of Siegel, Mahler, Parry and Lang are all ineffective in that they
do not provide a method to determine all solutions, as they all depend on the
ineffective Thue-Siegel-Roth method from Diophantine approximation.

Lang’s result has been refined in various directions. In the 1960’s, Baker
[Baker (1966, 1967a, 1967b)] proved his celebrated lower bounds for linear
forms in logarithms of algebraic numbers. After that, several people improved
his estimates, and also obtained very powerful p-adic analogues, and this led
to what is nowadays called Baker’s theory on logarithmic forms. With the help
of this, it became possible to give effective upper bounds for the heights of the
solutions x, y of @) in the case that K is a number field and I is the group of
units of Ok, or the group of S -units for some finite set of places S containing
all infinite places. Gyory [Gy6ry (1972, 1973, 1974, 1979, 1979/1980)] was
the first to give such bounds in a completely explicit form. Later, his bounds
were substantially improved.

First in a special case in [Gy6ry (1983, 1984)] and later in full generality
in [Evertse and Gy&ry (2013)], the authors gave an effective proof for Lang’s
Theorem on in the case that I' = A* is the unit group of an arbitrary, in a
well-defined sense effectively given, finitely generated domain A.

In a rather different direction, by applying a suitable version of the Thue-
Siegel Diophantine approximation method based on hypergeometric functions,
first Evertse [Evertse (1984a)] for K a number field and I' the group of S -units
in K, and later Beukers and Schlickewei [Beukers and Schlickewei (1996)]
in the most general case, obtained explicit upper bounds for the number of
solutions of (@[T}, depending only on the rank of I'.

In Section we give an overview of recent effective results on equation
@T) and various variants, with explicit upper bounds for the heights of the
solutions. These are applied in Chapters [6] [8] and [I4] of the present book. In
Section we explain the effective finiteness result of Evertse and Gy&ry on
equations of the type

ax+By=1 inx,ye A",

where A is a finitely generated integral domain. This result is applied in Chap-
ter[I0} Finally, in Section .3 we give a ‘semi-effective result’ for equations of
the type @[I)), which is applied in Chapter[T3] as well as explicit upper bounds
for the number of solutions of such equations, which are needed in Chapters 9]
and For completeness, we also mention some results for unit equations in
more than two unknowns.
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4.1 Effective results over number fields

We present effective finiteness results, with explicit upper bounds for the heights
of the solutions, for equations of the shape

ax+pBy=1

where @, B are non-zero elements of an algebraic number field K, and the
unknowns x, y are units, S-units or, more generally, elements of a finitely gen-
erated multiplicative subgroup I' of K*. In certain applications, it is more con-
venient to consider the homogeneous equation

a1x] +azxy +azxz3 =0

where a1, a;, a3 denote non-zero elements of K, and the unknowns xp, x;, x3
are units, S -units or elements of .

The proofs depend on the best known effective estimates, due to Matveev
(2000) and Yu (2007), for linear forms in logarithms.

4.1.1 Equations in units of rings of integers

Let K be an algebraic number field of degree d. We denote by O the ring of
integers of K, by O} the group of units of Ok, by R the regulator of K, by r
the rank of Oy, by My the set of (infinite and finite) places, and by M the
set of infinite places of K. We use the absolute values | - |, (v € Mk) defined
in Section [3.3] and the absolute multiplicative height H(a) and absolute loga-
rithmic height i(@) = log H(@) for algebraic numbers « as defined in Section
[3.5] We shall frequently use the properties of these heights mentioned there
without any further reference.
Let a1, a3, a3 be non-zero elements of K and let H be a real with

H > max{h(a)), h(a»), h(a3)}, H > max{l,n/d}.
Consider the homogeneous unit equation
a1x] +axxy +azx3 =0 in xy, xp, X3 € 02 (411)

Theorem 4.1.1 Al solutions xy, x, x3 of satisfy

maxh(xi/xj) <ciR(log"R)H, (4.1.2)
ij

where

c1 = 4(r+ 102320 D Jog(2r + 2) (dlog" (2d))’ .
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Proof See [Gy6ry and Yu (2006), Thm. 2] or [Evertse and Gy&6ry (2015),
Thm. 4.1.1]. ]

In some applications of equation (4.1.1)), for example in the proof of Theo-
rem|6.1.2]in Chapter[6] at least two of the unknowns x;, x,, X3 are conjugate to
each other over Q. In these situations the following theorem will lead to much
better bounds.

Let K be a subfield of K with degree d;, unit rank r; and regulator Rg,.
Assume that for some Q-isomorphism o of K, o(K;) is also a subfield of K.

Theorem 4.1.2 Al solutions xi, x, x3 of with x, € Ky, x3 = 0(xp)

satisfy
max, h(xi/x;) < 2Rk, Hlog (h(:;)), (4.1.3)
provided that
h(xp) > 3Rk, H, 4.1.4)
where
Cy = 2551445 r?m 25 L 230042 r%r].
Proof See [Evertse and Gyory (2015), Thm. 4.1.2]. O

It should be observed that in {@.1.3) the upper bound depends on h(x,).
In terms of d and |, Theorem 4.1.2|is an improvement of a result of Gy&ry
(1998).

In the next subsection we give more general versions of Theorem [4.1.1]
A similar generalization of Theorem [.1.2] is given in [Gydry (1998)]. But
Theorems4.1.T|and f.1.2]provide, in the special situation they deal with, much
better bounds in terms of d and r and this is important in some applications,
e.g. in Chapter 6]

4.1.2 Equations with unknowns from a finitely generated
multiplicative group

Let again K be an algebraic number field of degree d. Let I be a finitely gener-
ated multiplicative subgroup of K* of rank ¢ > 0, and I',5 the torsion subgroup
of I' consisting of all elements of finite order. We recall that g is the smallest
positive integer such that I'/T s has a system of g generators. Let S denote
the smallest set of places of K such that S contains all infinite places, and
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I' € O where Og denotes the group of S -units in K. Further, let o, 8 € K*. We
consider the equation

ax+By=1inxel,ye O;. 4.1.5)
In our first theorem below the following notation is used:

-{&é1,...,&n} 18 a system of generators for I'/Tors
(not necessarily a basis);
-0 :=h(&1) - h(€w); H := max{l, h(e), h(B)};
-5 :=1|S]; p1, ..., p, are the prime ideals corresponding to the finite places
inS;
- Py = max{2, Ng(p1), ..., Ng(p)};
in the case that S consists only of infinite places we put ¢ := 0, Py := 2.

Theorem 4.1.3  If x, y is a solution of {#.1.3), then

max {h(x), h(y)} < 6.5¢cys

P
; ©H max {log (c4sPs),log" ©},  (4.1.6)
N

log
where
¢4 = 114 - (m + D)(log"* m)(16ed)>™*>
withd=12ifm=1A=1ifm=>2.
Proof See [Evertse and Gy6ry (2015), Thm. 4.1.3]. O
For some of our applications it is essential that we allow &1, . .., &, to be any

set of generators of I'/T'os and not necessarily a basis. Almost the same bounds
were obtained in [Bérczes, Evertse and Gy&ry (2009)], but with ¢4 replaced by
a constant which, for m > ¢ > 0, contains also the factor ¢?. The improvement
in Theorem [4.1.3] will be important in the proof of Theorem [8.2.1] the main
result of Chapter 8] and in some of its consequences.

Theorem implies in an effective way the finiteness of the number of
solutions x, y € [ of {#.1.3)). To formulate this in a precise form, let Q be an
algebraic closure of Q effectively given as in Section Then an element of
Q is said to be effectively givenjcomputable if a representation (3.7.1)) for it is
given/can be computed. The number field K is said to be effectively given if
a finite set of generators in Q for it is effectively given. We remark that the
corollary below was proved in [Evertse and Gy&ry (2015)] with another notion
of effective computability, which is however equivalent to the one used in the
present book, see the remarks in Sectionbetween algorithms (IV) and (V).

Corollary 4.1.4 For given a, B € K, equation (4.1.5) has only finitely many
solutions in x, y € I'. Further, there exists an algorithm which, from effectively
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given K, a, B, a system of generators for U [Tiors and U5, computes all solu-
tions Xx, y.

Proof See [Evertse and Gyory (2015), Cor. 4.1.4]. O

In the special case I' = Og, we obtain from Theorem P:l_?l the following.
Let S be a finite subset of My containing all infinite places, with the above
parameters s, Ps. Denote by Rs the S -regulator (see Section[3.4]for a definition
and (@1.10) below for a useful estimate). Define

cs = 114s*(log" 5)(16ed)>* > with A = 12if s =2, A = 1 if s > 3,
c6 = ((s = HH*/(22d"7).

Corollary 4.1.5 Every solution x, y of

ax+By=1inxye O 4.1.7)
satisfies
max (h(x), h(y))
< 6.5¢5¢6 (Ps [ log Ps) HRs max {log(csPs),log"(csRs)}. (4.1.8)
Proof See [Evertse and Gydry (2015), Cor. 4.1.5]. m|

This was proved in [Gydry and Yu (2006)] in a slightly sharper form in
terms of d and s. In the special case § = My, Corollary @ gives Theorem
@1 .T]but only with a weaker bound in terms of d and r. From Theorem [4.1.3]
a weaker version of Theorem d.1.2] can also be deduced.

We say that S is effectively given if the prime ideals corresponding to the
finite places in S are effectively given in the sense defined in Section[3.7.1] The
next corollary follows both from Corollary #.1.5]and from Corollary .14}

Corollary 4.1.6 Let o, B € K*. Then equation @1.7) has only finitely many
solutions. Further, there exists an algorithm that, from effectively given K, «,
Band S, computes all solutions.

Proof See [Evertse and Gydry (2015), Cor. 4.1.6]. ]

If the number ¢ of finite places in S exceeds log Ps, then, in terms of S, s* is
the dominating factor in the bound occurring in (#.1.8). In the following ver-
sion of Corollary [4.1.5|there is no factor of the form s* or #. This improvement
plays an important role in Chapter 8]

Let

% = max {h, R},
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where h and R denote the class number and regulator of K, respectively. Fur-
ther, let r denote the unit rank of K.

Theorem 4.1.7 Let t > 0. Then every solution x, y of satisfies

1+

. 4
max {h(x), h(y)} < (c7d'+3,%>) PsHRg, (4.1.9)
where c7 is an effectively computable positive absolute constant.
Proof See [Evertse and Gy6ry (2015), Thm. 4.1.7]. O

The same result was established in [Gy6ry and Yu (2000)] in a slightly
different and completely explicit form; for a slight improvement see [Gy&ry
(2008a)].

We note that in view of and (3.1.7), Z can be estimated from above
in terms of d and the discriminant of K. Further, in view of we have
t t

log Nx(p;) < Rs < hR ]_[ log Nx(p;). (4.1.10)

i=1 i=1

R

4.2 Effective results over finitely generated domains

In this book, by a finitely generated domain (over Z) we mean an integral
domain that contains Z and is finitely generated as a Z-algebra.

In this section, we consider unit equations over such domains. More pre-
cisely, let

A=Zlz,....z]2Z

be an integral domain that is generated by finitely many algebraic or tran-
scendental elements zj, ...,z Let a1, @y, @3 be non-zero elements of A and
consider the equation

ax+ay=a; inx,y€ A" 4.2.1)

As was mentioned above, Lang [Lang (1960)] proved that this equation has
only finitely many solutions but his proof is ineffective. In [Evertse and Gyory
(2013)], an effective proof of this theorem was given. Before stating their re-
sult, we recall the necessary terminology.

Consider the ideal of the polynomial ring Z[ X1, ..., X,],

I:={PecZ[X,....X,]: P(z1,...,2,) =0} 4.2.2)

This ideal is finitely generated, A is isomorphic to Z[X|, ..., X,]/I and z; corre-
sponds to the residue class of X; mod /. Further,  is a prime ideal in Z[ X, . .., X,]
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with I N Z = (0). We say that A is given effectively if a finite set of generators
of I is given.
For a € A, we call @ a representative for a, or say that a represents a if

aeZ[Xi,.... X, ], a=alzi,...,2).

We say that an @ € A is given effectively/can be determined effectively if a
representative for « is given/can be computed.

To do effective computations in A, one needs an ideal membership algorithm
for Z[X{, ..., X,], that is an algorithm that for any given polynomial and ideal
of Z[ X1, ..., X,] decides whether the polynomial belongs to the ideal. For such
algorithms, we refer to [Simmons (1970)] and [Aschenbrenner (2004)]. With
such an ideal menbership algorithm one can decide effectively whether two
polynomials Pj, P, from Z[Xj, ..., X,] represent the same element of A, i.e.,
P,—-Pyel

Our first result is as follows.

Theorem 4.2.1 Let A be a finitely generated domain which is effectively
given, and let a;, (i = 1,2,3) be non-zero and effectively given elements of
A. Then @2.0) has only finitely many solutions, and these can be determined
effectively.

Proof See [Evertse and Gydry (2013), Cor. 1.2] or [Evertse and Gy&ry (2015),
Cor. 8.1.2]. m|

It is important to note that here one does not need a set of generators for
A*. This will be crucial in Chapter [I0] in the application of Theorem to
discriminant equations.

We now present a quantitative refinement of Theorem {.2.1] Let A, I and
ay, @2, a3 be as in Theorem @ Assume that A is given effectively, that is
that a finite set of generators Py, ..., Py € Z[X},...,X,] of I is given.

The degree deg P of a polynomial P € Z[Xy, ..., X,] is by definition its total
degree. By the logarithmic height h(P) of P we mean the logarithm of the
maximum of the absolute values of its coefficients. The size of P is defined by

s(P) := max(degP, h(P), 1).

Obviously, there are only finitely many polynomials in Z[X{,..., X,] of size
below a given bound, and these can be effectively determined.

Theorem 4.2.2 Assume that r > 1. Let @; be a representative for «;, for i =
1,2,3. Assume that Py, ..., Pyand a; (i = 1,2,3) all have degree at most d and
logarithmic height at most h, where d > 1, h > 1. Then for each solution (x,y)
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of @2.10) there are representatives X, X., ¥, y. for x, x™', y, y™! respectively,
such that

5@, 5(%2), sG), s(72) < exp ((2d)“’(h + 1)), (4.2.3)
where k is an effectively computable absolute constant > 1.

Proof See [Evertse and Gy6ry (2013), Thm. 1.1] or [Evertse and Gyéry (2015),
Thm. 8.1.1]. O

Theorem[.2.T|follows easily from Theorem[.2.7} Indeed, let C be the upper
bound in (#.2.3). Test for all quadruples (X, X.,y,y:) in Z[X1, . .., X,] of size at
most C whether a1 x+@;y—a3 € [ and X-Xx,—1,y-y,—1 € I. The pairs (x,y) from

the quadruples satisfying this test represent the solutions of equation (#.2.T)).

4.3 Ineffective results, bounds for the number of solutions

We start with a so-called semi-effective result. Let K be an algebraic number
field and S a finite set of places of K, containing all infinite places. For x =
(x1,...,x,) € Oy, we define

Hy (xo, %) 1= | | max(xilys .., 1),
veS
Recall that the S -norm of @ € K is given by

Ns(@):= [ |lal.

ves

Theorem 4.3.1 Let € > 0, n > 2. There is a constant C™ (K, S, n, €) de-
pending only on K, S, n, € for which the following holds. For all non-zero
X0, X1» ..., X, € Og such that

x0+x1+...+xn:0 (431)
and
Z xi #0
iel
for each proper, non-empty subset I of {0, ...,n} we have

Hg(xo, ..., %) < C™ (K, S, n,€) Ng(xo---x,)' . (4.3.2)

We have indicated by means of the superscript ‘ineff” that the constant C'"ff
is not effectively computable by means of our method of proof.
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Proof This is an equivalent formulation of [Evertse (1984b), Thm. 1], see
also [Evertse and Gy6ry (2015), Thm. 6.1.1]. The proof is by means of the p-
adic Subspace Theorem by Schmidt [Schmidt (1972)] (basic case) and Schlick-
ewei [Schlickewei (1977)] p-adic generalization). We refer to [Schmidt (1980)]
for a proof of Schmidt’s basic Subspace Theorem from 1972, and to [Bombieri
and Gubler (2006), chap. 7] for a proof of the p-adic generalization.

In fact, we will need Lemma only in the case n = 2; in that case, the
theorem already follows from a p-adic generalization of Roth’s Theorem, see
e.g., [Lang (1960)]. O

Theorem implies the following result for S -unit equations
aixp+ -+ apx, =1 inx, ..., x, € O (4.3.3)

where a1, ..., q, are non-zero elements of K. This result that we do not need
but state here for completeness was proved independently by [Evertse (1984b)]
and [van der Poorten and Schlickewei (1982)]. We recall that a solution of
#@33) is called non-degenerate, if

Z a;x; #0
i€l
for each proper, non-empty subset / of {1,...,n}.

Corollary 4.3.2 Let ay,...,a, be non-zero elements of K. Then equation
(@33) has only finitely many non-degenerate solutions.

Proof Extend S to a finite set of places S’ such that ay,...,a, are all §’-
units. Take a non-degenerate solution (xi, ..., x,) of (4.3.3) and put x, := -1,
x, := a;x; fori = 1,...,n. Then Theorem implies

H(aix)® Y < Hyo(x), ..., %) < 1

fori = 1,...,n. Now Northcott’s Theorem (see Theorem [3.5.2)) implies that
there are only finitely many possibilities for xi, ..., x;,. O

We now turn to results giving explicit upper bounds for the number of solu-
tions. In the remainder of this section, K is an arbitrary field of characteristic
0. We denote by (K*)" the n-fold direct product of K*, i.e., the multiplicative
group of n-tuples (xy, ..., x,) with non-zero elements of K, endowed with co-
ordinatewise multiplication

Xts e X)W1 e Yn) = (XYL, -5 XnYn)-

We say that a subgroup I' of (K*)" has rank r, if I has a free subgroup I'y of
rank r such that for every a € I there is a positive integer m with a” € I'y.
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Theorem 4.3.3 Let I be a subgroup of (K*)? of finite rank r. Then the equa-
tion
x+y=1in(x,y)el “4.34)

has at most 280V solutions.

Proof This is the main result of [Beukers and Schlickewei (1996)]. A com-
plete proof has been included in [Evertse and Gydry (2015), chap. 6]. O

We immediately obtain the following corollary.

Corollary 4.3.4 Let T be a subgroup of (K*)* of finite rank r and .3 € K.
Then the equation

ax+py=1in(x,y)el (4.3.5)
has at most 2802 solutions.

Proof Apply Theorem with instead of I" the group I"” generated by I'
and (o, B). O

In Chapters [9]and [I7] we need a generalization to systems of unit equations
in two unknowns.

Corollary 4.3.5 Letm > 1, and T a subgroup of (K*)*" of finite rank r. Then
the system of equations

xi+yi=1G=1,....m) in(x1,Y1,..., X, Ym) € 4.3.6)
has at most 28021 solutions.

Proof We proceed by induction on m. For m = 1, Corollary[4.3.5]is precisely
Theorem Assume that m > 2, and that the corollary is true for systems
of fewer than m equations. Write

X = (Xl,)’u- -~,in,)’m), X = (-xl»yla-- w-xm—l’ym—l)

and define the homomorphism ¢ : x — x". Let I := ¢(I'). Notice that if x is a
solution of (@.3.6), then ¢(x) is a solution of the system consisting of the first
m — 1 equations of (#.3.6). By the induction hypothesis, if x runs through the
solutions of (#.3.6)), then x’ runs through a set of cardinality at most 28¢"+2m=3),
where 1’ := rank I"". To finish the induction step, we have to prove that for any
x’ € I there are at most 287="+2) solutions x of with ¢(x) = X'.

Pick x" € I and then fix X* := (x],)],...,x,,,¥,,) € I' with o(x*) = x'. Let
Iy := ker(p : T — I"). Further, let I'; C (K*)? be the image of the group
generated by I'y and x* under the projection (xi, ..., V) — (Xu, Ym). Then

rank['; <rankTg+1=r—-+ +1.
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Clearly, if ¢(x) = x’ then x-(x*)~! € Iy, and this implies that x; = x;,yi =y for
i=1,...,m—1and (x,,yu) € I'. By Theorem[4.3.3] the equation x,, +y,, = 1
has at most 280"+ solutions (x,,,y,,) € T'j. It follows that indeed,
has at most 280"+ solutions x with ¢(x) = x’. This completes our induction
step. m]

Although we do not need this, for the sake of completeness we recall a
higher dimensional generalization of Theorem [4.3.3]

Theorem 4.3.6 Letn > 2, let ay,...,a, be non-zero elements of K, and let
I be a subgroup of (K*)" of finite rank r. Then the equation

X+t apx, =1 in (xq,...,x,) €l “4.3.7)
has at most A(n, r) = exp((6n)>(r + 1)) non-degenerate solutions.

Proof This is the main result of [Evertse, Schlickewei and Schmidt (2002)].
See [Evertse and Gy6ry (2015), chap. 6] for a sketch of the proof. O

The main ingredients of the proof are a specialization argument, to make a
reduction to the case that K is a number field and I" is finitely generated, a ver-
sion of the Quantitative Subspace Theorem [Evertse and Schlickewei (2002)]
and an estimate of Schmidt [Schmidt (1996)] for the number of points of very
small height on an algebraic subvariety of a linear torus. This estimate of
Schmidt was improved substantially by Amoroso and Viada [Amoroso and Vi-
ada (2009)]. By going through the proof of Evertse, Schlickewei and Schmidt,
but replacing Schmidt’s estimate by their’s, they obtained in the same paper a
stronger version of the above Theorem [4.3.6] with

An, r) = (Sn)¥n(m+r+D), (4.3.8)

We return to equation (#.3.3) in two unknowns. In most cases, the bound
280+2) in Corollary can be improved. Let I' be a subgroup of (K*)* of
finite rank. We call a pair (a, 8) of non-zero elements of K normalized if a+ =
1. Clearly, if has a solution (u, v) € T, then the pair (¢, 8') := (au, Bv) is
normalized, and ’x’ + 'y’ = 1 has the same number of solutions in (x’,y") € T’
as (4.3.5). Hence it suffices to deal with those equations only in which
the pairs (a, §) are normalized.

Theorem 4.3.7 Let T be a subgroup of (K*)* of finite rank. Then there are
only finitely many normalized pairs (a,) € (K*)* such that equation [#3.3)
has more than two solutions, the pair (1, 1) included. The number of these pairs
is bounded above by a function B(r) depending on the rank r of T only.
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Proof This is the main result of [Evertse, Gy&ry, Stewart, Tijdeman (1988)].
The proof has also been included in [Evertse and Gy6ry (2015), chap. 6]. The
idea is to take a normalized pair (@, 8) such that has three solutions,
(1, 1), (x1,¥1), (x2,¥2), say. Then

I 1 1
1 X1 Y1 | = 0.
1 X2 Y2

By expanding this determinant and dividing by one term, we obtain an equation
of type (@.3.7) with n = 5. There may be vanishing subsums. By considering
all possible minimal non-vanishing subsums and applying Theorem [4.3.6] the
theorem follows. O

By using (#3.8) we obtain B(r) = €200000+3)  For earlier bounds for B(r),
see [Gy6ry (1992)], [Bérczes (2000)].

The bound 2 in Theorem is optimal. For suppose that there are in-
finitely many pairs (u;,u;) € I' with u; # uy. For every such pair, there is a
unique pair (@, 8) such that

ax+By=1 4.3.9)

is satisfied by (1, 1) and (u;, u»). Conversely, only finitely many pairs (u;, u>)
can give rise to the same pair (@, 8) since (#.3.9) has only finitely many solu-
tions in I'. Hence if (11, uy) runs through all pairs of I' with u; # uy, then (a, B)
runs through an infinite set.
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Basic finiteness theorems

In this introductory chapter, we state and prove the basic finiteness theorems,
in qualitative and ineffective form, for discriminant equations for monic poly-
nomials, discriminant equations for integral elements over a given integral do-
main A, for discriminant form and index form equations and for monogenic
orders. We thereby introduce the necessary terminology. The proofs in this
chapter contain the basic ideas, deprived of the technical details occurring in
the forthcoming chapters, where we give much more precise results with ex-
plicit upper bounds both for the sizes of the solutions and for the number of
solutions.

Let for the moment A be an arbitrary integral domain. The basic discriminant
equations we consider are of the shape

D(f) =06, D(f) € oA

to be solved in monic polynomials f € A[X] satisfying certain conditions.
Here, A* denotes the unit group of A and ¢ is a non-zero element of A. As we
shall see, the sets of solutions of such equations can be split in a natural way
into equivalence classes. By imposing different conditions on f, we derive re-
lated equations, for instance on discriminants of elements that are integral over
A, and on discriminant form and index form equations. Further, we consider
problems as to whether a given ring B D A is monogenic, i.e., of the type Al«a],
and what can be said about the set of @ for which this is true.

In Section we have collected some basic facts about finitely generated
domains over Z. In Section[5.2we introduce some decomposable forms related
to discriminants, namely, discriminant forms and index forms, generalized to
étale algebras. In Section[5.3|we recall some facts on monogenic orders, power
bases, and on indices of integral elements of finite étale algebras. In Section[5.4]
we present the basic finiteness theorems, due to Gyory [Gy6ry (1982)], for dis-
criminant equations for monic polynomials over finitely generated domains A

71
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over Z. As a consequence, we give finiteness results for discriminant equations
in integral elements, for discriminant form and index form equations, and for
monogenic orders. We will do this in the most general fashion, over arbitrary
integral domains that are finitely generated over Z. The basic tool is Lang’s
Theoreml for unit equations in two unknowns, stated in the introduction of
the previous chapter.

In the other chapters of Part [l we prove more precise effective and al-
gorithmic results and deduce uniform bounds for the number of equivalence
classes. To obtain such results for discriminant equations over number fields
and finitely generated domains, we combine in Chapters 8] [0]and[I0]the proofs
presented in this chapter with the corresponding results from Chapter 4] The
effective results provide algorithms to solve, at least in principle, the equations
considered. In Chapter [6] we give over Z more precise algorithms and better
bounds for the solutions than in Chapter [8] which make it possible to resolve
in Chapter [7] concrete discriminant equations. Part [[I] finishes in Chapter
with two applications: the first on canonical systems in number fields and the
second on determining a set of generators of minimal cardinality for a given
algebra over the ring of S -integers of a number field.

We note that apart from some new results in Chapters [5] [8] and [0 first the
results of Chapter@were established, with less sharp bounds, followed later in
chronological order by the results of Chapters 8] [5] [7] 0] and [T0}

5.1 Basic facts on finitely generated domains

Recall that by a finitely generated domain over Z we always mean an integral
domain that contains Z and is finitely generated as a Z-algebra. Let A be such
a domain, that is, A = Z[z},...,2,] D Z. Then A is isomorphic to a quotient
ring of the polynomial ring Z[X1, ..., X,], i.e., to

Z[X19--~9Xr]/19

where I C Z[X},...,X,] is the ideal of polynomials P € Z[X,..., X,] with
P(zy,...,z) = 0. Since A is a domain containing Z, the ideal / is a prime ideal
with ANZ = (0). By Hilbert’s Basis Theorem (see [Eisenbud (1994), p. 28], the
domain A is Noetherian. As a consequence, every finitely generated A-module
is Noetherian.

We denote by K the quotient field of A. Given a finite étale K-algebra Q, we
denote by Ag the integral closure of A in Q.

We have collected some results from the literature.
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Theorem 5.1.1 The unit group A* of A is finitely generated.
Proof See [Roquette (1957), p. 3]. O

Theorem 5.1.2 Let L be a finite extension of K. Then Ay is finitely generated
as an A-module.

Proof By [Nagata (1956), p. 93, Thm. 3], the integral closure Agx of A in K
is finitely generated as an A-module. By Lemma [I.6.2] A, is contained in a
free Ag-module. The integral domain Ak is finitely generated over Z, hence
it is a Noetherian domain. It follows that A, itself is finitely generated as an
Ag-module, therefore also as an A-module. O

Corollary 5.1.3  Let L be a finite extension of K. Then A} is finitely generated.
Proof Combination of Theorems[5.1.1|and[5.1.2] O

We have inserted the following well-known theorem to provide some back-
ground, although we do not really need it here. We have included a proof for
lack of a convenient reference.

Theorem 5.1.4 Let A be an integral domain with quotient field K. Then the
following two assertions are equivalent:

(i) A is finitely generated over Z as a Z-algebra, integrally closed, and con-
tained in @;

(ii) K is an algebraic number field and A = Og for some finite set of places S
of K containing all infinite places.

Proof (1)=(ii). Assertion (i) implies that K is an algebraic number field,
and A contains the ring of integers Ok of K. Thus, A = Okl[y1,...,yn] With
Yi,-..,¥m € K. Let py, ..., p; be the prime ideals of Ok occurring in the factor-
ization of the ideal a := []?,(1, y,-)’1 of Ok and take for S the set consisting
of all infinite places and of the finite places corresponding to pi, ..., p;. Then
Yis...,¥ym € ' C Og, hence A C Og. To prove the other inclusion, let x € Og.
Then for sufficiently large £ we have afx C Ok, hence x € H;’il(l,yi)k, and
therefore x € A.

(ii))=() By the Chinese Remainder Theorem for Dedekind domains, there
exists y € K such that ord,(y) < 0 for the prime ideals corresponding to the
finite places in S, and ord,(y) > O for the other prime ideals of Ok. Thus,
the prime ideals corresponding to the finite places in S are precisely those
occurring in the factorization of (1,y)~!, and then the above argument implies
Os = Ok[y]. Taking a Z-module basis {w;, . .., wg} of Ok, it follows that Og =

Zlwi,...,wq,y]. Further, Oy is integrally closed. O
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5.2 Discriminant forms and index forms

Recall that a decomposable form in m variables over a field K is a homoge-
neous polynomial from K[Xi,...,X,] that factors into linear forms over an
extension of K. Decomposable forms, and related decomposable form equa-
tions, have been discussed in detail in [Evertse and Gyory (2015), chap. 9].
Two very important classes of decomposable forms are discriminant forms and
index forms. We recall the classical theory on such forms.

Let K be a field of characteristic 0 and Q a finite étale K-algebra. Put n :=
[Q: K]andleta — o (i = 1,...,n) be the K-homomorphisms from Q to
a fixed algebraic closure K of K. Recall that if in particular Q = L is a finite
extension field of degree n of K, then & — o (i = 1,...,n) are simply the
K-isomorphisms of L into K.

Let /(X)) = X] + a X5 + - - - + @, X, be a linear form with coefficients in Q,
and put

9X) =X +a0Xo + - +aPX, (i=1,...,n).

Then
n -
FO X, X = [ ] (Y =10 X0)
i=1
is a polynomial in Y, X, ..., X,, with coefficients in K, since its coefficients
are symmetric in each of the tuples (a/gl), e a/(i”)) G=1,...,m).

We suppose that Q = K [«;, ..., @,]. Then

Dok (1(X)) := 1_[ (1<f'> (X)—1® (X))2 (5.2.1)

1<i<j<n

is a decomposable form of degree n(n— 1) with coeflicients in K which is called
discriminant form. For K = Q, and Q = L an algebraic number field, this con-
cept was introduced in [Kronecker (1882)]; see also [Hensel (1908)]. In the
important special case when m = n and {1, a», ..., @,} is an integral basis of L,
Kronecker and Hensel called [ (X) , F (¥, Xi, ..., X,) and Dy g (I (X)) the “Fun-
damentalform”, “Fundamentalgleichung” and ‘“Fundamentaldiskriminante” of
L.

We view K as a subfield of Q. Let A be an integral domain with quotient
field K which is integrally closed in K. Let O be an A-order of Q, that is a
subring of Ag that contains A and a K-basis of Q. Assume that A is free as an
A-module, and take an A-module basis {1, w,, ..., w,} of O. Define the linear
form [ (X) := X| + w2 X5 + -+ + w, X,,.
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Proposition 5.2.1 We have
Dok (1(X)) = (I (Xa,..., Xp))* Dok (1, w2, ..., wy), (5.22)

where [ (Xs,...,X,) is a form in n — 1 variables of degree n(n — 1)/2 with
coefficients in A.

We call I(Xy,...,X,) the (up to sign unique) index form relative to the basis
1,(1)2, e, Wy

Proof Putw; = 1; then
IX) "=, Xw + -+, XNw, fori=1,...,n,

where I;; (X) is a form with coefficients in A which is either identically zero or
of degree i — 1. Thus, using (5.2.1), we have

.....

= (I(Xa,.... X))’ Dayk (1, wn, ..., ),
where I(X>, ..., X,) = det (I,-j (X)). This proves 1| ]
We illustrate Proposition[5.2.1| with three examples.

Examples 1.LetL =Q (\3/5) with some a € Z which is not a perfect cube.
Clearly, {1, Va, ¥a} is a Z-module basis of the ring Z[ Val,

Dijq (X1 + VaXy + Va2 X3) = ~274* (X3 - aX§)2

and Dy ,o(1, Va, Va?) = Dy o(Na) = —274>.

2. Let Q = Q[X]/(f) where f = X(X — a)(X — b) with a, b distinct non-zero
integers. Then Q = Q[B] where 8 is the residue class of X modulo f, and
Q = QxQxQ. The homomorphisms from Q to Qare givenby 8- 0,8 a,
B — b, respectively. Now {1, 3, ﬁz} is a Z-basis of Z[S],

Dayq (X1 +BXa + 52Xs)
= (ab(a — b))’ (X2 + aX3)(Xa + bX3)(Xz + (a + b)X3))*

and Dox(1,B.8%) = Dajo(B) = (ab(a — b))
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5.3 Monogenic orders, power bases, indices

Let A be an integrally closed integral domain with quotient field K of charac-
teristic 0, and let Q be a finite étale K-algebra with [Q : K] = n > 2. Recall
that an A-order of Q is a subring of Aq that contains A, as well as a K-basis of
Q.

Definition An A-order O of Q is said to be monogenic or principal over A if
O = Ala] for some a € O. [ ]

We start with some generalities on monogenic orders. Given an A-order
O of Q, we denote by dp,s the ideal of A generated by all discriminants
Dqk(B1,...,B,) with 1, ...,B, € O. In case that O is a free A-module, with
basis {1, wy, ..., w,}, say, then by the basis transformation formula for discrim-
inants , there is for every B, ...,B, € O an n X n-matrix U with entries
in A such that Do/ (81, . . .,B.) = (det U)*Dq/k(1, ws, . . ., w,). Hence

Doja = (Doyk(1, wa, . .., wy)). (5.3.1)

Proposition 5.3.1 Let O be an A-order of Q and a € D. Then the following
assertions are equivalent:

(i) Ala] = O;

(ii) {1,a,...,a" '} is an A-basis for O;

(iii) (Dax(@)) = doya.

Moreover, if O has an A-basis {1,w,,...,w,}, I € A[Xs,...,X,] is the index
formrelative to 1,w,, . ..,w, and @ = X1 +Xpwa+- - -+ X,w, With x1,...,x, € A
then we have the following equivalent assertion:

(iv) I(x2, ..., xy) € A™.

Proof (1)=(ii). Suppose © = A[a]. Then also Q = K[a] and so by Lemma
[I.5.1] the monic minimal polynomial f, of @ over K has degree n. By Lemma
[I.6.T]and our assumption that A is integrally closed, we have f, € A[X]. By di-
vision with remainder by f,, every element of A[@] can be expressed uniquely
as g(a) where g € A[X] is a polynomial of degree < n or g = 0, i.e., as an
A-linear combination of 1,a,...,a"".

(ii))=(i). Obvious.

(ii)=(iii). Obvious from (5.3.T).

(iii)=(ii). Let 8 € ©O. We have to show that it can be expressed as 2?2—01 xio!
with x; € Afori = 0,...,n — 1. In any case, by Lemma [I.5.1] we know that
{1,a,...,a" '} is a K-basis of Q, hence 8 can be expressed as ;‘;01 xia' with
xie€e Kfori=0,...,n—1.Fori=0,...,n— 1, denote by 9; the discriminant
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of the n-tuple obtained by replacing ' by Sin 1,a,...,a""!. Then by the basis
transformation formula for discriminants (I.5.3), we have
x; Doy (@) = 6; € doja = (Dak(@)).

Since A is integrally closed, this implies that x; € A.

(i) (@iv). Let 6 := Do k(1, w2, ..., wy), [(X) := I(x2, ..., x,). By (3.3:1) we
have do/4 = (0), and by (5:2.2), Dq, k() = 1(x)*5. Now the equivalence of (iii)
and (iv) is clear. m]

Remark As seen above, if O = A[a] then it has an A-basis {1, ¢, ...,a" ).
We call this a power A-basis of © (and just a power basis of O if A = Z). If
A = Z, Lis an algebraic number field of degree n and its ring of integers Oy is
of the shape Z[«a], we call {1, a,..., " Va power integral basis of L.

We consider the case A = Z. Let Q be a finite étale Q-algebra such that
[Q: Q] = n, let O be a Z-order of Q and take @ € O with Q[a] = Q. Then
{l,a,...,a&" '} is Z-basis of Z[a], hence

Dz[a] = DQ/Q(], a,..., (In_l) = DQ/Q(Q).
Define the index of @ with respect to O by
Io(@) :=[D: Z[a]l; (5.3.2)

in case © = Oq is the integral closure of Z in Q we write I(«). The order O is
free as a Z-module. Take a Z-basis {1, wy, . .., w,} of O. Then (2.10.3) implies

Dgjq(@) = In(@)* Dy
= Io(@)*Dajo(1, wa, - . ., wy). (5.3.3)

Let f € Z[X] be a monic, separable polynomial of degree n, Q := Q[X]/(f)
and @ := X (mod f). Then D(f) = Dgg(@), and so by (5.3.3),

D(f) = I(a)*Dq. (5.3.4)

We explain the connection with index forms. Let 7 be the index form relative
to the chosen Z-basis 1, w,,...,w, of O. Then I € Z[X,...,X,]. Choose a €

O with Q[a] = Q. Then @ = x; + xpwy + - - - + X,w, With xq, ..., x, € Z. Now
(3-33) and (5.2:2) imply at once
Io(@) = |I(x2, ..., x| (5.3.5)

We generalize the above to Dedekind domains. Let A be a Dedekind domain
with quotient field K of characteristic 0 and Q a finite étale K-algebra with
[Q : K] = n. Further, let O be an A-order of Q. It follows from Lemma [.6.2]
that O is finitely generated as an A-module, i.e., it is an A-lattice of Q.
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Take @ € O with K[a] = Q. So A[«] is an A-order contained in O. We define
the index ideal of a with respect to O by

Jo(@) :=[D: Ala] 4 (5.3.6)
and we write 3(@) if © = Aq. Now Proposition [5.3.1 and Proposition 2.10.3
give at once
(Dayk(@)) = dagayja = Io(@)*doya- (5.3.7)
Let f € A[X] be a monic, separable polynomial of degree n, Q := K[X]/(f),
a := X (mod f). Then D(f) = Dg,x(a) and so,

(D(f)) = (@) daga- (5.3.8)

5.4 Finiteness results

In this section, it is assumed throughout that K is a field of characteristic 0,
and that A is an integrally closed integral domain with quotient field K that is
finitely generated over Z.

5.4.1 Discriminant equations for monic polynomials

Let K and A be as above. Further, let G be a finite extension of K, and let § be
a non-zero element of K. We consider the discriminant equations

D(f)=06 in monic f € A[X] of degree > 2
having all its zeros in G,

D(f) € 6A* in monic f € A[X] of degree > 2
having all its zeros in G.

(5.4.1)

(5.4.2)

Two monic polynomials f;, /> € A[X] are called

- strongly A-equivalent if f>(X) = fi(X + a) for some a € A,
- A-equivalent if f,(X) = g-degh fi(eX + a) for some € € A*, a € A.

From (T.4.4) it follows that two strongly A-equivalent monic polynomials have
the same discriminant. Therefore, the set of solutions of (3.4.1)) can be divided
into strong A-equivalence classes. Likewise, if f is a solution of (5.4.2), then
so is every polynomial which is A-equivalent to f. Hence the set of solutions
of (5.4.2)) can be divided into A-equivalence classes.

The following theorem is a special case of [GySry (1982), Thm. 4].
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Theorem 5.4.1 Let A be an integrally closed domain of characteristic 0 that
is finitely generated over Z, K the quotient field of A, G a finite extension of K,
and § € A\ {0}.

(i) The polynomials f with (5.4.1) lie in only finitely many strong A-equivalence
classes.

(ii) The polynomials f with (5.42)) lie in only finitely many A-equivalence
classes.

In [Gy6ry (1982)], a generalization of Theorem [5.4.1] was proved for equa-
tions D(f) € 6. where . is an arbitrary finitely generated multiplicative
subsemigroup of A \ {0}. In particular, A* is such a subsemigroup. This more
general version implies similar generalizations of the consequences of Theo-
rem[5.4.1] given below, see [Gydry (1982)].

In Theorem[5.4.T] the condition that A be integrally closed may be relaxed at
the expense of additional complications. Theorem [5.4.1 does not remain valid
in general if A is not finitely generated over Z.

A simple special case of (5.4.1) and (5.4.2)) is when f has given degree, say
n, and has its zeros in K. Since by assumption A is integrally closed, we have
FX) =X =-x1) (X = x,) with x1,...,x, € A, and thus, (3.4.1) and (53:42)

take the form

D(x1,...,x,) =0 Inxy,...,x, €A, (5.4.3)
D(x1,...,x,) €6A" inxy,...,x, €A, (5.4.4)

respectively, where

DXi,...,X,) = ]_[ X; - X;)%.
1<i<j<n

This decomposable form is called form of discriminant type. The tuples x =
(X1, ..., x0), X = ()c’1 ,...,X,)ae called strongly A-equivalent solutions of @)
if X’ =x+(a,...,a) for some a € A and A-equivalent solutions of (]ED if
X' =ex+(a,...,a)forsome € A", a€A.

Applying Theorem [5.4.1]to the monic polynomials f of degree n having all
their zeros in K, we get at once the following

Corollary 5.4.2 (i) The solutions of (5.4.3) lie in finitely many strong A-
equivalence classes.

(ii) The solutions of (5.4.4) lie in finitely many A-equivalence classes.

In the case when A is the ring of S -integers of a number field, effective ver-
sions of Theorem [5.4.1] and its consequences are stated and proved in [GyGry
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(1981¢)] and in Chapter@] of the present book. In Chapter@] we derive explicit
upper bounds for the number of equivalence classes. Moreover, Theorem
(i) is established in an effective form in [Gy06ry (1984)] for a restricted class
of finitely generated integral domains A, and in Chapter [I0]in full generality.
The proofs of these more precise versions require more elaborated arguments.
To illustrate the basic ideas, we have included below short proofs of Theorem
[5.4.T)and its consequences, which are just the basic finiteness statements.

Proof of Theorem[5.4.1] Denote by B the integral closure of A[6~!] in G. By
Corollary [5.1.3] the unit group B* of B is finitely generated. The proof will be
by applying finiteness results to unit equations over B*.

Let f € A[X] be a monic polynomial of degree n > 2 with (5.4.1)) or (5.4.2).
Then f = [1L,(X —;), where @, ..., a, are distinct elements of G, which are
integral over A. Further, D(f) = [T << <i(e; — @)* € A[5”']*. Hence

@j—a;€B fori,j=1,...,nwithi# | (5.4.5)

We first show that »n is bounded in terms of B, hence in terms of A, G and 6.
Assume that n > 2. Notice that the pairs

a;—ap @y —@; .
—_— —— ) (i=3,...,n
<a'2—a'1 02_011)( )
are solutions to
x+y=1inx,y€ B". (5.4.6)

By Theorem [4]1 this equation has only finitely many solutions. Hence n is
bounded above by a bound depending only on B. So henceforth, we may re-
strict ourselves to polynomials f of fixed degree n > 2.

We now proceed to prove (i). So assume that the polynomial f considered
above satisfies (5.4.1)). First assume that n > 2. Let 7 be a finite subset of B*,
such that x,y € .7 for each solution (x, y) of (5.4.6). Put

a; —

Y= fori=1,...,n.

) — ]

Theny; =0,y, = landy; € 7 fori = 3,...,n. Hence, using D(f) = 6,
2

n(n— Yi—Vi

(@ — )"V =6 S

! 1—[ Yk — Y1

1<k<i<n

forall i, jwith 1 < i, j < n,i# j. We proved this for n > 2, but it is obviously
true for n = 2 as well. Hence there is a finite set .# in G, depending only on B
and 8, such that for every polynomial f = [, (X — a;) with (5.4.T) we have

ai—aj=y;€S fori,j=1,...,n,i# |
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We finish the proof of (i) by showing that if

f= ﬁ(x -a), ['= ﬁ(X -a;)
i=1 i=1

are polynomials in A[X] with a; — a; = o] - a';. = v;; for given y;; €
fori,j=1,...,n,i # j, then f and f” are strongly A-equivalent. Indeed, our
assumption on the «;, a; implies that there is a such that

o—a,=a fori=1,...,n

Since — 3, @;, — Yi; @) are coefficients of f, f”, respectively, we have a € K.
On the other hand, a is integral over A, so in facta € A since A is by assumption
integrally closed. Hence f'(X) = f(X + a) with a € A. This proves (i).

We now prove (ii). Let f € A[X] be a polynomial satisfying (5.4.2). Thus,
D(f) = én with n € A*. By Theorem [5.1.1} the group A* is finitely generated.
So we can write 17 as ¢ - "D, where ¢ belongs to a finite subset Z of A*
depending only on n and A, and where € € A*. The polynomial fj(X) :=
&7 f(eX) is monic, has its coeflicients in A and its zeros in G, and satisfies

D(fi)=6-¢.

Now f is A-equivalent to fi, and for each ¢ € %, the polynomials f; lie in a
finite collection of strong A-equivalence classes depending only on A, G and
6. This proves (ii). O

5.4.2 Discriminant equations for integral elements in étale
algebras
Let A be an integrally closed integral domain of characteristic O that is finitely
generated over Z. Denote by K the quotient field of A and let Q be a finite étale
K-algebra with [Q : K] = n > 2. As usual, we view K as a subfield of Q.
Denote by Ag the integral closure of A in Q.
We consider elements of Ag. Two such elements a;, @, are called

- strongly A-equivalent if @, = @1 + a for some a € A,
- A-equivalent if ay = ea; + a for some € € A*, a € A.

We consider the equations
Dqk(@) =6 ina € Aq, 5.4.7)
DQ/K(Q) €SA" ina € Agq. (548)

From (1.5.8) it follows easily that if « is a solution of (5.4.7) then so is any ele-
ment of Ag which is strongly A-equivalent to a. Hence the solutions of (5.4.7))
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can be divided into strong A-equivalence classes. Likewise, the solutions of
(5.4.8) can be partitioned into A-equivalence classes.

Lemma 5.4.3 Assume [Q : K] = 2. Then the solutions of lie in at
most two strong A-equivalence classes, and the solutions of (5.4.8) in at most
one A-equivalence class.

Proof Let a,B € Ag with Dq k() € 6A*, Dq/k(B) € 6A*. Then Q = K[a],
hence 8 = ua+a with u,a € K. We have Dqo/x(B) = u*Dq/k(a), hence u® € A*.
Since A is integrally closed this implies # € A*. Further, a = 8 — ua belongs to
K and is integral over A, hence belongs to A itself. So @, 8 are A-equivalent. In
case Dq/k(@) = Do/k(B) = 6 we have u = +1, hence S is strongly A-equivalent
to +a. ]

Theorem 5.4.4 Let A be an integrally closed integral domain of characteris-
tic O that is finitely generated over Z, K the quotient field of A, Q a finite étale
K-algebra with [Q : K] > 2, and § € A \ {O}.

(i) The solutions of lie in finitely many strong A-equivalence classes.
(ii) The solutions of (5.4.8) lie in finitely many A-equivalence classes.

In the case when Q is a finite field extension of K, this was proved in a
more general form in [Gy6ry (1982)]. In Chapters[6]and [BHIO| we will consider
equations and (5.4.8) in elements @ € O, where O is an arbitrary A-
order of ), in which case we can prove more precise results with effective
bounds for the heights of the solutions and uniform bounds for the number of
solutions.

Proof We prove (ii); the proof of (i) is entirely similar. Let n := [Q : K].
Let G be the compositum of the images of the K-homomorphisms Q — K.
Take a solution @ of (5.4.8)). Denote by f the monic minimal polynomial of «
over K; since A is integrally closed we have f € A[X]. Moreover, by Lemma
[[.5.1} we have Q = K[a] and deg f = n. Further, D(f) = Do/x(a) € 6A*, and
the zeros of f lie all in G. By Theorem [5.4.1] there is a finite collection .% of
polynomials in A[X], depending only on A, § and G, such that f is A-equivalent
to a polynomial fy € .%. Then « is A-equivalent to a zero of fj, lying in Ag.
By Corollary[1.3.4] f; has at most n" zeros in Ag. Now taking the zeros in Ag
of all polynomials in , we obtain a finite set, representing the A-equivalence

classes of a with (5.4.8)). O

We finish this section with a corollary. An A*-coset of Q is a set of the shape
apA” = {ape : € € A"} where q is a fixed element of Q*.
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Corollary 5.4.5 Let A, K, Q, 6 be as in Theorem|[5.4.4] Then the set of a € Ay,
with Dq k() € 0A* is a union of finitely many A*-cosets.

Proof By Theorem|5.4.4|(ii) there is a finite set .7’ such that for every @ € Ag
with Do,k (@) € A%, there are oy € .7, € € A* and a € A such that @ = gap+a.
Consider such « for fixed . Let x = x® (i = 1,...,n := [Q : K]) be the K-
homomorphisms Q — K. Then

ela® - g7lgV) = ag) - ozf)j) fori,j=1,...,n.

Clearly, the images of Ag, under the K-homomorphisms of () are finitely gener-

ated subgroups of K. By Corollary and Proposition , there are only
finitely possible values for &' a. This proves Corollary o

5.4.3 Discriminant form and index form equations

Let again A be an integrally closed integral domain of characteristic O that is
finitely generated over Z, K the quotient field of A, Q a finite étale K-algebra,
and 6 a non-zero element of K. Further, let w,,...,w, be elements of the
integral closure Ag such that 1, wy,...,w, are linearly independent over K.
Consider the discriminant form equations

Dqjk(xpws + -+ + Xpwyy) = 010 X, ..., Xy € A, (5.4.9)

Dqk(Xaws + + -+ + Xppwp) € 6A™ in Xy, ..., X, €A. (5.4.10)

These equations can be derived from (5.4.7), (5.4.8) by substituting in these
equations a = )", x;w;. Notice that by our assumption on wy, . . ., wy,, a strong
A-equivalence class contains at most one element of the type I, x;w;. That
is, a strong A-equivalence class of solutions of (5.4.7) gives rise to at most one
solution of (3.4.9). Likewise, an A-equivalence class of solutions of (5.48)
gives rise to at most one A*-coset of solutions of (5.4.10), that is a solution set
of the shape {e(x3,...,x,) : € € A*}. This leads at once to the following:

Corollary 5.4.6 (i) Equation (3.4.9) has only finitely many solutions.
(ii) Equation (5.410) has only finitely many A*-cosets of solutions.

Now let m = n, suppose that {1, w,,...,w,} is an A-basis of an A-order
O of Q, and put D := Dg/k(l,ws,...,w,). In view of Proposition [5.21} a
necessary condition for (5.4.9) to be solvable is that § = 82D for some 3 € A.
Likewise, for (5.4.10) to be solvable one has to require that there is 8 € A such
that 82D € 6A*. Further, if this is the case, the equations (5.4.9), (5.4.10) are
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equivalent to the index form equations

I(xp,...,x,) =B inxp,...,x, €A, (5.4.11)

I(x2,...,x,) EBA™ inxy,...,x, €A, (5.4.12)
respectively, where I € A[X>,...,X,] is the index form relative to the basis
{1, wy,...,w,}. The following is now obvious.

Corollary 5.4.7 (i) Equation (5.4.11) has only finitely many solutions.
(ii) Equation (5.4.12) has only finitely many A*-cosets of solutions.

For Q a finite field extension of K, Corollaries and were estab-
lished in [Gy&ry (1982)].

5.4.4 Consequences for monogenic orders
We deduce the following finiteness result for monogenic orders.

Theorem 5.4.8 Let A be an integrally closed integral domain of characteris-
tic 0 that is finitely generated over Z, K the quotient field of A, Q a finite étale
K-algebra with [Q : K] > 2, and O an A-order of Q. Then the set of a for
which Ala] = O is a union of finitely many A-equivalence classes.

For the case that Q is a finite field extension of K, this theorem was proved
in [Gy6ry (1982)].

Proof of Theorem[5.4.8] Suppose there is ag with Alag] = O and let § :=
Dqk(ap). Then by Proposition[5.3.1} we have for every  with A[a] = O,

(Dq/k(@)) = doja = (6),
i.e., Dg/k(@) € A*. Now apply Theorem O

Remark 5.4.9 From Lemma and the above proof, it follows at once
that if [Q2 : K] = 2, then there is at most one A-equivalence class of @ with
Ala] = O.

We finish with a corollary.
Corollary 5.4.10 Let A, 0, O be as in Theorem Then the set of @ with
Ala] =90, ae O
is a union of finitely many A*-cosets.

Proof The proof is entirely similar to that of Theorem except that in-
stead of Proposition one has to apply Corollary m|
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Effective results over Z

In this chapter we present general effective finiteness theorems, due to Gy®&ry,
for discriminant equations of the form

D(f) = D in monic polynomials f € Z[X] of degree n, (el

D(a) = D in algebraic integers of degree n, (©12)
and for discriminant form equations
Dyjo(waxz + -+ + wpxy) =D inxy,...,x, €Z, (©13)

where D # 0, n > 2 are rational integers, D(a) denotes the discriminant of &
with respect to the extension Q(a)/Q, and {1, wy, .. ., w,} is an integral basis of
anumber field L of degree n. The quantitative versions are stated and proved in
improved forms, with the best to date explicit upper bounds for the solutions.
Several consequences and applications are also given.

Recall that two monic polynomials fi, fo € Z[X] are called strongly Z-
equivalent if f,(X) = fi(X+a) for some a € Z. Similarly, two algebraic integers
a1, a, are called strongly Z-equivalent if @y = a| + a with some a € Z.

Strongly Z-equivalent monic polynomials and algebraic integers have ob-
viously the same discriminant. Hence the solutions of (6[1)) and (6[2) can be
divided into strong Z-equivalence classes.

For n = 2, equations (&), and can be treated in an elementary
manner. It was proved independently in [Delone (1930)] and [Nagell (1930)]
that up to strong Z-equivalence, there are only finitely many irreducible monic
polynomials f € Z[X] of degree 3 for which holds. Equivalently, for
n = 3, equation has also finitely many strong Z-equivalence classes of
solutions. In the quartic case, the same assertions were proved later in [Nagell
(1967, 1968)]. The proofs of Delone and Nagell are ineffective. It was conjec-

85
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tured in [Nagell (1967)] that the finiteness assertion concerning (E[Z[) is true
for every degree n.

In case of some special cubic and quartic polynomials and algebraic num-
bers Delone and Nagell proved their results in effective form. Moreover, in
certain cases they and Faddeev even determined all the solutions of and
; see e.g [Delone and Faddeev (1940)] and [Nagell (1967, 1968)]. Delone
and Faddeev [Delone and Faddeev (1940)] posed the problem of giving an al-
gorithm for finding all cubic monic polynomials with integer coefficients and
given non-zero discriminant.

Nagell’s conjecture was proved in [Birch and Merriman (1972)] in an inef-
fective form and, independently, in [Gy&ry (1973)] in an effective form. Fur-
ther, in his paper Gydry proved more generally that equation has only
finitely many strong Z-equivalence classes of solutions even in the case when
the degree n is not fixed, and a full set of representatives of these classes can be,
at least in principle, effectively determined. This provided a solution in more
general form for the problem of Delone and Faddeev.

Later, in [Gy6ry (1974, 1976)] and in some further papers, Gydry estab-
lished explicit upper bounds for the solutions of equations (6[1)), (6]2) and (6[3),
which led to several consequences and applications. In terms of |D|, much more
precise bounds were given for the heights of the solutions of (6[2) when the
unknowns « are contained in the ring of integers Oy of a fixed number field L.
Then (6]2) is equivalent to the index equation

I@=1I inae oy, (6.4)

where I() := [Of, : Z[a]] is the index of @ and [ is a positive integer such that
D = I’D,. Here D; denotes the discriminant of L. The results obtained for
(6.4) were reformulated for index form equations as well. In the special case
I = 1, the results provided the first general algorithm for deciding whether
there exists @ € Oy with Oy = Z[«a] and for determining all & having this prop-
erty. Gydry’s proofs depend on his effective finiteness results on unit equations.

In the present chapter we treat the above-mentioned results with the best to
date bounds for the solutions. We note that in Chapters [8| and |10| we consider
discriminant equations and index equations over more general ground rings,
but in case of the ground ring Z, the bounds obtained there are less precise
than those derived in the present chapter. The sharper results over Z we obtain
here and their proofs make it possible in Chapter[7]to solve much larger classes
of concrete discriminant and index equations over Z.

Equation corresponds to the irreducible case of equation (6[1), while
equation to the case of when the solutions « are contained in a fixed
number field L. To obtain better bound for the solutions and more efficient al-
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gorithms for resolving the equations, we start in Section [6.1| with discriminant
form and index form equations. Section is devoted to some applications
to algebraic integers of given discriminant and given index in a fixed number
field and to power integral bases. In Section[6.4] we reduce equation to the
case of solutions considered in a fixed number field, and in Section @] equa-
tion (6LI) is reduced to the irreducible case, i.e. to equations of the form (&[2).
The proofs, which can be found in Sections[6.3] [6.5]and[6.7] are based on The-
orems and on unit equations from Chapter [l and thus ultimately
depend on the theory of logarithmic forms.

Some related results, applications and generalizations over Z are mentioned
in the Notes. Generalizations to more general ground rings and further appli-
cations are discussed in Chapters and Chapter [T1]

6.1 Discriminant form and index form equations

We start with effective results for discriminant form and index form equations.

Let L be an algebraic number field of degree n > 2 with discriminant Dy,
and let wy,...,w, be elements of L which are linearly independent over Q.
Consider the discriminant form equation

Dyjg(wix; + -+ wpXxy) =D in (xy,...,x,) € Z", (6.1.1)

where D is a given non-zero rational number.
The following theorem was established in [Gy6ry (1976, 1980b)].

Theorem 6.1.1  Suppose that (6.1.1)) is solvable. The number of solutions of
(6.11) is finite if and only if 1, w, . .., w, are Q-linearly independent. In this
case every solution (xi, ..., xy) € Z" of (6.1.1) satisfies

max |x;| < C1|D|°, 6.1.2)
1<i<m

where C| and C, are effectively computable positive constants which depend
onlyon L and w, ..., wy.

This implies that under the finiteness condition all the solutions of
can be, at least in principle, effectively determined.

Forn = 2, m = 1, equation immediately implies with C; =
ID1jo(wn)I"12, C3 = 1/2, provided that 1, w; are Q-linearly independent. As
will be seen, for n > 3 the study of equation requires deep methods.

We suppose that, in , 1, w1, ..., w, are algebraic integers and are lin-
early independent over Q. Then we may assume that D is a non-zero rational
integer. Further, suppose that n = [L : Q] > 3. Let N be the normal closure of
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L over Q. In the proof we shall reduce equation (6.1.1)) to such a system of unit
equations over N in which the equations have some connectedness property.
Then we represent the unknown units in a system of fundamental units of N
and derive an upper bound for the unknown exponents. This will imply
where C; and C, depend among others on the unit rank, degree and regulator
of N.

In order to obtain as good explicit bounds for the solutions as possible, we
distinguish two cases according as N is *small’ or ’large’. As will be seen in
the next chapter, this refinement will be crucial in the resolution of concrete
equations of the form (6.1.1).

We write L? = o(L), where oy = id, 05, . . ., 07, denote the Q-isomorphisms
of Lin C. For L = Q(a), we put

Lij:= Q(a/(") + a(j),a(i)a(j)) for distinct 1 < i, j < n.
This number field is independent of the choice of a. It is clear that
1< [LOLY: Ly| <2,
We say that
Nis ‘small’ if [N : L] < %' and N = L- L for some i, and ‘large’ otherwise.

Set
R :=Ry, np :=[N:Q] if Nis ‘small’,

R := max;z; Ry, ny := maxy; [Lij : Q] if N is ‘large’.

‘We shall see later that in both cases

nn-1
7y < (2 )

If in particular N = L, then N is ’small’ and R = R, ny = n.

This refinement will enable us to work with parameters of much smaller
fields than N which yields a considerable improvement in the constants corre-
sponding to C; and C,. Moreover, the unknown units will be elements of unit
groups having much fewer generators than in the proof of Theorem[6.1.1] This
makes the method of proof much more efficient for practical use; cf. Chapter
i

To obtain better bounds in terms of wy, ..., w,, we assume maxj<;<, [w;| <
A instead of bounding the heights of these numbers.

The following explicit result and its Corollary below were proved in
[Gydry (2000)] with slightly larger values for Cs3, C4 and C5.
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Theorem 6.1.2  Every solution (xi, ..., x,) € Z" of (6.1.1) satisfies

max |x;| < A" exp {C3R (log" R) (R + log |D|)} (6.1.3)
<m

1<i
and

max x| < A" exp{Cal D™/ (log D)™™ (IDLI™" + log D))}, (6.1.4)

1<i<m
where C3 = n326(”2+8)n2("2+1) and C4 = 2'2Cs.

The estimate (6.1.4) will be deduced from (6.1.3) by estimating R from
above in terms of n, n, and |Dy|. However, the bound occurring in @) is
in general much better than that in (6.1.4).

When n = 2, a considerably better bound can be obtained. Then, under the
assumptions of Theorem|[6.1.2] m = 1 and

Ixi| < |D|'/? (6.1.5)

follow.

Theorems [6.1.1]and [6.1.2] have several consequences. We now present some
of them. Let © be an order of L with discriminant Dy and with a Z-basis
{1,ws,...,w,}. Let I (X,,...,X,) denote the index form relative to this basis,
and assume that maxp<;<,[w;] < A. Further, let I be a positive integer, and
consider the index form equation

I(x2, ..., %) = £I in(x,...,x,) € Z" " (6.1.6)
It follows from Theorem|[6.1.1) and Proposition[5.2.1] that (6.1.6) implies

max |x;| < Cs|IDg|, 6.1.7)
2<i<n

where Cs and Cg are effectively computable positive constants which depend
only on L, © and wy, ..., w,. This means that (6.1.6) has only finitely many
solutions, and all these solutions can be effectively determined. For n > 3, we
obtain as a consequence of Theorem [6.1.2] the following completely explicit

version of (6.1.7).

Corollary 6.1.3 Every solution (xa, ...,x,) € Z' ! of satisfies

max x| < A" exp {C7ID. /" (log IDL ™" (1DLI"™/" + log |IDg] )}
2<i<n
where C7 = n326"2+61n;("2+1).

Estimate (6.1.3) has a similar consequence for equation (6.1.6). Further,
when 1 = 2, |x,| < |I||Dg]'/? holds.
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6.2 Applications to integers in a number field

We present some consequences of Theorems [6.1.1] and [6.1.2] for algebraic in-
tegers.

Let again L be an algebraic number field of degree n > 2 with discriminant
D, , and consider the discriminant equation

DL/Q(CY) =D inae€O0y, 6.2.1)

where O denotes the ring of integers of L. Here we may assume that D is a
non-zero rational integer. If @ is a solution then so is +a+a for each rational in-
teger a. We recall that such algebraic integers @, +a +a are called Z-equivalent,
while the numbers @, @ + a are called strongly Z-equivalent. When a runs
through Z, the Z-equivalence class +a + a splits into the strong Z-equivalence
classes @ + a and —a + a. Hence the following results of the present chapter
can be formulated in an obvious way both in terms of Z-equivalence and in
terms of strong Z-equivalence. From Theorem[6.1.2]and (6.1.3)) we deduce the
following completely explicit result which is independent of the choice of the
Z-basis of O;. We denote as usual by H(e) the (absolute multiplicative) height
of an algebraic number a.

Corollary 6.2.1 Every solution « of is strongly Z-equivalent to an a*
for which

H(@") < exp{CsID™"" (log ID,)** ™ (DL +Tog IDI)},  (62.2)
where Cg = n826(”2“0)n;("2+1).

If n = 2, then using (6.1.5) we can get much better bounds in Corollary[6.2.1]
and its consequences below.

Corollary [6.2.1] implies in an effective way the finiteness of the set of el-
ements a”. To formulate this in a precise form, we fix an effectively given
algebraic closure Q of Q; see Section Algebraic numbers will be elements
of Q. We recall that an algebraic number is given/can be computed effectively
if a representation of the type of the number is given/ can be computed.
A number field L is given effectively, if a1,...,a, € Q are given effectively
such that L = Q(ay,...,,). The following corollary can be deduced both
from Corollary [6.2.1] and from Theorem [6.1.2] by combining them with some
well-known algebraic number-theoretic algorithms; see again Section[3.7]

Corollary 6.2.2 For given integer D # 0, there are only finitely many strong
Z-equivalence classes of algebraic integers in L with discriminant D. Further,
if L is given effectively, a full set of representatives of these classes can be
effectively determined.
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Consider again the order © of L with discriminant Dg. For any primitive
element « of L which is contained in O, we denote by /o(a) the index of @ in
D. Then (5.3.3)) implies that if « is a solution of the index equation

Io(@) =1 ina e 9, 6.2.3)

then so is every element of O which is strongly Z-equivalent to @. Since (6.2.3)

implies (6.2.1) with D replaced by I>Dg, Corollary provides the follow-
ing.

Corollary 6.2.3 Every solution « of (6.2.3)) is strongly Z-equivalent to an *
such that (6.2.2)) holds with D and Cg replaced by IDg and 2Cs, respectively.

The order O is monogenic, that is O = Z[a] with some « € O, if and only if
Is(a) = 1. This is equivalent to the fact that {1, a,..., a/”‘l} forms a Z-module
basis for ©. The existence of such a basis, called power integral basis, consid-
erably facilitates the calculations in O and the study of arithmetical properties
of ©. For I = 1, both Corollary and Corollary imply the following
effective finiteness result. An order O of L is said to be effectively given if a
finite set of generators of O over Z is effectively given.

Corollary 6.2.4 There are only finitely many strong Z-equivalence classes
of @ € O with © = Z[a]. Further, if L and O are effectively given then a full
system of representatives of these classes can be effectively determined.

Of particular importance is the special case when O is the ring of integers
Oy, of L. The number field L is called monogenic if Oy is generated by a single
element over Z, that is if L has a power integral basis. As is known, quadratic
and cyclotonic number fields are monogenic, but this is not the case in gen-
eral. The first example of a non-monogenic number field is given in [Dedekind
(1878)]. As a particular case of Corollary [6.2.4] we obtain at once

Corollary 6.2.5 There are only finitely many strong Z-equivalence classes of
a € Oy for which {l,af, . ,a”‘l} is an integral basis for Oy. Further, if L is
effectively given then a full system of reprsentatives for these classes can be
effectively determined.

The following explicit version of Corollary [6.2.5]is an immediate conse-
quence of Corollary [6.2.3]

Corollary 6.2.6 If {1, a,..., a”’l} is an integral basis for Oy, then « is strongly
Z-equivalent to an a* for which

H(a") < exp {4Cs|D /™" (log D)™™} (6.2.4)
with Cg occurring in Corollary[6.2.1]
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If in particular L is a normal extension of Q, then n, = n and the bound in
(6.2.4) can be replaced by

exp {ColDy [ (log D, )"}

where C9 — 43n+31n3n+11.

6.3 Proofs

In the proofs, it will be more convenient to use the logarithmic height i( ) =
log H( ) instead of H( ).

The following proof enables us to illustrate in the simplest form how to
reduce discriminant equations to unit equations in an effective way. This idea
will be used later in refined or more general forms.

Proof of Theorem[6.1.1}  Suppose that (6.1.1)) has a solution (xy, ..., x,,) € Z"
and that 1, wy, ..., w, are linearly dependent over Q. Then there are rational
integers uy, ..., Uy, not all zero, such that uyw; + - - - + u,,w,, € Z. This implies
that (x; + tuy, ..., X, + tu,,) is a solution of (6.1.1)) for every ¢ € Z, that is there
are infinitely many solutions.

Conversely, assume now that 1, wy, ..., w, are Q-linearly independent and
that has a solution. Then L = Q (wy, . .., w,,). For m = 1, (6.1.2) easily
follows for every solution of (6.1.1). Hence we assume that m > 2, and so n =
[L : Q] > 3. Further, we may suppose that wy, ..., w, are algebraic integers
in L. This can be achieved by multiplying by Dg("_l) and replacing D
by D’ =D - Dg("_l), where Dy denotes the product of the denominators of
W1,y ..., Wy,

For any a € L, we write o = o(e), where o = id, 0, ..., 0, denote the
Q-isomorphisms of L in C. Put

9X) = "X + - + 00X, fori=1,...,n,
and ;;(X) = [(X) — [¥)(X). Then equation (6.1.1) can be written in the form

Lix) = (=) D2D inx = (xq,...,%x,) € Z". (6.3.1)
J

1<ij<n
i#j

We shall reduce equation (6.1.1) to an appropriate system of unit equations
over N, the normal closure of L over Q. We note that we could also work with
unit equations over the number fields L? LY L® as well. Consider an arbitrary
but fixed solution X = (xy,...,x,) € Z" of (6.1.1). Taking the norms with
respect to N/Q of both sides of (6.1.1)) and using Proposition[3.6.3] we deduce
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that for any distinct i, j, [;;(X) = &;;6;; holds, where g;; is a unit and ¢;; is an
algebraic integer in N such that

h(6ij) < Ciolog|D| + Ciy. (6.3.2)
Here Cyo, Cy; and Cy»,...,C;g below denote effectively computable positive
constants that depend only on L and wy, . . ., w,,. Further, we assume that &;; =

Eij and 6ji = _5ij-
For each distinct i, j, kK we have

Lij+ g +14; =0 (6.3.3)
identically in X. This leads to the unit equation
dij€ij + Ojx€ji + Opigri = 0, (6.3.4)

where &;j, £ and &; are unknown units in N. By applying Theorem [4.1.1] to

(6.3.4) and invoking (6.3.2), we infer that
max {h (8,‘]‘/81(,‘) , h (sjk/sk,->} < C12 IOg |D| + C13. (635)

We define the graph 4 whose vertices are the subsets of two elements of
{1,2,...,n} and in which two distinct vertices {i, j}, {k, h} are connected by
an edge if {i, j} () {k, h} # 0. In particular, any two of the vertices {i, j}, {}, k},
{k, i} are connected by an edge. It is easy to see that the graph ¢ is connected.
If u and v > 2 are arbitrary distinct indices from {1, ..., n}, we have the upper
bound occurring in (6.3.5)) for & (g,,,/€2,) and h (&2,/€1 2). This implies a bound
of the same form for / (&,,/€1 ). It follows from (6.3.1)) that

-1
8?]!?;1—]) = (—l)n(nfl)/zD, 1_[ 5,‘]‘ (8,‘]‘/81)2) . (636)
1<ij<n

i#j

Using this relation, we can now deduce upper bounds of the form Cy4 log |D| +
C;s first for h(e ) and then for h(g,,). Together with (6.3.2)) this gives

h (llv(X)) < Cilog|D|+ Cy7 forv=2,...,n. (6.3.7)
The set {wy, ..., w,} can be extended to a basis of L of the form
{wo=1,w1,...,Wn,...,wn1). Then the determinant det (a)(j’)) with0 < j <

n—1,1 < i £ nis different from zero. This implies that there are m + 1
indices, say i = 1,2,...,m + 1, such that the matrix (u);’)) with 0 < j < m,
1 <i<m+1isof rank m + 1. Therefore the linear forms [, 5,...,1 41 are

linearly independent. Denote by o7 the m X m matrix with on its i-th row the
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coeflicients of /1 ;_;, fori = 2,...,m+ 1. Using Cramer’s rule, each variable X;
can be expressed in the form

Xi = ihpX)+ -+ Ay il1 X), i=1,...,m, (6.3.8)

where det(/)A; is the (j, i)-cofactor of o/. The Aj; are elements of N with
heights not exceeding Cyg. Together with this yields (6.1.2) which com-
pletes the proof of our theorem. O

Before proving Theorem we point out how to transform equation
(6.1.1) into another form which will lead to a better bound for the solutions
when N, the normal closure of L, is ‘large’. We recall that in Theorem
1,wi,...,w, are by assumption algebraic integers and linearly independent
over Q. Let I(X) = w1 X; + -+ + w,X,, be as above, and let £ be a primitive
integral element of L with index . Then [hO; C Z[£], hence

1

w1
Iy =A
W é'_—n—l
for some m X n matrix A with rational integer entries. Consider the linear form
() =Y +&h 4+,

and the associated discriminant form Dy g (RY)).
The following lemma immediately follows.

Lemma 6.3.1 Using the above notation, put

Y, X
= AT
Y, X,
Then
1Y) = Il(X)
and

Dyjg (f(Y)) =1""VDyyo (X))

Under the assumptions of Theorem|6.1.2] this lemma reduces equation (6.1.1)
to the discriminant form equation

Dijg(yi+&+---+&"w) = 1" "D in(yi,...,y,) € 2",
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Proof of Theorem[6.1.2]  'We keep the above notation as well as the other no-
tation used in the proof of Theorem [6.1.1} Only those steps of that proof will
be detailed that contain some alterations or new ideas.

Suppose that (6.1.T) has a solution x = (xl, ce X)) € Z’” Then it follows
from ( i that Dy |D.If m = 1, then (6.1.1) gives |x;| < |[D|D D which implies
©.13) and (6:1.4). Hence we assume that m > 2, whenn > 3.

By Proposition [3.5.6] there is a primitive integral element & in L with

€] <D (6.3.9)
Denote by I, the index of ¢. Then, by (3.3.3)),
Io < 1Dy 21Dy < 2 (24D ) (63.10)
Applying now Lemma [6.3.1) with this £ we can write
IlX) =Y, +€Ys+ -+ &Y, = 1(Y). 6.3.11)

Further, with the notation Tij (Y) = [?(Y) - [9(Y), equation (6.1.1) leads to
the equation

T(y) . .
]_[ szo iny=0,....y)€Z" ", (6.3.12)
l<ijsn *

where Dy = 16'2‘"‘2 (D/Dyp) is a fixed nonzero rational integer. It follows from
(6.3-11) and (6.3:12) that to each solution x of (6.1.1) there corresponds a
uniquely determined solution y of

The coefficients of the linear factors /; ,(Y)/ (E(l) f(j)) are integers in L;;
and generate the field L;;. Each o0 € G = Gal(N/Q) permutes the elements of
{1,2,...,n}, where (i) is defined by o (f(i)) = ¢70_ This yields a Galois action
on the ordered pairs (i, j) and on the unit equation (6.3.19) below. Namely,
if (,j) = (o(i),0(j)) for some o € G then, for each element a;; € L;j,
a; j will denote the element o(a;;). Each oo € G for which o(i, j)) = (j, i)
fixes the elements of L;;, hence we assume that @;; = a;;. The elements of G
permute the fields L;; and the linear forms Zj(Y) / (§(i) - 5@) accordingly. Let
(i1, j1), ..., (g, J4) be a full set of representatives of the Galois orbits of the
pairs (i, j). Then we have

q
Z |Li,, : Q] = n(n - 1)/2. (6.3.13)

p=1

This implies that n, < n(n — 1)/2 and equality holds if and only if G is doubly
transitive.
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Consider an arbitrary but fixed solution 'y = (y»,...,y,) of (6.3.12). It fol-
lows from that

Nz, o (T (67 - €7))] < Dol
By means of Proposition[3.6.3| we infer that
Ly) = <§(i) - -f(j)) Yij€ij» (6.3.14)
where g;; is a unit and y;; is an integer in L;; such that
h(yij) < log|Do| + C19R, (6.3.15)

where Cy9 := 29e(ny — 1)!(ny — 1)*? log ny. Further, it follows from (6.3.12)
that
_ .
ea=no( [] wileutern)) (6.3.16)

I<i,j<n
i%)

In view of (6.3.9) we have

h(g” - ¢9) < logw < log (2J€]) < log (2ID.1'"?). (6.3.17)

Putting 6;; = (5@ - 5(1))yij, we infer that
h(6:j) < log (2ID.]"?) + log Dol + c19R =: H. (6.3.18)

The linear forms Tij, l~jk, Tki satisfy (6.3.3) for every distinct i, j, k. Thus, we
arrive at the unit equation

0ij€ij + O & + Onieri = 0. (6.3.19)

We are going to derive an explicit upper bound for A(e,,) for each distinct u,
v. We distinguish two cases according as N is ’small’ or ’large’. Consider first
the case when N is “small’. On applying Theorem f.1.1] to equation (6.3.19)
we obtain

max {h (s[j/sk,-) Jh (Sjk/ski)} <4CxyR(log"R)H,

where Cag = n*1023202+1D) (10g(2n,))*. Now following the arguments of the
proof of Theorem [6.1.1] we deduce that

h(euw/€e12) < 8CyR(log" R)H (6.3.20)
for each distinct u and v > 2. Combining (6.3.16) with (6.3.15) and (6.3.20)

and using n, > 3, R > 0.2052, we infer that

/’l (81,2) < C21R(10g* R) H,
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where Cy; = (8 + 3719)Cy. Hence, by (6.3.20), we have
h(8w) < CoR (log" R) H 6.3.21)

with Cy = Cy1 + 8Cy for every distinct u, v.

Next assume that N is ’large’. We may suppose that max,;, h(g,,) = h(g)2).
If there is a o € G such that o(g;j) = &j or ey, say o(g;j) = &i, then an
even better bound can be given for the solutions of (6.3.19). It follows from
Theorem M.1.2] that in this case

max {h (sij/aki) Jh (ajk/sk,-) Jh (s,-k/ajk)}
< C»3RH log (@) =:C", (6.3.22)

provided that h(e;2) > C2aRH, where
C23 — 25.5n2+39.5(n2 _ 1)2n2+0.5 and C24 — 320]’15(1’12 _ 1)2712.

Consider the subgraph ¥ of the graph ¢ (introduced in the proof of The-
orem [6.1.1) whose vertex set coincides with that of ¢ (i.e. its vertices are the
subsets of two elements of {1,2,...,n}) and in which any two of the vertices
{i, j}, {J, k}, {k, i} are connected by an edge if there are a permutation ', j/, k
of i, j, k and a o € G such that o(i") = i’ and o(j) = k’. It is easy to check
that in this case {7(i), 7(j)}, {t()), 7(k)}, {r(k), (i)} are also connected in ¥4, by
an edge for each 7 € G.

We note that in contrast with ¢, the graph % is not necessarily connected,
and some further algebraic number-theoretic and combinatorial arguments will
be needed to surmount this difficultly.

For each connected component 57 of %, let V () denote the union of
those subsets of two elements of {1, 2, ..., n} that are vertices of 57 . Let {i\, i>}
be a fixed vertex in . We show that for any distinct u, v € V (J¢),

h(gw/&ii,) < (Cas + 1)C*. (6.3.23)

where Cys = n(n — 1).

It suffices to deal with the case when V (%) consists of more than two ele-
ments. First consider the situation when u = #;. There is a sequence i3, . .., is
in V (J¢) with iy = v such that {i;, i;+} and {i;,1, i,+»} are connected by an edge
in# fort=1,...,s — 2. Applying with i}, i5, i3 and then with iy, i3,
i4, it follows that

max {h (81'11'3 /8i1i2) 5 h (81'21'3 /8i1i2) s h (8i2i4 /8,’2,'3)} < C*’
whence & (g;,;,/€i,;,) < 2C*. Further, using the relation

0iiy€iriy + OiniyEiyiy + 0iinEii, = 0,
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we infer that

h(851[4/8,'152) <2C* +4H + 10g2 < 3C".

One can now proceed by induction on ¢ and (6.3.23) follows with Cps + 1
replaced by C»s/2 if u = i;. We obtain in the same way the same upper bound
for h (&i,./&i,;,) if u # iy. Consider with i = u, j = i, k = v and divide
it by &;,;,. Then the estimates obtained imply (6.3.23) for each u, v € V (7).

If ', V' are any distinct elements of V () then also holds with u,
v replaced by u’, V', respectively. This implies that

h(guv/€wv) < CosC* (6.3.24)
with Cyg = 2(Cps + 1).
We shall prove that
h(ew/e12) < CxC* (6.3.25)
for each distinct u, v from {1,2,...,n}, where Cy; = 2C»s. When % is con-

nected then follows from (6.3.24). Consider now the case when % is
not connected. First assume that N is not the composite of any two conjugates
of L over Q.

We show that for any distinct u, v, w € {1,2, ..., n} there is a connected com-
ponent 2 of %, such that u, v, w are contained in V (J¢). By assumption, the
compositum of any two conjugates of L is not a normal extension of Q. Thus
there is a o € G, o # id, such that (1) = u and o(v) = v. If c(w) # w, then
o(w) is different from u and v, and any two of the vertices {u, w}, {w, c(w)},
{oc(w), u} and {v, w}, {w, c(w)}, {o(w), v} are connected in ¥, by a path. This
means that there is a connected component .77 of ¢, having the above pairs as
vertices, which proves our claim. If o(w) = w, then there must exist a further
element z in {1,2,...,n} such that 0(z) # z. In this case all the vertices {u, z},
{z, 02}, {0(2), u} and {v, 2}, {z, 0°(2)} {0 (2), v} and {w, 2}, {z, 0(2)}, {07(2), w} are
connected in ¢ by a path, which completes the proof of our claim.

Consider now two distinct elements u, v from {1,2,...,n}. As was seen
above, there are (not necessarily distinct) connected components ¢ and ¢’
of 9y suchthat 1,2, u e V(o) and 1, u, v € V(). If 7 and 7’ coincide

then (6.3.23) is an immediate consequence of (6.3.24). Otherwise, (6.3.24)

gives
h(eu/e12) < Co6C™ and h(gyy/e1,) < Co6C”,

whence (6.3.23)) follows.

There remains the case when N = L - L for some i and [N : L] > 25! We
show that ¢ has a connected subgraph 7 such that V (J¢”) = {1,2,...,n}.
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The &9 is of degree > n/2 over L. Put £V = £, and denote by £/, ..., &0
the distinct conjugates of £ over L. Then for each distinct i, and i; from
{1,i1,...,iy} there is a o € G such that o7(1) = 1 and o(iy) = i;. Hence %
has a complete subgraph, say .5, whose vertex set consists of all subsets of
two elements of {1, iy, ..., ix}. If h = n—1, then 7 = % and (6.3.23) follows in
the same way as above. When & < n — 1, consider an arbitrary j € {1,2,...,n}
which is not contained in {1,iy,...,#}. Then j = 7(1) for some 7 € G. But
2(h+ 1) = n+ 2, hence 77 and 7. have at least one common vertex, that is
any two vertices of .7# and 7.7 are connected by a path in %,. Repeating this
procedure, there is a subset Gy of G such that the subgraphs 7.7 with T € Gy
are connected by paths in &,. Denoting by .7’ the subgraph spanned in %, by
the 7.7 for each T € Gy, our claim is proved. Now follows again from
©329).
We deduce from (6.3.13)), (6.3.16) and (6.3.23)) that

h(g12) < 2H + CyC”, (6.3.26)

provided that i(g;2) > C24RH. This implies that
h(e12) < CoR (log" R) H, (6.3.27)

where Cy9 = Cpglog Cog with Crs = 2C»3C;. This is obviously true in the
case h(e)2) < Co4RH as well. Now (6.3.23)) and (6.3.27) give

h(&u) < 3C2R (log" R) H, (6.3.28)

for every distinct u,v € {1,2,...,n}. Since Cy» < 3Cy, (6:3:28) implies
(6-3:21). In other words, (6.3.28) holds independently of the fact that N is
‘small’ or ‘large’.

Together with (6.3.14), (6.3.13) and (6.3.17), (6.3.28)) gives
h (L(y)) < 4C20R (log” R) H. (6.3.29)

With the notation 1,,(X) = 1%0(X)—1"(X) we deduce from (6.3.11)) and (6.3.29)
that for the solutions x, y under consideration

L) < [Lu(y)| < exp{nh (Ln(y)}

< exp{CsR (log" R) H}, (6.3.30)

where C30 = 4I’ZC29.

We now proceed as at the end of the proof of Theorem [6.1.1] Recall that in
(6.3:8), 1;; is the quotient of the (j, i)-cofactor of the matrix <7, and det <. The
houses of the entries of &7 do not exceed 2A and then Hadamard’s inequality
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applied to the cofactors of 27 gives that these cofactors have houses bounded
above by (m — 1)™D/2(24)""! . Together with (6.3.8) this implies

. _1ym=1)/2 m-1 '
det |- |xj| < m(m—1) (2A) zgrngarlnyil 1;(x)

fori=1,...,m. Since det &7 is a non-zero algebraic integer of N, its house is
at least 1. Together with (6.3:30) this yields
1m.alx Ix;] < C3;A™ Lexp {C30R (log" R)H},
<i<m
with C3; = 2" !m™+D/2 whence, after some computation, (6.1.3) follows.
We deduce now (6.1.4) from (6.1.3). If N is ‘large’, consider the number
field L;; for which R = Ry, .. Let

N if Nis “small”,
L;; if Nis “large”.

Denote by dys, Dy and wy, the degree, the discriminant and the number of
roots of unity of M. Then dy < n, and (3.1.6) give

R < Dyl (logIDy)™ " . (6.3.31)
If N is ‘small’, (3.1.10) implies that
DylD}™". (6.3.32)

For ‘large’ N, we infer from (3.1.11) that the discriminant of L®LY is divis-
ible by DIE"“"*1. On the other hand, by (3.1.10) the discriminant of L&L
divides Di[L(’)Lm:Q]/ ". Hence we obtain again (6.3.32). Now, after some careful

computation, (6.1.4) follows from (6.1.3), (6.3.31), (6332) and dyy < np. O
Proof of Corollary[6.1.3] 1In view of Proposition[5.2.1| we have

Drjg (waXs + -+ + w,X,) = I* (Xa, ..., X,) Do. (6.3.33)

Hence every solution of (6.1.6) is also the solution of the discriminant form
equation

Drjg(Waxp + - 4+ WyXy) = I’Dg in (xa,...,x,) € 2"\
Now Corollary[6.1.3]is an immediate consequence of Theorem m|

Proof of Corollary[6.2.1] Consider a primitive integral element £ in L with the

property @ < |Dg|"*. Let « be a solution of ll Then I(&)a € Z[£], where
1(¢) denotes the index of £ in Oy. We can write

IEa =y + &+ + &y
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with rational integers yy,...,y,—; which are uniquely determined. Together

with (6.2.1)) this gives
Dy (éy1+-+-+ & Nyn) =D, (6.3.34)

where D’ = D (1(¢))"""V. Using the fact that
n(n—-1)/2
1¢) < ID@)|'"* < (2ADL'?) ,
we deduce that

, (n(n=1)2/2
ID'| < |D(2IDL /") :

By applying the estimate (6.1.4) of Theorem [6.1.2]to (6.3.34) with the choice
A = |D7|"~172 and using (6.3.35) we get

max |yi| < exp {CxlDz """ (log D)™™ (DL +log|D])}

1<i<n—

(6.3.35)

where C32 = (n(n - 1))2C4.
There are rational integers a and ¢ such that

yo=1(a+t with0 <t <I().

Putting 7 := &y +---+ & y,_ and @* = (7 +1)/I(£), we infer that @ = a* +a

and (6:2.2)) follows. i

Proof of Corollary[6.2.2] For given D # 0, the finiteness of the number of
strong Z-equivalence classes of algebraic integers in L with discriminant D
immediately follows from Corollary[6.2.Tand Theorem[3.5.2} To prove the ef-
fectiveness, we shall use Theorem[6.1.2} By assumption, L is effectively given,
hence one can apply the algorithms quoted in Section 3.7} Namely, one can
determine an integral basis of the form {1, w;, ..., w,} and can give an upper
bound for max; W Further, the discriminant Dj, of L can be effectively deter-
mined.

Every algebraic integer « in L with discriminant D is strongly Z-equivalent
toan @ = xywy + - - - + x,w, in L with rational integers x,, . . ., X,, satisfying the
discriminant form equation D(x,w; + - - - + x,w,) = D. By (6.1.4) in Theorem
one can give an effectively computable upper bound for max; |x;|. From
among the tuples (xp,...,x,) € 7"~ under this bound one can select, at least
in principle, all the solutions of the above discriminant form equation.

Different solutions (xy, ..., x;,) yield strongly Z-inequivalent elements a* =
Xpwy + -+ + Xuwy,, wWhich can be computed. These a* provide a full set of
representatives of the strong Z-equivalence classes in question. m}
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Proof of Corollary[6.2.4] Since O = Z[a], @ € O, is equivalent to (6.2.3)
with I = 1, Corollary together with Theorem implies that up to
translation by elements of Z, there are only finitely many « in O with © = Z[«].

If O is effectively given, a Z-basis of the form {1, wy, ..., w,} of O can be
effectively determined; see Section Then each a under consideration is
strongly Z-equivalent to an " which can be represented in the form o* =
Xowy +- - - + X,w, with appropriate rational integers x», ..., x,. These x, ..., x,
must satisfy equation (6.1.6) with I = 1. Hence Corollary [6.1.3] provides an
explicit upper bound for max; |x;|. The parameters occurring in this bound and
thus the bound itself can be computed. Indeed, an upper bound for max;|w;]
can be computed. Further, by means of some well-known algorithms the dis-
criminants Dy, of L and Dg of O can also be computed; see again Section [3.7]
One can now select from among the tuples (x», ..., x,) € 7! under consider-
ation all tuples which satisfy (6.1.6) with I = 1 or, equivalently, the equation
D(xywy + -+ - + x,w,) = Dy. Thus the @* € O in question can be determined.
Note that these a* are pairwise strongly Z-inequivalent. O

Proof of Corollary If L is effectively given then so is O;. Hence, in
view of Proposition[5.3.1] Corollary[6.2.5]immediately follows from Corollary
6.2.4 m]

6.4 Algebraic integers of arbitrary degree

We now present some generalizations. For an algebraic integer o, we denote by
D(a) the discriminant Dy (@), where L = Q(«). This discriminant coincides
with that of the minimal polynomial of @ over Z and is independent of the
choice of the conjugate of @ over Q.

We have the following general explicit result.

Theorem 6.4.1 Let D be a non-zero rational integer. If « is an algebraic
integer of degree n > 2 with D(«) = D, then « is strongly Z-equivalent to an
a* for which

H(a") < exp{Cs (ID| (log|DI)")""'} (6.4.1)

where C33 = n926(”2+10)n§("2+1) with ny = n(n — 1)/2. Further, we have

2
< ——log|D 6.4.2
"= og3 og|D| (6.4.2)

and equality holds if and only if n = 2 and D = 3.
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We note that (6.4.2)) and, with a weaker bound, were proved in [GySry
(1974)]. Further, observe that is more general but less sharp in terms of
|D| than in Corollary [6.2.1]

In the corollaries below, let Q be an effectively given algebraic closure of Q;
see Section[3.7] The following consequence of Theorem [6.4.1]is a generaliza-
tion of Corollary[6.2.2]

Corollary 6.4.2 For any given integer D # 0, there are only finitely many
strong Z-equivalence classes of algebraic integers a € Q with D(«@) = D, and
a full set of representatives of these classes can be effectively determined.

This finiteness assertion was proved in [Birch and Merriman (1972)] in an
ineffective form and, independently, in [Gy&ry (1973)] in an effective form.
This confirmed a conjecture of [Nagell (1967)] in an effective and more general
form.

For any algebraic integer a, let N(«) denote the norm N;,q(a), where L =
Qa).

For n = 3 resp. n = 4 Tartakowski (see [Delone and Faddeev (1940)]) and
Nagell [Nagell (1930, 1965, 1968)] proved in an ineffective form the finiteness
of the number of algebraic integers of degree n with given non-zero discrimi-
nant and given non-zero norm. The following corollary gives a generalization
to arbitrary n > 2 in an effective form with an explicit bound.

Corollary 6.4.3 Let D and N be non-zero rational integers. If a is an alge-
braic integer of degree n > 2 with D(a) = D and N(a) = N, then

H(a) < IN"" exp{3C3 (ID| (log” IDI)")" ™'}, (6.4.3)
where Cs3 denotes the same constant as in (6.4.1).

If in particular € is an algebraic unit of degree n > 2 with D(g) = D, then
(6.4.3)) implies

ID(e)] > C4 (log H(e))"" (6.4.4)

with an effectively computable positive constant C34 which depends only on 7.
This was proved in [Gy6ry (1976)] in a weaker form.

Both (6.4.2) and (6.4.4), and Corollary [6.4.2]imply the following.

Corollary 6.4.4 For given non-zero rational integer D, there are only finitely
many units with discriminant D in the ring of all algebraic integers in Q, and
all of them can be determined effectively.

This corollary, due to Gy&ry ([Gy6ry (1973)], see also [Gydry (1974, 1976)]),
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provided a solution to Problem 19 in [Narkiewicz (1974), cf. pp. 130 and 468]
in a more general and effective form.

If in particular ¢ is a unit in a number field L of degree n, then {1 e, ..., 8! }
is a power integral basis in L if and only if D;,qg(e) = Dy, where Dy is the
discriminant of L. Now Corollary[6.4.4]implies that there are only finitely many
power integral bases in L consisting of units, and all of them can be effectively
determined.

6.5 Proofs

Proof of Theorem[6.4.1] Let a be an algebraic integer of degree n > 2 with
D(a) = D. Denote by D, the discriminant of the number field L = Q(«). Then,
by (5.3.3), we have D(a) = I>D; with a non-zero rational integer /. Hence

|D > |Dy. (6.5.1)

Now (6.4.1) follows from Corollary [6.2.T)and (6.5.1).
By Minkowski’s inequality (3.1.9)

n n\2

oul > (5) (%) - (6.5.2)
4/ \n!

In view of Stirling’s formula we have n!e"/n" < e+/n. Except for the case

n =2, Dy = -3, we deduce from (6.5.2)) that

log|Dy| log3 (6.5.3)
n 2

Together with (6.5.1) this implies (6.4.2) with a strict inequality, unless the
case n = 2, D(a) = -3 when in (6.4.2) equality holds. This completes the
proof of the second statement. O

Proof of Corollary[6.4.2] Let Q be an effectively given algebraic closure of
Q. Notice that every rational integer has discriminant 1 and that Z is a single
strong Z-equivalence class. Henceforth, consider the algebraic integers @ of
degree > 2 with D(«) = D. By Theorem [6.4.1] each of these « is strongly
Z-equivalent to an «* for which dega® < Css := % and H(a*) < Cs,
where Csg is an effectively computable number depending only on D. These
numbers a* belong to an effectively computable finite set ¢ depending only on
D. Compute for every element of ¢ its monic minimal polynomial over Q and
check if this minimal polynomial has integer coefficients and discriminant D.
In this way, we can select from ¢ all algebraic integers of discriminant D. By

checking for any two of such numbers whether their difference lies in Z, one
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can select a maximal set of numbers that are pairwise strongly Z-inequivalent.
Clearly, this set is a full system of representatives for the collection of strong
Z-equivalence classes of algebraic integers of degree > 2 with D(o) = D. O

Proof of Corollary[6.4.3] Let a be an algebraic integer of degree n > 2 with
D(@) = D and N(@) = N. It follows from Theorem [6.4.1] that there are o* and
a rational integer a such that @ = @ + a and H(a") < C37, where C37 denotes
the upper bound occurring in (6.4.T)).

Denote by f and f* the minimal polynomials of @ and &* over Z, and by Csg
the maximum of the absolute values of the coefficients of f*. Then, by (3.3.3),
C33 <2C37. Now N := N(a) = N(a" + a) implies that

IN| = |f(O)] = |f*(=a)| = lal" = nCsglal"™" = |a"~'(la| — nC3g) > %Ial"
if la| = 2nCsg. But then |a| < (2]N])/" and so
lal < max (2nC3s, 2IND'").
Finally, in view of h() = log H() and Lemma [3.5.1] it follows that
H(a) < 2H(a")lal,

whence we obtain (6.4.3). O

Proof of Corollary[6.4.4) We deduce the assertion from Corollary [6.4.2] Let
again Q be the effectively given algebraic closure of Q we have chosen. Let
& € Q be an algebraic unit of degree > 2 with D(g) = D. By (6.4.2) we have
n<Css = Zigglfl and by Corollary [6.4.3|we have h(g) < Csg, Where C3 is an
effectively computable number depending on D only. Thus, the set of algebraic
units & € Q with D(g) = D belongs to an effectively computable, finite set &
depending only on D. We can now determine all £ under consideration by
computing for every element of ¢ its monic minimal polynomial over Q and
check if this minimal polynomial has integer coefficients, constant term +1,
and discriminant D. O

6.6 Monic polynomials of given discriminant
In this section we deal with discriminant equations of the form
D(f) =D in monic polynomials f € Z[X], (6.6.1)

where D is a given non-zero rational integer. If f is a solution of then
so is (+1)%2/ f(+X +a) for any rational integer a. Recall that such polynomials
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FX), (x1)%f f(+£X + a) are called Z-equivalent, while the polynomials f(X),
f(X + a) are called strongly Z-equivalent. The Z-equivalence class represented
by f is the union of the strong Z-equivalence classes represented by f(X) and
(~=1)dee/ f(=X), respectively. Therefore the results of this section can be for-
mulated both in terms of Z-equivalence and in terms of strong Z-equivalence.

We denote by H(f) the height of a polynomial f € Z[X], i.e. the maximum
of the absolute values of the coefficients of f. Following the method of proof
of Theorem one can prove the following.

Theorem 6.6.1 Let f be a monic polynomial of degree n > 2 which satisfies
(6.6.1). Then f is strongly Z-equivalent to a polynomial f* with

H(f") < CylD|, (6.6.2)

where Cyy and Cy are effectively computable positive constants which depend
only on n and the discriminant of the splitting field of f.

For n = 2, Theorem easily follows from Corollary The case
n > 3 will be proved in Chapter [§| in a more general form, over algebraic
number fields; see e.g. Corollary

We note that the absolute value of the discriminant of the splitting field of
f can be estimated from above in terms of n and |D|. Hence (6.6.2) yields
an upper bound which depends only on n and |D|. Further, the degree of the
polynomials f with discriminant D # 0 can be bounded above in terms of
|D| only. The following theorem provides such bounds in completely explicit
form.

Theorem 6.6.2 Let f be a monic polynomial of degree n > 2 with discrim-
inant D # 0. Then it is strongly Z-equivalent to a polynomial f* for which

H(f") < exp{Ca (1DI (log" IDI)")"'}, (6.6.3)

1226(n2+10)n;(”2+1)

where Cyp = n with ny = n(n — 1)/2. Further, we have

2
< — . .6.
n_2+log310g|D| (6.6.4)

Theorem [6.6.1] and the first part of Theorem were proved with weaker
bounds in [Gy&ry (1974)]. The bound in is also due to Gyory [Gyéry
(1974)] where it was proved that the inequality is strict unless f is Z-equivalent
to X(X — 1) or X(X — 1)(X*> — X + 1). For non-monic polynomials, Theorem
gives a similar result.
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The following finiteness result was established in [Gy&ry (1973)] in an ef-
fective form. It provided a solution in a more general form for a problem of
[Delone and Faddeev (1940)].

Corollary 6.6.3 There are only finitely many strong Z-equivalence classes
of monic polynomials with integral coefficients and given non-zero discrimi-
nant, and a full system of representatives of these classes can be determined
effectively.

This may be viewed as a generalization of Corollary [6.4.2] which corre-
sponds to the irreducible case of Corollary[6.6.3] Similarly, Theorem[6.6.2]can
be regarded as a generalization of Theorem [6.4.1] with slightly weaker upper
bounds.

6.7 Proofs

Proof of Theorem[6.6.2] Let f € Z[X] be a monic polynomial of degree n > 2
which satisfies the equation (6.6.1). Consider the factorization

f=hH-—-r (6.7.1)

of f into irreducible monic polynomials fi, ..., f, in Z[X]. In view of (6.6.1)
these polynomials are pairwise distinct. First we prove (6.6.3)). We reduce the
proof to the irreducible case, and then we apply Corollary [6.2.1]

It follows from (T.4.6)) that

0<|D(f) <|D| fori=1,...,r 6.7.2)

Assume first that f; is not linear for some i, and let a; be a zero of f; in Q. Then
putting K; := Q(«;), we have D(f;) = Dk, o(a;). Further D, the discriminant
of K;, divides D(f;) in Z. It follows from Corollary [6.2.Tand (6.7.2) that there
is an a; € Z such that for &} := a; + a; we have

h(e;) < Ca3 (IDI (log” [DIY")"™" =t Cu, (6.7.3)

where

n826(n2+10)ng("2+1) with ny = "("T_l) ifr=1,
C43 =
if r>1.

n826(n2+10)n;("2+1) with ny = (n_l)z(n_z)

Denoting by f;" the defining polynomial of &}, we have f;(X) = f*(X +a;) and,

by @5.3),

H(f;*) < Zexp {C44} =: C45. (674)



108 Effective results over Z

If f; is linear for some 7, then we may choose f;* = X and (6.7.4) trivially holds.

For r = 1 we are done. Next consider the case r > 1. If f; and f; are strongly
Z-equivalent, then we may choose f* and fjf‘ to be the same. We fix a system
of polynomials f* with the above properties. Denote by R(f;, f;) the resultant

of f; and f;. It follows from (6.6.1)) and (1.4.6) that
0 <IR(fi, f)l < VIDI. (6.7.5)
Let K;; denote the number field generated by «; — ; over Q, and let
[i0=XN+b, XV 4+ 4 by € Z[X]

be the minimal polynomial of @ —a’. Since ;—a; = (a7 —a}) = (ai—a;), Kij is
of degree N over Q, where N < n?/4. Further, (6.7.3) implies that ha; - a*;.) <
2Cy4 + log 2, whence

H(fij) < 2exp{2Ca4} =: Cys.

Clearly a; — a; divides R(f;, f;) in the ring of integers of K;;. Taking norms in
K;; and using @ we infer that

\fiita; = apl = Nk, (@i — )l < [DI"/*. (6.7.6)
We prove that
2
la; — aj| < %C% + DI/ = Cy. 6.7.7)

Indeed, in the opposite case we would have

N-1
fistai = apl = lai — aj"™" (la: = ajl = (b1] + -+~ + |bw)))
2
n 2
>laj —ail - ZC46 > |D|"/8,

which contradicts (6.7.6).
Finally, we take the polynomial f*(X) = f(X — a;) which is strongly Z-
equivalent to f. Then we have

o= ]_[? (6.7.8)
i=1

where
FX) = ffX+(@-a), i=1,...r

Putting n; := deg f; fori = 1,..., r and combining the expansion

ni o px(s)
E(X)=Z—f" wzan y,

|
5=0 s
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with (6.7.4) and (6.7.7), we deduce that
H(f) < CusCl, i=1,...,1
Together with (6.7.8) this gives

. : ” v oom (AN (nCysCar\!
H(™) < E[(niC45C47)SC45C47( - ) <( : ) ,

whence (6.6.3) follows.

Next we prove (6.6.4). Let again f € Z[X] be a monic polynomial of degree
n > 2 with discriminant D(f) # 0. First consider the case when f is irreducible
over Q, and let @ denote a zero of f. Then the degree and discriminant of o
coincide with those of f. Further, by Theorem [6.4.T we have

2
"< 03 log ID(f)| (6.7.9)

which implies (6.6.4).

Consider now the case when f is reducible over Q, and let be the
factorization of f into irreducible factors with coefficients in Z. If f; is linear
for some i, we set D(f;) = 1. First assume that f has no rational zero. Then
deg f; > 2 and so

log3
long(ﬁ)lz%degfi fori=1,...,r

Using (T.4.6), we infer that

logID(f)l = ) logID(f)l + ) log R(fi, f;)?
i=1

i>j

log3 v« _log3
> > ;degﬁ—Tn,

which proves again (6.6.4).
Next assume that f has only rational zeros. Then we can write

f=X-=>b1)---(X - by,) with distinct b; € Z.
It is easy to see that

DOz [ ] li- = (- (6.7.10)
1<i<j<n
Using Stirling’s formula, we infer that

(l’l -1 )2n—]

— N2
((n=1DY >2r =y
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But it is easily checked that

2n-1
) (n— D™ S olog3)(n-2)/2
22(n=1)

which, together with (6.7.10), implies (6.6.4).

Consider now the case when

=88,

where g1,g> € Z[X] are non-constant polynomials such that all irreducible
factors of g; in Z[X] are non-linear, and those of g, are linear. Then it follows
that

2 2 2
——|D +2=——1og|D +|——1log|D +2)+
1Og3l (&)l loz3 og|D(g1)l (10g3 og |D(g2) )

4
+ foz3 log|R(g1,82)l = deg g1 +deggr = n,

which proves (6.6.4).
Finally, as the examples f = X(X — 1) and f = X(X — 1)(X?> = X + 1) show,
inequality (6.6.4) is sharp. O

Proof of Corollary[6.6.3] 1t follows from Theorem[6.6.2]that every monic poly-
nomial f € Z[X] of given discriminant D # 0 is strongly Z-equivalent to a
polynomial f* in Z[X] which belongs to a finite and effectively computable set
of monic polynomials in Z[X] and this set depends only on D. From this set
one can select, as in the irreducible case, in the proof of Corollary @L a full
set of representatives of strong Z-equivalence classes of monic polynomials in
Z[X] with discriminant D. ]

6.8 Notes

In this section we mention without proof some related results, generalizations and
further applications over Z. Other generalizations and applications over more general
ground rings will be discussed in Chapters[8]and [T0]

6.8.1 Some related results

Let L be an algebraic number field of degree n with ring of integers O, and discriminant
D;.

o If O, = Z[a] for some «, then determining for a given prime number p the factoriza-
tion of (p) = pO., as product of powers of prime ideals is an easy task. Namely, by a
theorem of [Dedekind (1878)], if f(X) denotes the monic minimal polynomial of & and

JX) = AT - fi(X) (mod p)
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is the factorization of f(X)(mod p) into irreducible factors, then p; = (fi(@),p) (i =
1,...,1) are distinct prime ideals of O, and (p) = pf‘ ---p;". For some generalizations
and references, see [del Corso, Dvornicich and Simon (2015)] and Chapter@

e Denote by m(L) the minimal index of L, i.e. the minimum of the indices of the prim-
itive integral elements of L. Clearly, for the index equations (6.4) and (6.1.6) to have
a solution it is necessary that / > m(L). Further, L has a power integral basis if and
only if m(L) = 1. By Proposition [3.5.6] the field L has a primitive integral element o
with [a] < |Dg|'?, whence m(L) < I(@) < (2|D.|!/?)"®=D/2 In [Thunder and Wolfskill
(1996)], the authors proved the sharper estimate

m(L) < (n*log, n)""~ V72| D, |2/, (6.8.1)

Further, they showed that for n > 4, there are infinitely many number fields L of degree
n such that

m(L) > |Dy |22, (6.8.2)

where the implicit constant depends only on .

e Another important field parameter of L is the field index i(L) which is by definition
the greatest common divisor of the indices of all integers in L. A necessary condi-
tion for the solvability of index equations (6.4) and (6.1.6) is that i(L) divides /. As
was shown in [Hall (1937)] for n = 3 and in [Pleasants (1974)] for every n > 4 for
which n + 1 is a prime, this condition is not sufficient in general. When i(L) > 1, the
prime divisors of i(L) are called common index divisors (or sometimes common non-
essential discriminant divisors). There exists a criterion for a rational prime to divide
i(L), and this implies that each common index divisor is less than n; see [Hasse (1980)]
or [Narkiewicz (1974)].

o Pleasants [Pleasants (1974)] gave an effectively computable formula for the minimal
number of ring generators of O, over Z. However, this formula has the drawback that
when it yields “one”, two generators may be needed. Corollaryl@lmakes it possible,
at least in principle, to decide whether the minimal number of ring generators is one or
not. See also Section [§:4.2] for a generalization to the case where the ground field is a
number field other than Q, and Section[TT.2]for an even more general and more precise
result.

6.8.2 Generalizations over Z

e Theorem [6.1.1] has been generalized to more general decomposable form equations,
see e.g. [Gydry and Papp (1978)], [Gy&ry (1981a)] and [Evertse and Gyory (1988b)].
e Generalizations to the so-called “inhomogeneous” case were given by Gadl, see e.g.
[Gadl (1986)].

e Theorem [6.6.1] concerning equation (6:6.1) was extended to the case when D(f) is
not necessarily different from zero. Then considering the equation D(f) = D for fixed
D # 0 where f; is the maximal squarefree divisor of f in Z[X], one can get an effective
finiteness result of the same type as in the case D(f) # 0; such results can be found in
more general forms in [Gyory (1978a, 1981c, 1998)].

e As another generalization of equation (6.6.1), in [GySry (1976)] the system of equa-
tions D(f?) = D;, D(f) = --- = D(fY~") = 0 (when j > 0) was considered in monic
polynomials f € Z[X] of degree n > 2, where j is an integer with 0 < j < n — 2, and
D; # 0 a given integers. It was proved in an effective form that there are only finitely
many Z-equivalence classes of such monic polynomials F of degree n with coefficients
inZ.
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6.8.3 Other applications

e Let f € Z[X] be a monic polynomial of degree n > 3 with discriminant D(f) # O,
and m > 2 an integer. Consider the solutions x,y € Z of the equation f(x) = y". Using
various variants of Theorem[6.6.1] Trelina [Trelina (1985)] and, for n = 3, m = 2, Pintér
[Pintér (1995)] derived effective upper bounds for |y| that depend on m, n and D(f), but
not on the height of F. It should be remarked that the height of f can be arbitrarily
large with respect to |D(f)|. Further, in [Brindza, Evertse and Gy&ry (1991)], [Haristoy
(2003)] and [Gyo6ry and Pintér (2008)] upper bounds depending on n and D(f) were
given even for the exponent m.

e Denote by Z2(X|,...,X,) the discriminant of f(X) = X" + X\;X" ' +... + X, as a
polynomial in X, and consider the equation

D(x1,y...,x) =D inx,...,x, €Z, (6.8.3)
where D is a given non-zero integer. Z(X,...,X,) is a polynomial in X, ..., X, with
integral coefficients, and hence (6.8.3) is a polynomial Diophantine equation. If (6.3:3)
has a solution (xy,...,x,) then it has infinitely many ones. Namely, if fo(X) := X" +

x1 X" + .-+ + x,, then for every a € Z, the tuple (x},. .., x}) € Z" given by
X =X"+x5X"+. +x = (X +a)
is also a solution and

N P
(x,,...,xn)z[hw--,ﬁ)(a) .

Such a set of solutions of (6.8.3) is called a family of solutions. Using his earlier versions
of Theorem and Corollary [6.6.3] Gy&ry [Gy6ry (1976)] proved in an effective
form that equation (6.8.3) has only finitely many families of solutions, with explicit
upper bounds for the sizes of representatives for the families. In particular this implies
that for given n > 3 and k # 0, the superelliptic equation x" — y"~! = k has only finitely
many integral solutions x, y and all of them can be, at least in principle, effectively
determined. For n = 3, this latter equation is just the so-called Mordell equation.

e As a consequence of an earlier version of Theorem [6.6.1] Gyéry [GyGry (1976)]
showed that if f € Z[X] is a monic polynomial of degree n with non-zero discriminant
D(f), then there exists a € Z such that

F@I < explelDAI?), i=0,1,....n =1,

where ¢, ¢, are effectively computable numbers which depend only on 7.

e In [Gy6ry (1976)], Gydry proved a more general version of Theorem [6.6.1] for non-
monic polynomials and as a consequence he showed that if f(X) = aoX” + a, X" +
-+ + a, € Z[X] with non-zero discriminant D and 0 < |ag| = A, |a;] = A; for some
1 <i < n, then the height of f can be effectively estimated from above in terms of n,
D, A and A;. See also [Ribenboim (2006)].

o For a primitive integral element « of L, denote by .4, the set {0, 1,..., |Nyg(@) - 1}.
We say that (@, .4;) is a canonical number system in L if every element 3 of O, can be
represented uniquely in the form

k

B=ay+aa+- - +aqa witha,...,a, € N,

and with a non-negative integer k (depending on (). Kovéacs [Kovécs (1981)] proved
that in L there exists a canonical number system if and only if L has a power integral
basis. Further, using an earlier version from [Gy&ry (1976)] of Corollary@ [Kovacs
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and Pethd (1991)] gave an algorithm for determining all canonical number systems in
L. A detailed treatment can be found in Section[IT.1}

e Let f, g € Z[X] be monic irreducible polynomials of respective degrees p and n > 2
where p is a prime, and suppose that the splitting field of f is real and the splitting
field of g is a totally imaginary quadratic extension of a totally real number field. Using
his first version of Theorem [6.6.1] Gyéry [Gy®ry (1972)] proved that for fixed p and
g, there are only finitely many Z-equivalence classes of f with the properties specified
above such that g(f(X)) is reducible over Q. Moreover, he gave explicit upper bounds
for the heights of such f so that these can be, at least in principle, effective determined.
For the polynomials g considered above, this gave an answer in a more general form
for a problem of [A. Brauer, R. Brauer and H. Hopf (1926)].

e Various variants of the arithmetic graphs involved in the proofs of Theorems @
andwere used by Gydry to studying among others polynomials of given discrim-
inant, pairs of polynomials of given resultant, irreducible polynomials and decompos-
able form equations; for surveys see [Gy&ry (1980c, 2008b)].

e For an application of an earlier version (see [Gy6ry (1976)]) of Corollary @ to
integral-valued polynomials over the set of algebraic integers of bounded degree, see
[Peruginelli (2014)].

o For an applications of Corollary[6.4.2]to so-called binomially equivalent numbers, see
[Yingst (2006)].
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Algorithmic resolution of discriminant form and
index form equations

To give explicit upper bounds for the solutions of discriminant and index equa-
tions over Z, in Chapter[6] we reduced these equations to discriminant form and
index form equations. The bounds obtained make it possible, at least in princi-
ple, to solve the equations under consideration. However, these bounds are too
large for practical use.

In this chapter we deal with the resolution of concrete discriminant form
equations of the form

Drjgp(Waxa + -+ wyxy) =D inxa,...,x, €Z, @n

where D is a given non-zero integer and {1, w», ..., w,} is an integral basis in
an algebraic number field L of degree n > 3. Equivalently, we consider also
the index form equation

I(xp,...,x,) =%l inx,,...,x, €Z, @2

where (X, ..., X)) is the index form corresponding to the integral basis under
consideration. Further, we may assume that / is a positive integer such that
D = I’D; holds, where D; denotes the discriminant of L.

Having a method for solving equations (7[1)) resp. (7[2) enables one to solve
other discriminant and index equations as well, treated in the previous chapter.
For example, one can find all integral elements of L with a given non-zero
discriminant resp. with given index, and in particular all power integral bases.
Moreover, it enables one to determine the minimal index m(L) of L for which
(]Z@ is solvable, and find all integral elements in L with minimal index. Indeed,
all I under the upper bound given in for m(L) are candidates for the
minimal index of L. Thus one can consider the values 7 = 1,2, ... until one
obtains a solution of ({7[2).

For cubic and quartic number fields L and for certain special number fields

114
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of degree 6, 8 resp. 9 having a proper subfield, there are methods for solv-
ing discriminant form and index form equations via cubic and quartic Thue
equations. Recall that a Thue equation of degree n is an equation of the type
F(x,y) = m with unknowns x,y € Z, where F € Z[X,Y] is a binary form of
degree n and m is a non-zero integer. From an algorithmical point of view this
approach is particularly efficient, because there exist easily applicable compu-
tational methods for the resolution of Thue equations of low degree. However,
the methods involving Thue equations cannot be applied in general to number
fields of degree > 4, for example to quintic fields.

A combination of the methods presented in Chapter [6] and the algorithmic
resolution of unit equations explained in [Evertse and Gy6ry (2015), chap.
5] provides a general approach for solving discriminant form and index form
equations. As in Chapter|[6] equations (7[T)) resp. (7I2) can be reduced to equa-
tion systems consisting of unit equations in two unknowns. Then these unit
equations can be solved using the algorithm described in [Evertse and Gy&ry
(2015), Chap. 5], provided that the number of unknown exponents in these
equations viewed as exponential equations is within the applicability of the
enumeration procedure.

In the present chapter we first present the general approach involving unit
equations. Following [Gadl and Gydry (1999)], we give a detailed treatment of
the general algorithm in case of quintic fields, and illustrate the method with
some numerical examples. Then we shall briefly deal with the resolution of
index form equations in cubic and quartic number fields and in certain other
special fields when (7[2)) can be reduced to Thue equations of degree at most
4. Finally, in the last section we give a brief survey on some special number
fields L and special integers I for which equation (7[2)) is solvable, resp. not
solvable. Our presentation will be self-contained, i.e., we will work out the ar-
guments from [Evertse and Gy&ry (2015), chap. 5], specialized to the situation
considered here.

Further details and related results for relative extensions, parametric families
of number fields, p-adic versions and examples can be found in [Smart (1993,
1996, 1998)], [Wildanger (1997, 2000)], [Gaal (2002)], [Bilu, Gaél and Gy&ry
(2004)] and [Gadl and Nyul (2006)].

7.1 Solving discriminant form and index form equations via
unit equations, a general approach

Smart [Smart (1993, 1995, 1996)] was the first to solve discriminant form
equations via unit equations. Using the method of proof of Theorem
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Smart and later Wildanger [Wildanger (1997, 2000)] reduced equation (7[T)
resp. (7[2) to unit equations of the form

Ojk€jk + Oi€ri + 01j€i; = 0 (7.1.1)

in the normal closure N of L over Q, resp. in the field L?LYL® | where &;;, & i,
& are unknown units and L, LY, L® are conjugates of L over Q for distinct
i, j,kwith 1 <1, j,k < n. Representing & jx/&;j, &/ &;j in an appropriate system
of fundamental units 7y, ..., 7, in N, resp. in LOLDL® can be written
in the form

, ) , b b,
Sy -+ S, m = =0y (7.1.2)

with suitable 6;,(, 6,’(1, where b, b;,, p = 1,...,r, are unknown integer expo-
nents. Smart and Wildanger diminished the number of the arising equations
to be solved by using the action of the Galois group G of N/Q on these
equations. Further, by means of Baker’s method and the reduction techniques
discussed in [Evertse and Gy6ry (2015), chap. 5] they gave relatively small
upper bounds for the absolute values of b, and b,. Finally Smart applied a
sieving process, while Wildanger utilized his enumeration algorithm described
in [Evertse and Gydry (2015), chap. 5] for finding the solutions b, b, under
the obtained bounds. Wildanger used his algorithm to solve index form equa-
tions in normal number fields L with unit rank not exceeding 10. In particular,
he completely solved equation (7[2) for I = 1 in all cyclotomic fields of degree
at most 12.

It was pointed out in [Evertse and Gy6ry (2015), chap. 5] that to solve equa-
tions of the form (7.1.2) the size of r, that is the unit rank of N resp. LOLWL®,
is crucial. Combining the method of proof of Theorem with the general
algorithm described in [Evertse and Gydry (2015), chap. 5], equation (]’ZE])
resp. (7[2) can be solved if the unit rank of N resp. L& LY L® is not greater than
12. However, this unit rank can attain the values n! — 1 and n(n — 1)(n - 2) — 1,
according as (7.1.2) is considered in N or in LYLYL® . For n > 3, these values
are, however, beyond the applicability of the enumeration algorithm for finding
the small solutions of (7.1.2).

The proof of Theorem [6.1.2] provides a considerable refinement of the gen-
eral approach by reducing equation (7[1)) resp. (7[2) to unit equations having
much fewer unknown exponents. The first step is to transform (7[T)) resp. (7[2))
into another, more convenient form. Then, if N is ‘small’ in the sense defined in
Section [6.1] Dirichlet’s unit theorem implies that, in (7.1.2), r < n(n—1)/2 -1
holds. When N is ‘large’, then for each distinct i, j with 1 < i, j < n, &; in
(71:1) is a unit in the subfield L;; of LYLY, defined in Section (6.1} We recall
that L;; is of degree at most n(n—1)/2 over Q. It was shown in the proof of The-
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orem [6.1.2] that in this case it suffices to deal with those equations (7.1.1)) for
which there is a o € G such that o(g;;) = &j. First assume that L;; and Lj are

not conjugate. Then taking appropriate systems of fundamental units y, . . ., i
and vy,...,v; in L;; and Lj, respectively, we can write equation (7.1.T) in the
form
N b N b t b
P —
o [ (a0 /) +6;z(ﬂup ][H = =i
p=1 p=1 g=1

with suitable 6;(’1., 6’1’,( and with unknown exponents b, bf]. Then it follows from
(6.3.13) that s+ < n(n—1)/2 -2, that is the number of unknown exponents is
indeed much fewer than in the proofs of Smart, Wildanger and in that of The-
orem [6.1.1} This situation becomes even simpler if L;; and Lj are conjugate,
say 7(L;;) = Lj for some 7 € G. This is always the case when G is doubly
transitive. Then we infer from that

N S
50 [ T(ewnis)” + 85 | (cwnims)” = ~6;
p=1 p=1
where s < n(n — 1)/2 — 1. This means that independently of the fact that N is
‘large’ or not, it suffices to solve unit equations having at most n(n — 1)/2 — 1
unknown exponents.

In concrete cases one can use the corresponding argument from the proof
of Theorem [6.1.2] to find a minimal set of unit equations which have to be
solved. If in particular n > 5 and G = S, or A, then it is enough to solve
a single unit equation of the form because in these cases there is only
one Galois orbit of the unit equations under consideration. If the corresponding
unit equations are already solved, then we can determine the possible values
of &;j/&1 for each distinct i and j. Then &, can be easily determined from

(71 resp. (7[2) and the solutions xa, ..., x, of (7[I) resp. (7[2) can be found
by solving the arising systems of linear equations as in the proofs of Theorems

and

The combination of the above-presented refinement of the general approach
and the general method described in [Evertse and Gy6ry (2015), chap. 5]) pro-
vides a general algorithm for solving (7[T) resp. (7[2) in any number field L
for which n < 5 or the unit rank of N is at most 12, provided that |Dy| and |D|
resp. I are not too large. Following [Gadl and Gy&ry (1999)], we give below a
detailed presentation of this algorithm in quintic number fields.

In [Bilu, Gadl and Gydry (2004)], the authors extended the applicability of
the general algorithm by refining the enumeration procedure for finding the
small solutions of the arising unit equations. This refinement enabled them to
solve equation (7[2) for n = 6, even in the most difficult case when L is totally
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real and the Galois group is S¢. In this case the corresponding equations of the
form (7.1.2) have 14 unknown exponents while the unit rank of N is 6! — 1.
Then the CPU time was, however, far longer than in the lower degree cases, it
was about 5 months. For n = 7, in the most difficult situation the number of
unknown exponents can attain 20 which is already beyond the applicability of
the presently known algorithms for solving unit equations.

7.1.1 Quintic number fields

Let L be a quintic number field and N the normal closure of L over Q. Then
the general index form equation (7]2)) takes the form

[(Xz,...,X5)=iI ian,...,X5€Z, (713)
where [ is a positive integer and /(X», . .., Xs) is the index form corresponding
to an integral basis {1, wy,...,ws} of L.

The possible Galois group of L is Cs (the cyclic group), Ds (the dihedral
group of order 10), M5, (the metacyclic group of degree 5), As or S's; cf. [Co-
hen (1993)]. By a theorem of M. N. Gras [Gras (1986)], (7.1.3) has no solution
for I = 1 and for Galois group Cs, except for the case when L is the maximal
real subfield of the 11th cyclotomic field. The cardinalities of the groups Cs
and Ds do not exceed 10, hence in these cases equation (7.1.3) leads, in the
normal closure of L, to unit equations of the form (7.1.2) with r < 9. Then the
algorithm presented in [Evertse and Gy6ry (2015), chap. 5] can be applied to
find all solutions of the unit equations under consideration, whence the com-
plete solution of (7.1.3) easily follows.

Following [Gadl and Gy&ry (1999)] we consider in the most diffi-
cult case when L is totally real and has Galois group My, As or Ss. With the
terminology of Chapter [§] this means that N is “large”. As an illustration of
the method all solutions of the corresponding index form equation are
calculated for / = 1 in a totally real quintic field with Galois group S's.

Reduction to unit equations. In what follows, we suppose that L is a totally
real quintic field with ring of integers Oy, discriminant D; and with Galois
group My, As or S'5. Let £ be an integral generator of L with conjugates £V =
EED €9 over Q. We set L® = Q(f(i)) fori=1,...,5.

As in the proof of Theorem we first transform (7.1.3) into a more
convenient form using Lemma We recall that for I(X) = wr Xo+- - -+ w5 X5

Dy (X)) = P(X,,...,Xs5)D; (7.1.4)
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holds. We set Iy = I(£). For each solution X = (x2, ..., x5) of (7.1.3), we have

Il(x) = y1 + &y + -+ + E'ys = (y) (7.1.5)
with some y = (y1,y2,...,y5) € Z°. We are going to determine ys, ..., ys.
After having all solutions y», . . ., ys, the corresponding x», . .., x5 can be easily

determined by using the representations

4
_antapé+---+aisé s
w; = , i=2,...,5,
Iy

where a;; are appropriate rational integers. Putting
1Y) = °(Y) = 1Y)
for distinct i, j with 1 < i, j < 5 and using (7.1.4), (7.1.3), equation (7.1.3)

leads to the equation

]—[ Li(y) = I°PD, iny = (ya,...,y5) € Z*. (7.1.6)
1<i,j<5

Consider the subfield L; ; = Q (g“') + D), f(i)f(j)) of LVLY, The groups My,
As and S 5 being doubly transitive, the field LO LY is of degree 5 - 4 = 20 over
Q. The elements of L;; remain fixed under the action (i, j)) — (j,7) of the
Galois group. Hence L;; is a proper subfield of L?LY. Since Q (f(i), f(j)) isa
quadratic extension of L; j, in our case L; ; is of degree 10 over Q. But L;; is
totally real, thus the unit rank of L; ; is 9.

Let A%/ denote the conjugate of any 1 = A"» € L;, corresponding to
ED 4 gD gDED) (1 < i < j < 5), and for simplicity let A0 = 14D We infer
from (7.1.5) that for each solution y = (y2,...,ys) of (7.1.6)

I
5= 1.2(y)

= (7.1.7)

is an integer in the field L; . In view of (7.1.3), equation (7.1.6) can be written

in the form
[ 6% ==81.

1<i<j<5

This is a norm equation in L; . Thus there exists an integer y of norm J_rlgl
and a unit 77 in L, » such that

5D = )/(i’j)n(i’j) (7.1.8)

for any i, j with 1 < i < j < 5. We note that the following computations must
be performed for a complete set of non-associate elements y of norm ilg I
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For any distinct 7, j, kK we have
L0Y) + [i(Y) + L (Y) = 0. (7.1.9)

Put
@) (&) _ &)
20 = 7_ (6. g )
y(l,k) (é:(l) — é:(k))
Let {&1,...,&0} be a set of fundamental units in L; . Then there are rational
integer exponents by, ..., bg such that

U ((9(1111'))"‘ . (gg’ﬂ)“

forany (i, jywith 1 <i < j<5.Let

(7.1.10)

VIR = gD 1660 for p=1,...,9. (7.1.11)

Then, using (7.1.3), (7.1.7), (7.1.8), (7.1.10) and (7.1.11) we deduce from
(7.1.9) that

b ﬁ (ng)”r + oD ﬁ (ngm)bf =1 (7.1.12)
r=1 r=1

We shall now adapt the algorithm presented in [Evertse and Gydry (2015),
chap. 5] for equation (7.1.12), using the special feature of (7.1.12).

Application of Baker-type estimates. We follow [Gaal and Gydry (1999)].
Their approach is based on the following estimate of Baker and Wiistholz
[Baker and Wiistholz (1993), Theorem]. We choose the principal value of the
logarithm, with [Im logz] < w for z € C \ {0}.

Theorem 7.1.1 Let ay,...,a, (n = 2) be non-zero complex algebraic num-
bers with [Q(ay,...,a,) : Q] =d, and let by, . .., b, be rational integers such
that

A:=bloga; +---+b,loga, #0.
Then
log|Al > =C(n,d)h' (@) - - - ' () log B,
where
I (a;) := max (h(a;) l|1o ail l) fori=1,....d
) = l’d glad T Ay e ey Uy

B :=max(|bil, ..., |bal, €),
C(n,d) := 18(n + 1)! - n"*1(32d)"*? log(2nd).
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Matveev [Matveev (2000)] obtained a sharper lower bound, with C(n, d) of
the shape (cd)™ where c, ¢’ are effectively computable absolute constants. This
sharper version does not lead to a speed-up of our algorithm.

We keep the notation from the previous section. Putting

9

09 = 1—[ (ng)”r, (7.1.13)

r=1

we infer that

ngk)| = log |ﬂ<z’jk>| ) (7.1.14)

i b, log
r=1

The column vectors of the 60 X 9 matrix

(log |v5"f"‘> (7.1.15)

SLLASI, SIS

are linearly independent, where all distinct indices i, j, k between 1 and 5 are
considered. This follows by using the facts that all 9th order minors of the

10 X 9 matrix (1og 'sﬁi’j )‘) are different from zero and that the sum
1<i<j<5,1<r<9
of the row vectors of this matrix is the zero vector. We can now select nine

triples (i, j, k) such that the left hand sides of the corresponding linear equations
in (7.I.T4) are linearly independent. Let M be the 9 X 9 matrix composed of
these coefficients. Let (ig, jo, ko) denote the triple (i, j, k) for which llog |y(ijk)||
attains its maximum. Then multiplying by the inverse M~! of M we can express
bi,...,bg and we conclude that

B = max |b,| < ¢y [log |u ]|, (7.1.16)
1<r<9

where ¢; is the row norm of M~!, that is the maximum sum of the absolute
values of the elements in the rows of M~'. Note that the nine equations should
be selected so that ¢; becomes as small as possible. Now if || < 1 then
log |[uiok)| < —B/cy, and if |u@/ok)| > 1 then the same holds for p(okoio) =
1/plJok0) Thus we conclude that |y(i°j°k“)| is small for a certain triple (i, jo, ko).
In what follows, for simplicity we omit the subindices, that is we assume that

log [u®| < —B/c. (7.1.17)
Set ¢; = [Y]. Then using (7.T.14), and the inequality |logz| <
2|z — 1] which holds for |z — 1] < 0.795 we deduce from (7.1.12) that

9
log [@®] + Z b, log <2c,exp(-B/cy), (7.1.18)
r=1

ngji)'

provided that the right hand side is < 0.795. This may be assumed because
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otherwise we get a much better upper bound for B. In our example the terms
in the above linear form in logarithms are linearly independent over Q, and in
[Gadl and Gy&ry (1999)] Theorem was used to get a lower estimate of
the form

9
log |a(k-’i)| + Z b, log vﬁkﬁ)’ > exp {—Cy log B} (7.1.19)
r=1

with a large constant Cy. Comparing the upper and lower estimates for the
above linear form we obtain an upper bound B for B.

We note that here, instead of Theorem[7.1.1] we could have used the estimate
from [Matveev (2000)] to prove with a constant C; which is smaller
than Cy. Together with (7.1.12)) and (7.1.17) this would yield a slightly better
upper bound for B. This improvement would be, however, irrelevant for our

purpose because in numerical cases B can be drastically reduced by means of
the LLL-algorithm.

Reduction of the bounds. We first explain the notion of an LLL-reduced basis,
and then discuss our reduction method.
Here, a lattice in R" is an additive subgroup of R” of the shape

L={za+ --+za:2,....4 €2}
where 1 < t < n and a,,...,a, are linearly independent vectors in R". We
call ¢ the dimension of £ and ay,...,a, a basis of £ (here the ordering of

these vectors matters). A.J. Lenstra, H'W. Lenstra Jr. and L.Lovasz introduced
in [Lenstra, Lenstra and Lovasz (1982)] what is nowadays called an LLL-
reduced basis of a lattice. They proved that every lattice in R” has such a basis.
Further, they developed a very practical algorithm (nowadays called the LLL-
algorithm), which from any lattice given by a basis computes a reduced basis
of this lattice. (In fact, Lenstra, Lenstra and Lovasz formally stated their results
only for lattices of maximal rank 7, but the generalization to arbitrary lattices
is implicit in their proof; see also [Pohst (1993)]. For extensive details, with
a description of the algorithm and a run-time analysis, we refer to [Lenstra,
Lenstra and Lovasz (1982)].

We recall the definition of an LLL-reduced basis of a lattice. We use the
standard inner product and Euclidean norm on R”, given by

n

@b):= > aibi, llall := (a,a)"
i=1
fora=(aj,...,a,),b=(by,...,b,) € R".
Let .Z be a t-dimensional lattice in R” with basis ay,...,a,. By means of
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the Gram-Schmidt orthogonalization process one obtains an orthogonal basis

aj,...,a; of the vector space spanned by ay,...,a, which is defined induc-
tively by
i—1
a’ =ai—Zui,-a;, 1<i<t, (7.1.20)
J=1
where
pij = (@i /llajlP?, 1<j<is<t (7.1.21)
Definition 7.1.2 A basisay,...,a, of alattice .Z in R" is called LLL-reduced
if aj,...,a, and the vectors aj,...,a; of the corresponding orthogonal basis
satisfy
il < > I1<j<i<t (7.1.22)
and
3
la + i@l I > Zllai |7, 1 <i<t (7.1.23)
[ ]

Clearly, (7.1.23)) can be rewritten as

3
o2 2 .2
lla7]|” > (4_1 = My Nl I

LLL-reduced bases have several useful properties. What is of particular im-
portance is that the first vector a; of an LLL-reduced basis of a lattice .Z is not
much larger than the shortest non-zero vector in .Z.

Proposition 7.1.3 Letay,...,a, be an LLL-reduced basis of a lattice £ in R"
with associated orthogonal basis aj, . . ., a; defined in (71.1.20). Then we have

llai|® < 27 YxI? for everyx € £\ {0).

Proof See [Lenstra, Lenstra and Lovasz (1982)] for ¢ = n, and [Pohst (1993)]
inthecase2 <t < n. m]

We now explain our method to reduce the upper bound for B in (7.I.18).
Notice that (7.1.18)) is of the form

[b1 3 + - -+ + bdy| < c3exp{—c4B}, (7.1.24)
where 9, . .., 9, are logarithms of some non-zero algebraic numbers, c3, c4 are
given explicit positive constants, and by, ..., b, are unknown rational integers

such that
0 <max(|by],...,|b) < B and B < By
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with some explicit constant By.

We want to substantially reduce this upper bound By in the following way.
Consider the inequality (7.1.24), where ¢y, . . . , ¥, are real or complex numbers.
Denote by .Z the r-dimensional lattice spanned by the columns of the (z+2) x ¢
matrix

1 0 0
0 1 0
CRe(®) CRe(3,) --- CRe(d)
CIm(®;) CIm(%) --- CIm(9,)

where C is a large constant to be specified in numerical cases. The last row can
be omitted if ¢, . .., ¥, are all reals. Using the LLL-algorithm we can compute
an LLL-reduced basis of .Z. Let a; denote the first vector of this basis.

Lemma 7.14 Ifin max; |b;| < B < By and

llaill > V(z + 1)2' By, (7.1.25)

then

< log C + log c3 — log By

B (7.1.26)

Cq

This is a slight extension of a result of [Gaal and Pohst (2002)] where it is
assumed that max; |b;| = B instead of < B. Our version is more conveniently

applicable to (7.1.18).

Proof Following the proof of [Gaal and Pohst (2002), Lemma 1], we denote
by ag the shortest non-zero vector in .#. Then it follows from Proposition[7.1.3]
that |ja;|*> < 2"~!||ag||>. Using and the assumptions of our lemma, we
infer that

217 (¢ + D27 BY) < 2"l < llaoll® < B + C*c} exp {~2c4B}.
This gives
By < Ccsexp{—c4B},
whence follows. i

We note that if in (7.1.24)) the numbers ¢, . . ., ¥, are linearly dependent over
Q, then the number of unknowns can be reduced and we can apply Lemma
[Z1.4lto a lower dimensional lattice.
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We expect our Lemma [7.1.4]to reduce our upper bound By for B, because it
is believed that the logarithms of algebraic numbers behave as random complex
numbers. To ensure we have to choose C sufficiently large. A suitable
value of C is usually of magnitude Bj. Then the bound By is reduced almost to
its logarithm. If Lemma [7.1.4]does not reduce our upper bound, a larger C can
be chosen and we repeat the procedure.

We apply Lemma(7.1.4]to (7.1.T8) as follows. Consider the lattice .# spanned
by the columns of the 11 X 10 matrix

i 0 0

0 I 0

0 0 1
Clogla®®| Clog |v(1kﬁ)‘ -+ Clog ‘vgkﬁ)'

where C is a large constant which will be specified later. Denote by a; the first
vector of an LLL-reduced basis of .Z. Then Lemma gives that if

llagll > V11-272B,, (7.1.27)
then for all solutions (by, ..., bg) € Z° of the inequality we have
B < ¢y (log C + log(2¢;) — log By) .

We note that if in the linear form in the terms are linearly dependent
over Q then, as was remarked above on (7.1.24)), we have to use Lemma
for a lower dimensional lattice and we can reduce the number of variables.

The reduction procedure has to be performed for all possible triples (k, j, i).
Since (k, j, i) and (k, i, j) give the same linear form, we have to consider 30
cases.

To ensure we have to take C large enough, usually B’ is suitable.
We apply Lemma repeatedly. After 4 — 5 steps the procedure does not
yield an improvement anymore. In our example the final reduced bound was
133. It was especially hard to perform the first reduction step, where it was
needed to take C = 10°% and use an accuracy of 1300 digits.

Final enumeration. In this section we present an enumeration method to find
those solutions (b, ...,by) € Z° of the unit equation ([7112) for which B =
max, |b,| < Bg. Here Bg denotes the reduced bound obtained in the last step of
the reduction algorithm.

For a triple I = (i, j, k) of distinct indices 1 < i, j,k < 5 set

o = o0 D = 0y = U0 for =1, 0. (7.1.28)
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Further, let

5O = oD . D), (7.1.29)
Then the unit equation (7.1.12) can be written in the form

B+ g0 = 1 (7.1.30)

where I’ = (k, j, i).
Let . = (I1,...,1,) be a set of triples I with the following properties:

1. if (i, j, k) € .7 then either (k,i, j) € .Z or (k, j,i) € .,
2. if (i, j, k) € .7 then either (j, k,i) € 7 or (j,i,k) € .7,

T

3. the vectors e, = (log |v(rll>| ,...,log Vglq) ) for r = 1,...,9 are linearly in-
dependent.

Since the matrix (7.1.15) is of rank 9, taking sufficiently many triples, the

last condition can be satisfied. Note that choosing a minimal set of triples sat-
isfying the above conditions reduces the amount of necessary computations
considerably. Set

as= (IOg |a(11)' ,--log '“(Iq)|)T’ b= (log LB(Ml s, log LB(I")l)T.

By our notation we have
b=a+b1e1 +"°+b939. (7131)

Recalling that Bg denotes the reduced bound obtained in the previous sec-
tion, we set

9
log Hy = max llog |a(’)|| + Bg ; |log |v(,')|| .

Then in view of our notation (7.1.13), (7.1.28)) and (7.1.29), we have
1/H, < |8] € Ho (7.1.32)

for any triple I = (i, j, k) € .Z.
The following lemma (cf. [Gadl and Pohst (2002)]) describes how we can
replace Hy in (7.1.32) by a smaller constant.

Lemma 7.1.5 Let 2 < h < H be given constants and assume that
I/H <|p"| < H foralll€.7.

Then either
1h< || <h foralll e .7 (7.1.33)
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orthereisan I = (i, j k) € .7 with
B —1] < 1/(h-1).

Since our notation is somewhat different from that of [Gaal and Pohst (2002)]
we repeat here the proof of this lemma.

Proof  Assume that the triple (i, j, k) € .# violates (7.1.33). Then either 1/H <
|89 < 1/h, which by (7-1.30) implies

|p%0 — 1] < 1/h, (7.1.34)
orh < W(ijk)| < H, whence
B — 1| = |g*2| = |1/8%9] < 1/h.

Note that if the triple (k, j, i) is not in .#, but (k, i, j) € .#, then using g% =
1/p%", by (T1.34) we have

B4 —1| < 1/(h - 1),

m

and we can proceed similarly if the triple (j, k,i) is not in ., but (j, i, k)
A. O

Summarizing, the constant H can be replaced by the smaller constant £ if
for each gy (1 < go < q) we enumerate directly the set 7 of those exponents
by, ..., b for which

1/H < |pP| < H foralll € .# and |g" — 1| < 1/(h - D). (7.1.35)
We now describe the enumeration of the set 7, in detail, this being the critical

step of the algorithm. Assume that 2 < & < H and set

1

1/logH forp # ¢qo, 1 < p <gq,
Ap = h— —
1/1og ;= for p = qo.

Further, set

®q(b) = (/11 log |,8([1)| veensdglog lﬂ(lq)|)T i
¢a@ = (A1 log|a®]..... 4, log ™))",

T
©q(€,) = (/11 log |v(,1‘)|,...,/lq log v(,lq)) forr=1,...,9.
Since ey, .. ., €y are linearly independent, so are the images ¢ ,(e1), .. ., @4, (€9)

as well, and (7.1.31)) implies that

©q0(D) = @go(@) + b1y (€1) + - - - + bogy, (€9).
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We deduce from (7.1.35) that

(1) log H if p # qo,
Jog ] { (o242 %

Consequently, for the Euclidean norm of the vector ¢4, (b) we have

ll0g(@) + b1pgy(€1) + - - - + by, (€I

q
= llpgu )P = ) G log? B < g (7.1.36)
p=1
Thus we have shown that for any (by,...,by) € S, the inequality
holds. This inequality defines an ellipsoid. The lattice points contained in this
ellipsoid can be enumerated by using the “improved” version of the algorithm
of [Fincke and Pohst (1983)] which is usually very fast.
We note that if the vector a is linearly dependent on e, ..., eq over R, that
is if
a:d1e1 +"'+d969

for certain real numbers dj, ..., dy, then in view of we have to enu-
merate the solutions of the form y, = b, + d, (1 < r <9) in the ellipsoid

Iy10g0(€1) + -+ + Yoy, (€)II* < g,

and from the values of y, the b, can be determined. This makes a bit more
complicated some process involved in the Fincke-Pohst algorithm.
Applying the above procedure we choose suitable constants Hy > H; >
- > Hi. In each step we take H = H;, h = H,;;; and enumerate the lat-
tice points in the corresponding ellipsoids. The initial constant is given by the
reduced bound (7.1.32). The last constant Hy should be made as small as pos-
sible, so that the exponents with

1/Hy < |gP| < Hy foralll e .7 (7.1.37)

can be easily enumerated. Observe that the set defined by (7.1.37) is also con-
tained in an ellipsoid, namely, by (7.1.31) we have in R?

lla+ bre; + - - + boeo|” = |Ibl*> < g (log H)” . (7.1.38)

In applications Hy is usually very large, it is about 10'°%, By experience in
the first step H, can be much smaller than Hy; see also our Example[7.1.1]

Sieving and test. As we shall see in the next section, in our example the num-
ber of exponent vectors (b, ...,bg) we have to enumerate is still very large.
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Hence it seems to be economical to insert a very simple modular test to elimi-
nate almost all of these vectors.

First a prime p, relatively prime to I and Dy q(&) can be calculated such that
the defining polynomial f(X) of the generator & of L splits completely mod p,
that is

JX) = X = 1)X = )X - 13)(X - 14)(X — 15) (mod p)

with rational integers ¢, ..., #s. Hence #, . . ., 5 can be indexed so that for some
prime ideal p above p of the ring of integers of N, the normal closure of L over
Q, the congruence

&9 = ¢ (mod p)

holds for each conjugate £D of £ (1 < i < 5). Then one can calculate rational
integers m/0), " (r = 1,...,9) for each triple (i, j, k) of distinct indices
1 <14, j,k <5 such that

a0 = M0 (mod p)
and

WO = g0 (mod p) (1 <r<9).

Now equation (7.1.12) implies
K4 N K D
mR 1_[ (ni”k)) "+ m*iD l_[ (n(,km) "=1 (mod p),
r=1 r=1

a congruence which is easy and fast to test even for large exponents. In our
example only very few exponent vectors survived this test, and usually they

were solutions of (7.1.12).

Finding the solutions of (7.1.3). In our case the Galois group is doubly tran-
sitive. Hence it is enough to solve a single unit equation (7.1.12)), say fori = 1,
J =2,k = 3. Indeed, if (7.1:12) is already solved in by, ..., bg for this choice
of i, j, k, then we consider the system of linear equations

9
-~ - . - b,
L) = =0 =)y [ () (7.1.39)
r=1
iny = (y,...,ys) for j = 2,3,4 and 5. These linear equations are conjugate

to each other over Q. The linear forms E_,-(Y), j = 2,...,5, being linearly
independent, (7.1.39) enables us to determine the unknowns y = (y2,...,ys)
from the exponent vectors (by,...,bg) obtained, and hence equation (7.1.3)
can be completely solved via and its conjugates over Q.
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7.1.2 Examples

Using the algorithm presented above, in [Gadl and Gy&ry (1999)] the authors
solved equation for I = 1, that is, they computed all power integral
bases in two totally real quintic fields with Galois group Ss. The method was
implemented in MAPLE. The defining polynomials, integral bases and fun-
damental units were computed by the KANT package; see [Daberkow et al.
(1997)]. In this section we first present one of these examples and reproduce
the computational experiences.

Example[7.1.1][Ga4l and Gydry (1999)]. Consider the totally real quintic field
L = Q(¢) where € is defined by the polynomial

fx) =x =58 + x> +3x— 1.
This field has discriminant D; = 24217 = 61 - 397, Galois group S's, and
o =1, w=¢ w3 =&, wy =&, ws =& (7.1.40)
is an integral basis. The element £ + ¢® is defined by the polynomial
g(x) = x'0 = 15x% + x7 + 66x5 + X° —96x* — 7x} + 37 + 12x + 1.

The field L1, = Q (f“) + 5(2),5“)5(2)) is generated by o = ¢ + £? only. An
integral basis of L is

{1.0.0%. 0% 0*.0%. 0" 0. 0"
(9 + 270 + 430” + 200° + 370" + 50° + 320° + 307 + 260° + 0”)/47}

and the discriminant of Ly, is Dy, = 613 -3973. The coefficients of the funda-
mental units of L; , with respect to the above integral basis are

(21, 107, 192, -5, -120, -—40, 84, 20, 30, -60)
(16, 99, 139, =56, -113, =7, 56, 9, 14, -=30)
(10, 4, 65, 197, 85, -110, 56, 34, 50, -90)
(21, 35, 196, 346, 94, =206, 129, 66, 97, -177)

(0, =53, =31, 200, 145, -90, 14, 24, 35, -60)

8, 24, 40, 33, -1, =27, 25, 10, 15, -28)
(15, 13, 118, 248, 78, -—143, 84, 45, 66, -120)
(o, 1, 0, 0, 0, 0, 0, 0, 0O, 0)
4, 19, 42, 0, =26, -8 17, 4, 6, -12)

Note that the element £¢? has coefficients

(-26,-26,-197,-410,-130, 238, —140, -75, -110, 200)
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in the above integral basis of L 5.
Baker’s method gave the bound By = 108 for B. This bound was reduced
according to the following table:

Step By C New bound
I 1082 10°00 3196
o 3196 10» 205
m 205 104 163
IV 163 2-10% 153
\Y 153 2-10% 133

In the first reduction step 1300 digits accuracy was used, in the following steps
100 digits were enough. As mentioned before, it was needed to perform the
reduction in 30 possible cases for the indices (k, j,i). The CPU time for the
first step was about 10 hours. The following steps took only some minutes.
The final reduced bound 133 gave Hy = 10%! (cf. (7.1.32)) to start the final
enumeration.

For the final enumeration the set of 15 ellipsoids defined by

I' ={(1,2,3),(2,1,3),(3,1,2),(1,2,4),(2,1,4),(4,1,2),(1,2,5),
(2,1,5),(5,1,2),(1,3,4),(3,1,4), (4, 1,3),(3,4,5),(4,5,3),(5,3,4)}

was used. Parallel to the enumeration, sieving modulo p = 3329 was carried
out, which was suitable since

f(x) = (x +1752)(x + 1067)(x + 1695)(x + 379)(x + 1765) (mod 3329).

In the following table we summarize the final enumeration using the ellip-
soid method. In the table we display H, h, the approximate number of expo-
nent vectors (by,...,bg) enumerated in the 15 ellipsoids, and the number of
the exponent vectors that survived the modular test. The last line represents
the enumeration of the single ellipsoid (7.1.38)

Step H h Enumerated Survived
I 109" 10% 0 0
nm 100 10 0 0
I 102 100 15 - 5000 94

v 1010 108 15 - 1900 39
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Step H h Enumerated  Survived

v 103 108 15 - 30000 532
VI 10° 10° 15 - 30000 563
VIl 10° 104 15 - 72000 1413
VII 10000 2500 15 -50000 946
IX 2500 500 15 - 66000 1300
X 500 100 15 - 53000 1032
XI 100 0 1792512 2135

Steps I-II were very fast, then III-IV took about one hour, V-X about two
hours each. The last step XI was again very time consuming, taking about 8
hours CPU time. It is likely that using a finer splitting of the interval the CPU
time can be slightly improved, but at least 8 hours of CPU time is necessary.

From the surviving exponent vectors all the solutions of the index form
equation corresponding to the basis were calculated:

(x2, x3, x4, x5) = (0, 1,0,0),(0,2,1,-1),(0,4,0,-1),(0,5,0, -1),
(1,-5,0,1),(1,-4,0,1),(1,-1,0,0),(1,0,0,0),
1,1,-2,-1),(1,4,0,-1),(2,-1,-1,0),(2,4,-1,-1),
2,9,-1,-2),(2,15,-1,-3),(2,10,-1,-2),(3,4, -1, -1),
3.,5,-1,-1),(3,9,-1,-2),(3,10,-1,-2), (3, 14, -1, -3),
(3,18,-2,-4),(4,-1,-1,0),(4,0,-1,0), (4,5, -1, -1),
(4,24,-2,-5),(4,29,-2,-6),(5,-4,-1,1),(5,8,-2,-2),
(5,33,-2,-7),(7,5,-2,-1),(7,9,-2,-2),(7, 14, -2, =-3),
9,18,-3,-4),(11,-13,-2,3),(12,27,-4, -6), (17, 28, -6, —6),
(33,30,-51,-26), (83,170, =25, -39), (124, 246, —40, -55).

Note that if (x,, x3, X4, X5) is a solution, then so also is (—x;, —x3, —X4, —Xs5) but
we list only one of them.

Example[7.1.2|[Wildanger (2000)]. Using the general approach involving unit
equations of the form (7.1.2) in normal number fields, Wildanger [Wildanger
(2000)] solved equation (7[2) for I = 1 in a number of cyclotomic fields as well
as in their maximal real subfields. His algorithm was implemented in KANT,
[cf. Daberkow et al. (1997)].

Denote by L,, the m-th cyclotomic field and by L}, its maximal real subfield.
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It suffices to consider the case when m # 2 (mod 4). It is known that for
these number fields equation (7[2) is solvable when I = 1. Moreover, the rings
of integers of L,, and L} are generated over Z by { = e*™/™ and ¢ + ¢7!,
respectively. When m is an odd prime, each of @ = £, £ + 2 + -+ -+ (" D/2 and
their conjugates generates the ring of integers of L,, over Z. Bremner [Bremner
(1988)] conjectured that up to Z-equivalence, there are no further integers
a in L, having this property. Further, he showed that this is indeed the case
when m = 7. The conjecture is trivial for m = 3, and is proved in [Nagell
(1967)] for m = 5. Robertson [Robertson (1998)] established a criterion for
verifying Bremner’s conjecture for a regular prime m and used it to prove the
conjecture for odd primes m < 23, m # 17. In [Robertson and Russel (2015)]
the conjecture was verified for the primes m = 29, 31 and 41.

Further, Robertson [Robertson (2001)] proved that the conjecture is true if m
is a power of 2. This provided the first example of number fields of arbitrarily
large degree for which all power integral bases are known. For a survey of
other partial results, we refer to [Ranieri (2010)] and [Robertson (2010)].

Combining the method of proof of Theorem and a variant of the algo-
rithm described in [Evertse and Gy6ry (2015), chap. 5], Wildanger [Wildanger
(2000)] confirmed Bremner’s conjecture, independently of Robertson, for each
prime m < 23. Further, in case of L,, and L}, he determined all the solutions of
(72) for I = 1 and for the below values of m. In all these cases the unit rank r
involved in the arising unit equations of the form (7.1.2)) is at most 10.

For L,, and L}, denote by 3, (1) and 3 (1), respectively, the set of solu-
tions of (7[2) when / = 1, and let |3Lm(1)| and lSL;”(l)| be their cardinalities.
The following table given by Wildanger contains the values of |5Lm(1)| and
|31 (1)| for those m with m # 2 (mod 4) for which [L,, : Q] < 12.

m [L),:Q] |SL;,(1)| (L. : Q] 'SLm(l)|

1 1 1 1 1
3 1 1 2 1
4 1 1 2 1
5 2 1 4 6
7 3 9 6 9
8 2 1 4 2
9 3 6 6 9
11 5 25 10 15
12 2 1 4 4
13 6 36 12 18
15 4 12 8 16
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m [L} Q] |3L,;(1)| (L, : Q] |5L,,,(1)|

16 4 6 8 4
20 4 10 8 8
21 6 30 12 24
24 4 6 8 8
28 6 15 12 12
36 6 15 12 12

7.2 Solving discriminant form and index form equations via
Thue equations

In this section we deal with the resolution of equations (7[I) and {7[2) in cubic
and quartic number fields. We recall that these equations are equivalent. As
will be seen, in the cubic case equation (7[I) resp. (7[2) can be reduced to a
cubic Thue equation while, in the quartic case, to a cubic and some quartic
Thue equations, that is to equations of the form

F(x,y)=m inx,yeZ, (7.2.1)

where m is a non-zero integer and F € Z[X, Y] is a binary form of degree 3
or 4 with pairwise non-proportional linear factors over Q. For solving concrete
Thue equations, general practical methods were developed in [Pethd and Schu-
lenberg (1987)] for m = 1, and in [Tzanakis and de Weger (1989)] for arbitrary
m. Later, these methods were made even more efficient in [Bilu and Hanrot
(1996, 1999)] and [Hanrot (1997)]. Their algorithms are based on Baker’s
method and certain reduction techniques. They have been implemented in cer-
tain subroutines of MAGMA (cf. [Bosma, Cannon and Playoust (1997)]) and
PARI (cf. [The PARI Group (2004)]). Nowadays it is a routine matter to solve
cubic and quartic Thue equations. Hence we possess an efficient algorithm
for solving discriminant form and index form equations in cubic and quartic
number fields. As was remarked earlier, this algorithm cannot be applied in
general to number fields L of degree n > 4, except for n = 6, 8,9 when L has
a quadratic or cubic subfield; then (7[I) resp. (7[2) leads to relative cubic or
relative quartic Thue equations.

7.2.1 Cubic number fields
For cubic fields L, the index form equation (7[2) takes the form

I(Xz, X3) ==/ in X2, X3 € Z, (722)
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which is just a cubic Thue equation.

Gaal and Schulte [Gadl and Schulte (1989)] were the first to solve equation
for I = 1 and for a great number of cubic fields. They determined all
power integral bases of cubic fields L with discriminants =300 < D, < 3137.
Their computations were later extended in [Schulte (1989, 1991)]. For further
numerical results, generalizations (e.g. to arbitrary I and the relative case) and
references, we refer to [Gaal (2002)].

7.2.2 Quartic number fields

For quartic fields an efficient and simple algorithm has been developed in
[Gaal, Pethd and Pohst (1993, 1996)]. They first reduced the problem to a cu-
bic Thue equation and a pair of ternary quadratic equations. Then the quadratic
equations were themselves reduced to quartic Thue equations. As was men-
tioned above, the arising Thue equations can be solved without difficulties.

Let L = Q(¢) be a quartic number field, & an integral element of L, and
{1, wy, w3, w4} an integral basis of L. Consider the index form equation

I(x2, x3,x4) = =1 in xp,x3,x4 € Z, (7.2.3)

where [ is a positive integer and /(X,, X3, X4) is the index form corresponding
to the integral basis under consideration. Denote by /j the index of £. Then

Io(wz, w3, w4)" = A (1»5, 52»53)T

for some 3x4 matrix A with rational integer entries. For any solution (x, x3, x4)

of (7.2.3) put

=AT| x; |. (7.2.4)

Then, by Lemma[6.3.Tand (7.2.4) we infer that equation (7.2.3) and the index

equation

1(x¢+y& +26%) = 2’ inx,yz€Z (1.2.5)

are equivalent, where I’ = Ig] .

It suffices to give an algorithm for solving equation (7.2.5). Then (7.2:4)
enables one to determine the solutions (xa, x3, x4) of (7.2.3). Further, if (x, y, z)
is a solution of and g = ged(x,y,z2), then (x,y,z) = g(x’,y,7') with
relatively prime integers x’,y’,z" and g® divides /’. In this case (x’,y’,z’) is a
solution of with I’/g® instead of I’. Hence we may restrict ourselves to
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give an algorithm for solving (7.2.5) in relatively prime integers x, y, z, where
I’ is a given positive integer.

The resolvent equation. Let f(X) = X* + 4, X> + a,X? + a3X + a4 € Z[X] be
the minimal polynomial of &, and let

myp = 1(5) I
Set
F(U,V) := U? = ayU*V + (a1a3 — 4a)UV? + (dazas — a3 — ajas)V?. (7.2.6)

We remark that F(U, 1) is the cubic resolvent of the polynomial f(X). The
discriminants of F(U, 1) and f(X) coincide, hence F(U, V) has three pairwise
non-proportional linear factors over Q. Consider further the ternary quadratic
forms

01(X,Y,Z) = X* — a; XY + a; Y + (a} — 2a2)XZ+
+ (a3 —aya))YZ + (—aja3 + a% + a4)Z2

and

OX,Y,Z)=Y* - XZ - a1 YZ + ar Z°.
The following result was proved in [Gadl, Pethd and Pohst (1993)].

Proposition 7.2.1 The triple (x,y,z) € Z* with gcd(x,y, z) = 1 is a solution of
(7.2.3) if and only if there is a solution (u,v) € Z* of the cubic Thue equation

F(u,v) = xmyp (7.2.7)
such that (x,y, z) satisfies
01(x,,2) = u, Qx(x,y,2) =. (7.2.8)

We note that F(U, V) is irreducible over Q when the Galois group of L is A4
or S4; see [Kappe and Warren (1989)].

Proof Let (x,y,z) be a solution of (7.2.3)) with ged(x,y,z) = 1 and put
a= x§-‘+y§2 +z§3.

Denote by &? and o the corresponding conjugates of ¢ and a over Q, for
i =1,2,3,4. Dividing (7.2.5) by I(£), the equation can be written in the form

@® — a0\ [g® — o
[ ( 20— g0 ) ( 20— g0 ) = (7.2.9)

(kD)
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where the product is taken for (i, j, k, 1) = (1,2,3,4), (1,3,2,4) and (1,4, 2, 3).
Let
Ejn = f(i)f(j) + f(k)f(l).

It follows that

a® — o) g® _ o0

£ —gl) gl — g0
for each (i, j, k, /) under consideration. Multiplying these relations, we infer
that (7.2.9) takes the form

(1 — E1234v) (U — E1324v) (U — E1423V) = i, (7.2.11)

where u = 01(x,y,2), v = 02(x,y, 2). In (T2-TT)) the left hand side is a cubic bi-
nary form in u, v whose coefficients are symmetric polynomials of &1, ..., &®.
Expressing them by the coefficients of f(X), it follows that (7.Z.TT)) is just the
equation (7:2.7). This completes the proof. m|

= 01(x,y,2) = &ijuQ2(x,y,2) (7.2.10)

Solving the system of equations (7.2:8). The solutions (i, v) of the cubic Thue
equation (7:2.7) can be found by means of MAGMA or PARL. It remains to
solve, for each solution (u,v) of (7.27), the system of equations (7.2.8) in
relatively prime integers x, y, Z.

We present the algorithm of [Gadl, Pethd and Pohst (1996)] for solving
(7.2:8). Fix a solution (u,v) € Z? of (7.2.7). Any relatively prime solution
(x,y,2) of @ satisfies the equation

0(x,y,z) =0, (7.2.12)
where
00X, Y,2) =ud(X, Y, Z) —vQ\(X, Y, Z)

is a quadratic form with integral coefficients. It can be easily decided whether
(7.2:12)) has a non-trivial solution, and if so a non-trivial relatively prime solu-
tion (xo, yo, 20) of (7.2:12) can be found by rewriting the form Q(X, Y,Z) as a
sum of three squares and using Theorems 3 and 5 of [Mordell (1969), chap. 7].
We assume that zg # 0. If xg # 0 or yp # O we can proceed in a similar manner.

Following [Mordell (1969)], for every relatively prime solution (x,y,z) of

(7:2:12) we can write
X=rxo+p, y=ryo+q, 2= rzo, (7.2.13)

where p, g, r are rational parameters. If p = g = 0, then r and x, y, z can be
easily determined from (7:2.8)) and (7.2.13)). Hence it suffices to consider the
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case when at least one of p, g is not zero. Substituting the expressions (7.2.13))
into (7.2.12) we get
rL(p,q) = Q(p,4,0) (7.2.14)

where L(p, g) is a linear form and Q(p, ¢,0) is a quadratic form in p, g with
integral coefficients which can be easily computed.

Multiply by L(p, g) and by the square of the common denominator
of p and g. Calling the resulting new variables p and g, we obtain

tx = fi(p,q) = b11p* + biapqg + b13¢*
1y = f,(p.q) = by p* + bnpg + bysq? (7.2.15)
1z = fi(p,q) = b31p* + byapq + bzg?,

where p, g, t and the coefficients b;; are rational integers, and the b;; are easily
calculable. In view of gcd(x, y,z) = 1 we may assume that both the coefficients
b;j and p and q are relatively prime.

We now substitute the expressions occurring in (7.2.13)) into (72.3)) to obtain

Fi(p.q) = O (£(p. @), (P, @), (P, @) = Pu, (7.2.16)
Fa(p,q) = O (P, @), (P, @), (P, @) = . (7.2.17)

Here F) and F, are quartic binary forms with integral coefficients which can
be easily calculated.

Next we prove that  may assume only finitely many values which can be
easily determined. We write B = (b;;) where b;; are the integers from (7.2.13).
Using a computer algebra system, e.g. MAPLE [Char et al. (1988)], one can
show that

lz0l ™ - Idet(B)| = 4ldet(Q)| = |F(u, v)| = my # 0,

where Q denotes the matrix of the coeflicients of the quadratic form Q(X, Y, Z);
see [Gaal, Pethd and Pohst (1996)].

Consider as a system of equations in p?, pgq, ¢*. Using Cramer’s
rule, it follows from that # must divide p>det(B), pgdet(B) and ¢>det(B).
But ged(p, ) = 1, thus ¢ divides det(B). Hence ¢t # 0. However, the number of
such possibilities for ¢ could still be large. The number of possible values can
be diminished further by checking whether the system of equations is
solvable (mod ¢) such that the greatest common divisor of the residue classes
of p and q is relatively prime to .

We have to solve at least one of the equations (7.2.16) and (7:2.17) for all
possible values of u, v and ¢. The following result makes it possible to apply
MAGMA or PARI to solve these equations.

We recall a result from [Gaal, Pethd and Pohst (1996)].
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Proposition 7.2.2  [fv = O, then the binary form Fy, in case v # O the binary
form F; is irreducible over Q.

In fact Gadl, Peth$ and Pohst proved more, they showed that under the above
assumptions the corresponding binary form is, up to a non-zero constant factor,
anorm form of L over Q in p, g. Hence to solve the corresponding Thue equa-
tion (7.2.16) resp. (7.2.17) it is enough to know the basic data (integral basis,
fundamental units) in a single number field, namely in the field L = Q(¢).

Finally, if the potential values of p and g are already known, the values of the
unknowns x, y and z can be obtained from (7.2.13)). Then we can test whether

X, y, z satisfy (7.2.5).

7.2.3 Examples.

In a previous series of papers Gadl, Pethd and Pohst [Gadl, Pethé and Pohst
(1991a, 1991b, 1991c, 1993, 1995)] have developed computational algorithms
for solving equation (7.2.3)) in various quartic number fields and have made ex-
tensive computations. In particular, they determined in [Gaal, Peth6 and Pohst
(1995)] the minimal index in all 196 totally real bicyclic biquadratic number
fields with discriminant < 10°, and listed all integral elements with minimal
index. Further, in [Gadl, Pethd and Pohst (1991c, 1993, 1995)] they elaborated
an efficient algorithm for determining in any quartic number field the minimal
value of 7 for which the index form equation @ has a solution x;, x3, x4
with |xa], |x3], |x4] < 10'°. They computed this value of I in totally real quar-
tic fields with discriminant < 10° and Galois group Cy4 (59 fields), Dg (4486
fields), V4 (196 fields) or A4 (31 fields) and in totally complex quartic fields
with discriminant < 10° and Galois group A4 (90 fields) or S4 (44122 fields).
The values they obtained for I are very likely the exact minimal indices of the
number fields under consideration. The enormous amount of numerical data
enabled the authors to make some interesting observations on the distribution
and the average behaviour of the minimal indices, and in particular on quartic
number fields having power integral bases.

The algorithms mentioned above do not make it possible to solve equation
(7.23) in case of totally real quartic number fields with Galois group S4. By
means of the latter algorithm described in Section[7.2.2] equation (7.2.3)) can be
solved in any quartic number field (whose discriminant is not too large in ab-
solute value). We illustrate this process by computing the minimal index m(L)
and all integral elements of minimal index in two totally real quartic number
fields L having Galois group S 4 resp. A4. We recall that if £ is a primitive in-
tegral element of L with index I(£), then each integer I with 1 < 1 < I(§)is a
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candidate for the minimal index m(L). Considering these values / in increasing
order until we obtain a solution of (7.2.3)) we get the value of m(L).

To give an impression of the use of this algorithm, we present in the case
I = m(L) the cubic equation (7.2.7) and all corresponding quartic equations

(7.2.16), (7.2:I7) with all occurring right hand sides. Then we list up to sign
all the solutions of the index form equation in question.

We note that the input data required in the below examples were taken from
the tables of [Buchmann and Ford (1989)].

Example [7.2.1][Gadl, Peth$ and Pohst (1996)]. Let L = Q(¢), where
fX) =X —4x>-X+1

is the minimal polynomial of £. Then L is a totally real quartic number field
with discriminant D; = 1957 and Galois group S 4. Further,

2
w =1, w=¢ w3 =&, wy =&

is an integral basis in L. Then I(¢) = 1 and hence m(L) = 1 is the minimal
index in L. Applying now the algorithm to equation (7.2.3) with I = 1, the

equations (7:2.7) resp. (7.2.16), (7.2.17) take the form
F(u,v) = u® + 4u®v — dw* — 17V = 1

and
Fi(p.q) = p* = 4p’¢ = pg’ +¢* = =1,
Fa(p.q) = p* +8p°q + 18p°¢” + Tpq® = 3¢ = 1
Fy(p,q) = p* + 15p%q + 16p*¢> + 154pg> + 1014* = =1
Fa(p.q) = p* = p’q = 12p°¢* + 6pg’ + 37" = =1.
Solving the corresponding equations for p, g we obtain up to sign all the solu-

tions of (7.2.3):

(_]27 ]7 3)3 (_85 ]5 2)’ (_5’ 09 1)’ (_49 O’ 1)9 (_4’9 ]3 1)’ (_37 07 ])3 (07 13O)a
(07 2’ 1)7 (1v07 0)’ (1929 _1)7 (2" 17 _1)’ (37 1’ _1)’ (4’ 1’ _1)7 (47 97 _S)v
(47 337 16)5 (8’ 1’ _2)9 (147 3’ _4)‘

These provide all integral elements of minimal index in L, that is all power
integral bases.

Example [7.2.2][Gadl, Peth$ and Pohst (1996)]. Let L = Q(¢), where now

fX)=X*-13X2-2X+19
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is the minimal polynomial of £. Then L is again a totally real quartic number
field with discriminant Dy, = 157609 and Galois group A4. Further,

wi=l w=¢ wy=E+E+1D)/2, w=E+1))2

is an integral basis of L and I(£) = 4. Using the algorithm presented in Section
we can see that equation (7.2.3)) has no solution for I = 1,2 and 3. Then
in view of m(L) < I(¢) we get that m(L) = 4. Then solving (7.2.3) with [ = 4,
the corresponding equations (7.2.7), (7.2.16), (7.2.17) take the form

F(u,v) = u® + 136>y — 76um* — 9921° = +64

and

Fi(p,q) = p4 — 13pzq2 — 2pq3 + 19514 ==+1,+4

Fr(p,q) = p*+26p°q+188p*q* +96pg® — 1792¢* = +1, +4, +16,
+64, +£256
Fy(p,q) = 11p* +100p3q +262p*q* + 172pg* — 81q* = +1, +4, +16.

Then solving the corresponding equations for p, g we get up to sign all solu-

tions of (7.2.3) for I = 4:
(=6,1,1),(-1,1,0),(0,-3,1),(0,1,0),(1,0,0), (5,1, -1), (24,7, =5).

These give all integral elements of minimal index of L.

7.3 The solvability of index equations in various special
number fields

In this section we give a survey on various special number fields L and inte-
gers [ for which equation (7[2) is solvable. We recall that for I = 1, (7[2) is
equivalent to the equation

I(Q) =1 (a' € OL) 4 OL = Z[a] < } (731)

{l, a,..., a"‘l} is an integral basis in L,

where n denotes the degree and Oy, the ring of integers of L. We make here a
mention to the most important results only. For generalizations and other re-
sults we refer the reader to the books [Hensel (1908)], [Hasse (1980)], [Narkie-
wicz (1974)] as well as to the original papers quoted below and the references
given there.

As before, m(L) denotes the minimal index of L. Further, i(L) denotes the
field index of L, i.e., the greatest common divisor of the indices of the integers
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of L. As was mentioned in Section[6.8] the divisibility of / by i(L) is a necessary
but not sufficient condition for the solvability of (7[2).

Equation (7.3.1)) is solvable precisely if m(L) = 1. Hasse proposed the fol-
lowing problem: give an arithmetic characterization of those number fields
that have a power integral basis.

In various special number fields L, several interesting results have been es-
tablished on the solvability of (7[2) and (7.3.1). Set ¢y := exp {27i/N}.

Case n = 3. In [Hall (1937)] it was shown that there are infinitely many pure
cubic extensions L of Q with i(L) = 1 and m(L) > 1. In the cyclic case, var-
ious conditions for the solvability of (7.3.I)) were given in [Gras (1973)] and
[Archinard (1974)]. Dummit and Kisilevsky [Dummit and Kisilevsky (1977)]
proved that there are infinitely many cyclic cubic fields L for which m(L) = 1.
This was generalized by Huard [Huard (1979)] who showed that for any given
positive integer I there are infinitely many cyclic cubic fields L for which (7[2))
is solvable. Later, it was shown in [Spearman and Williams (2001)] that there
are infinitely many non-cyclic cubic number fields having a power integral ba-
sis.

Case n = 4. Nakahara [Nakahara (1982, 1987)] proved that m(L) is unbounded
as L runs through cyclic quartic fields with i(L) = 1. In [Nakahara (1983)] he
proved the same assertion for non-cyclic but abelian quartic fields. Further,
he showed that there exist infinitely many biquadratic number fields L with
m(L) = 1. The same has been shown for pure quartic fields and dihedral quartic
fields in [Funakura (1984)]. It is not known whether there exist infinitely many
cyclic quartic fields L with m(L) = 1. These fields were characterized in [Gras
(1980)]. Only two of them are non-real, namely Q({s) and Q({16 — ¢ 1‘61). For
a characterization of non-real biquadratic fields L with m(L) = 1, see [Gras
and Tanoe (1995)]. In [Jadrijevi¢ (2009a,2009b)] the author determined the
minimal index and all integral elements with minimal index in an explicitly
given infinite families of biquadratic fields. [Pethd and Ziegler (2011)] gives
a criterion to decide whether a biquadratic field has a power integral basis
consisting of units.

Case n > 5. Cyclotomic fields and their maximal real subfields are monogenic;
see [Liang (1976)]. In contrast with the case n < 4, it is rare for an abelian
number field of degree n > 5 to have a power integral basis. M. N. Gras [Gras
(1983-84, 1986)] showed that if n is relatively prime to 6 then there are only
finitely many abelian number fields L of degree n with m(L) = 1. In particular,
if n is a prime then m(L) > 1, except in the case when 2n + 1 is also a prime
and L is the maximal real subfield of the cyclotomic field Q({,+1). Ranieri
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[Ranieri (2010)] proved that if n > 1 and n is relatively prime to 6 then there
are only finitely many imaginary abelian number fields L of degree 2n with
m(L) = 1. In [Motoda and Nakahara (2004)], the authors characterized those
Galois extensions L of Q of degree > 8 whose Galois group is 2-elementary
abelian and m(L) = 1. It is shown in [Bardestani (2012)] that for a prime n, the
density of primes p such that L = Q(</p) and m(L) = 1 is at least (n — 1)/n.

When n + 1 is a prime, Pleasants [Pleasants (1974)] constructed an infinite
family of pure extensions L over Q with degree n and i(L) = 1 for which the
minimal indices m(L) are unbounded. As was seen in (6.8.2)), in [Thunder and
Wolfskill (1996)] it was proved in a quantitative form that for every n > 4,
m(L) is unbounded if L runs through the number fields of degree n.

Pethé and Pohst [Pethd and Pohst (2012)] studied the field index of mul-
tiquadratic number fields. For octic fields, they calculated all potential field
indices and characterized the corresponding fields. They also showed that any
prime power p* divides the field index if the degree of the number field is
sufficiently large compared with p and k.

7.4 Notes

e The algorithms for solving equation (7]2) or, equivalently, (7}1) can be extended to
the equations (6]2) D(a) = D in algebraic integers « of degree n, and (6}1) D(f) = D in
monic polynomials f € Z[X] of degree n as well. Indeed, if « is a solution of (§]2) and
Q(a@) =: L, then the discriminant D; of L divides D. But there are only finitely many
number fields L of degree n with given discriminant, and there is an algorithm to find all
such fields; see [Pohst (1982)]. Hence, considering appropriate integral bases in these
fields L, equation (6]2) leads to a finite number of equations of the type (7] 1) resp. (7]2).
Further, equation @1) can be reduced to the irreducible case, i.e., to equations @2).
For suppose f € Z[X] is a monic polynomial of degree n satisfying (€]1), and that f =
fi -+ f; with distinct irreducible monic factors f; € Z[X] and with deg f; =: n;, D(f;) =:
D;fori=1,...,q. Then 3,7 n; = nand, by (T.4.6), [TL, D; divides D in Z. For fixed
q,ni,...,ng, Dy,...,D, we have g equations of the form @1) with irreducible f;, i.e.,
g equations of the form (6]2). Having already a full system of pairwise Z-inequivalent
representatives f; for the solutions of these equations for each i, the general solution of
(6]1) can be looked for in the form f(X) = []L, fi(X + a;) with rational integers a;. We
may take a; = 0, and then the other, finitely many possible a; can be determined by
means of ([.4.6). See [Merriman and Smart (1993a, 1993b)] for examples of finding
monic polynomials with given discriminant.
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Effective results over the S-integers of a number
field

In this chapter we deal with generalizations, with less precise bounds and al-
gorithms, of the results of Chapter[f]to the number field case when the ground
ring is the ring of integers of a number field K or, more generally, the ring of
S -integers of K, where S is any finite set of places in K containing all infinite
ones. The first such generalizations were obtained in [Gydry (1978a, 1978b)]
to polynomials and algebraic numbers, in [GySry and Papp (1977, 1978)] to
discriminant form and index form equations, and in [Trelina (1977a, 1977b)] to
algebraic numbers and index form equations over Q. Improvements and further
generalizations were later established in [Gy6ry (1980a, 1980b, 1981b, 1981c,
1984, 1998, 2006)]. We present here the most important generalizations and
their applications, with much better and completely explicit bounds for the
heights of the solutions. Our main results are about discriminants of monic
polynomials and, equivalently, of integral elements in finite étale K-algebras.
In contrast with the rational case considered in Chapter [f] in this generality
no upper bound exists for the degrees of polynomials and integral elements in
question. The results concerning étale algebras are new. Our proofs are based
on some effective results from Chapter [ on S -unit equations.

In Section our most important results and some of their applications are
presented in a classical situation, for monic polynomials and algebraic integers
over rings of S-integers of Q. The general results over rings of S -integers of
an arbitrary number field are formulated for monic polynomials in Section[8.2}
and for elements of étale algebras in Section[8.4} In Section [8.4] we give some
applications to integral elements in a number field and to algebraic numbers
of given degree. Some other applications are also established to index equa-
tions, monogenic orders and about the arithmetical properties of discriminants
and indices of integral elements. The proofs can be found in Section |3.3| and
Section

144
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In Section [I8.2] a further application will be given in an effective proof of
Shafarevich’ conjecture for hyperelliptic curves.

8.1 Results over Zg

Let {pi,..., p:} be a finite, possibly empty set of primes, S = {oo, py,..., p:},
Zs = Z[(p1 -+ p)~'] the ring of S -integers and Zj the group of S-units in Q.
Recall that two monic polynomials f, f* € Zgs[X] of degree n are called Zg-
equivalent if f*(X) = £™" f(eX + a) for some ¢ € Zg and a € Zg. Then, apart
from an § -unit factor, f and f* have the same discriminant.
Let s = ¢+ 1, and put
Ps :=maxp;, Qs :=p;---p; ift>0,

1<i<t

Ps=Q¢ :=1ifr=0.

We define the height of a polynomial f(X) = X" + X"+ +a, € Zg[X]
by
H(f) = [ | max(Llarl, ... lanh),
VEMQ
where Mg denotes the set of places of Q. If in particular S = {oo}, then f(X) €
Z[X] and H(f) is just the maximum of the absolute values of the coefficients

of f.
Let

ny:=nn—1)n-2)ifn>3, n3:=0ifn=2.

Theorem 8.1.1 Let D € Z\ {0}, and let f € Zs[X] be a monic polynomial
of degree n > 2 with discriminant D(f) € DZ;. Then f is Zs-equivalent to a
monic polynomial f* € Zg[X] for which

H(f*) < exp {n3"2’(10n3s)‘ﬁ"zfpg“‘(Qg|D|)3"-1}. 8.1.1)

This is a special case of Theorem[8.2.3|from Section[8.2] For S = {co}, The-
orem[8.1.T| gives that if f € Z[X] is monic with degree n > 2 and discriminant
D # 0, then there exists a € Z such that the polynomial f*(X) = f(X + a) has
height

H(f") < exp{(10n%)' " |DP" ). (8.1.2)

Theorem has several consequences. For example, it implies that there
are only finitely many Zg -equivalence classes of monic polynomials f € Zg[X]
of degree n with D(f) € DZg, and a full set of representatives of these classes
can be effectively determined.
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For an algebraic number @, we denote by D(«) the discriminant of « relative
to the extension Q(«@)/Q. If L is an algebraic number field and @ € L with
L = Q(a), then obviously D(a) is just Dy ,g(@).

Two algebraic numbers «, B3, integral over Zg, are called Zg-equivalent if
B = ea + a with some ¢ € Zg and a € Zs. In this case D() € D(a)Z;. Then
Theorem implies that for given n > 2 and D € Z \ {0}, there are only
finitely many and effectively determinable Zg-equivalence classes of algebraic
numbers «, integral over Zg, with degree n and discriminant D(a) € DZj. This
follows from Theorem [8.1.1]in the following explicit form. We recall that H(-)
denotes the (absolute) height of an algebraic number.

Corollary 8.1.2 Let D € Z \ {0}, and let a be an algebraic number with
degree n > 2 and discriminant D(«) € DZ§ which is integral over Zs. Then «
is Zs -equivalent to an algebraic number " such that

H(a*) <exp {2n3nzt+l (10”3 s)lénZS(Pg("+f)|D|)3n} )

In terms of D, a much better bound can be obtained if we restrict ourselves
to the elements of a fixed number field. Let L be an algebraic number field of
degree n > 2 with discriminant Dy..

Theorem 8.1.3 Let D € Z\ {0}, and let a be a primitive element of L, integral
over Zs, such that Do) € DZg. Then « is Zs -equivalent to an o for which

H(a") < exp {(10;1%)'6"2519;3+l D, PN (DL + log? |D|)}.

This is a special case of Theorem [8.4.1]

Denote by Oy 1, the integral closure of Zg in L. There exist a Zg-basis of the
form {1, wy,...,w,} of Os . Then every Zg-equivalence class of elements of
Os 1, contains a representative of the shape xpws + - - + x,w, With X, ..., x, €
Zg, and Dy o(a) € DZ can be rewritten as the discriminant form equation

Dpjo(xowy + -+ + x,w,) € DZg inxy,...,x, € Zg. (8.1.3)
Clearly, if x = (x2, ..., x,) is a solution of (8.1.3) then so is ex for every & € Zg.
Suppose that

Hw;) <H fori=2,...,n.

The next corollary is in fact a special case of Corollary [8.4.4] with explicit
absolute constants. It can be deduced from Theorem [8.1.3]

Corollary 8.1.4 For every solution X = (xa,...,x,) of (8.1.3) there is an
& € Zg such that

max H(ex;) < exp {2n(10n3s)16"23P'§3+1|DL|2”‘1(|DL|” + log*(|D|H))} )

2<i<n
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We note that similar results follow for the corresponding index equations
and index form equations.

Recall that Og ; is called monogenic if Os; = Zg[a] for some @ € Og .
Then we have also Og ; = Zg[a"] for every a* € Og ; which is Zg-equivalent
to a. In this case {l,a, R a”"} is a power basis of Og | over Zg .

The following corollary is an immediate consequence of Corollary{8.1.4]

Corollary 8.1.5 If Os 1 is monogenic, then every a with Os = Zgs|a] is
Zs -equivalent to an element a* such that

Q= xpwy 4+ Xpw, With X, ..., X, € Zg
and

max H(x;) < exp {2n(10n3s)16"2SP§3+1|DL|2”’1(|DL|” + log* H)}.

2<i<n

Corollary @] implies that apart from a proportional factor € € Z, equa-
tion (8.1.3) has only finitely many solutions. Further, if L and w;, ..., w, are
effectively given, all the solutions can be effectively determined. Similarly, it
follows form Corollary [8.1.5] that there are only finitely many Zg-equivalence
classes of @ € Og 1 with Og 1 = Zg[a], and a full set of representatives of these
classes can be found.

Corollaries [8.1.2 are more general versions of the corresponding re-
sults of Chapter[6] but with less precise bounds.

Let Oy, denote the ring of integers of L. Theorem below enables us
to get some information about the arithmetical properties of those non-zero
rational integers that are discriminants of elements of O. In particular, we are
interested in the problem whether such discriminants can be estimated from
above in terms of their largest prime divisor. This is in general not true. For
instance, if @ = af with @, 8 € O and a a rational integer different from
+1 then, in general, |D;,q(a)| cannot be estimated from above in terms of its
largest prime factor. We say that D € Z \ {0} is a reduced element discriminant
with respect to L/Q, if it is the discriminant of some @ € Oy, but is not the
discriminant of any aB with 8 € Oy, and rational integer a # +1.

We denote by P(m) the greatest prime factor of a non-zero rational integer
m. As a special case of Corollary [8.4.9|we get the following.

Theorem 8.1.6 Let D € Z\{0} be a reduced element discriminant with respect
to L/Q. Then

P(D) > C(log, |D)(Iog; |DI)/(logy |DI),

provided that |D| > Dy, where C, Dy are effectively computable positive num-
bers which depend only on n and Dy.
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Roughly speaking this means that if D is a reduced element discriminant
with respect to L/Q and |D| is large enough, then D must have a large prime
factor.

8.2 Monic polynomials with S-integral coefficients

In case of monic polynomials of given degree we generalize in this section
the results of Section [6.6]to monic polynomials with S-integral coefficients in
algebraic number fields. In terms of certain parameters, the upper bounds in the
theorems below improve upon the corresponding bounds from [Gy6ry (1981c,
1984, 1998, 2006)].

Let K be an algebraic number field, S a finite set of places of K containing
the infinite places, Os the ring of S-integers and O} the group of S-units in K.
For a square-free monic polynomial f(X) € K[X] of degree n, the K-algebra

Q(f) = KIX1/(f) (8.2.1)

is a finite étale K-algebra of degree n over K, called érale K-algebra associated
with f. We know from Proposition [I.3.1] that Q(f) is the direct product of the
finite extensions L; := K[X]/(f) (i = 1,...,q) of K, where fi,..., f, denote
the monic irreducible factors of F over K. We denote by Dqs) the discriminant
of Q(f) viewed as a finite étale Q-algebra. In view of (2.10.2)),

Doy =Dy, -+ D,

q°

(8.2.2)

where Dy, denotes the discriminant of the number field L;. If in particular f
has its coefficients in Z, then by Dqyy) divides D(f) in Z.

We recall that two monic polynomials f, f* € Og[X] of degree n are called
Ogs-equivalent if

“X)=e""f(eX +a) forsome g € O; and a € Os.
s

In this case D(f*) = &"™"VD(f), and if f, f* are separable then Dq(r) = Do)
We prove in an effective and explicit form that there are at most finitely many
Os-equivalence classes of monic polynomials in Og[X] with degree n > 2 and
with discriminant contained in 605, where 6 € O \ {0}.

We introduce some parameters. Let s denote the cardinality of S and py,.. .,p;
the prime ideals of Ok corresponding to the finite places in S. Put

Po = max << Ng(p;) if £ > 0,
ST\ 1ifr=0,
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and

We = I—[EzllogNK(p,')ift>0.
ST tift=0.

In our results we shall use the (inhomogeneous) height of a polynomial f =
aoX" + - -+ + a, € K[X] defined by
1/[K:Q]
H(f) = []_[ max(L,laol. ..., laxly)

veMg

Notice that H(a;) < H(f) fori = 0, ..., n. In the proofs it will be more conve-
nient to work with the logarithmic height of f given by h(f) := log H(f).
Let

ny:=nn—-1)mn-2)iftn>3,n3:=0 if n =2.
The following theorem is the main result of this chapter.

Theorem 8.2.1 Letd € Og \ {0}, and let f € Os[X] be a monic polynomial
of degree n > 2 with discriminant D(f) € 005. Then f is Os-equivalent to a
monic polynomial f* € Og[X] for which

H(f") < exp{C1P¢ IDagy "™ (IDagp|" + log Ns(6))} (82.3)

where C| = (10n3s)16"2‘v. Further, if t > 0 and n > 3, then there is a monic

polynomial f* € Og[X], Os-equivalent to f, such that
H(f") < exp{C5T PO Wit log” Ns(6)) (8.2.4)

where C; is an effectively computable positive number which depends only on
d, n and Dgyy).

If > log Py, then s°* is greater than Pg and Ws. Hence, in terms of S, (8.2.4)
provides a better bound than (8:2.3).
Theorem [8.2. T has an immediate consequence for the equation

D(xy,...,x,) €605 inx = (x1,...,x,) €O, (8.2.5)

where D(X1, ..., Xy) = [[i<icjen(Xi — X j)2 denotes the decomposable form of
discriminant type defined in Subsection We recall that the solutions x,
X' € Of are called Os-equivalent if X' = &x + (4, ..., a) with some & € O,
a € Og. By applying Theoremto the monic polynomials f = [],(X—x;)
with xq,..., x, € Os and combining this with and Corollary [3.5.5] we
get the following.
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Corollary 8.2.2  Every solution x of (8:2.3) is Os-equivalent to a solution x’
for which

H(X') < exp{2nC1 PE™ (1 + log Ns(6))}.-

Let f be as in Theorem[8.2.1] M the splitting field of f over K, m the degree
of M over K, and D, the discriminant of M over Q. Then it follows from

(3-1-10), (3-1.11) and (2.10.2)) that

D?z(f)|D7w and DMng(f) in Z.

This implies that D) and Dy, have the same prime factors and
IDap|™™ < 1Dyl < Do |™. (8.2.6)

Hence, in (8.2.3), (8:2.4) and throughout this chapter, |Dgs)| can be estimated
from above in terms of |D),| and n. Further, it will be clear from the proofs that
n3 can be replaced everywhere by m. This makes it easier to compare Theorem
[B:2.1] and its consequences below with their earlier versions in which m and
Dy were used in place of n3 and Dqyy), respectively; cf. [GyOSry (1981c, 1984,
1998, 2006)]. Together with (8:2.6), each of Theorem [8.2.1] and Corollaries
[8:2.6] [8:2.8| gives Theorem [6.6.1]in the special case K = Q, Os = Z.

Let d and Dk denote the degree and discriminant of K, and let

O = Nig(pr---p)if£>0,
7 1ifr=o0.

In the next theorem we give an upper bound for H(f*) which, in contrast with
(8-2.3) and (8.2.4), does not depend on Dgy) or Dy.

Theorem 8.2.3 Let & € Og \ {0}, and let f € Os[X] be a monic polynomial
of degree n > 2 with discriminant D(f) € 605. Then f is Os-equivalent to a
monic polynomial f* in Og[X] such that

H () < exp{CoPy™ (Q41Dx"Ns @)™}, (8:2.7)

2 2
where C3 = n® (100 5)167's,

Theorem [8.2.3| will be deduced from Theorem[8.2.1] An application of The-
orem[8.2.3]is given in Section[I8.2]

Let Q be an effectively given algebraic closure of Q; see Section An
element @ € Q is said to be given/effectively computable if a representation
of a of the type (3.7-1) is given/can be computed. We recall that K is said to
be effectively given if ay,...,a, € @ are given such that K = Q(ay,...,a,).
Further, we say that S is effectively given if the prime ideals py, ..., p; are given
in the way described in Section[3.7]
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Theorem [8.2.3]implies the following.

Corollary 8.2.4 Let n > 2 be an integer, and 5 € Os \ {0}). Then there are
only finitely many Og -equivalence classes of monic polynomials f in Os[X] of
degree nwith D(f) € 605 Further, there exists an algorithm that for any n > 2
and any effectively given K, S and & computes a full set of representatives of
these classes.

Corollary shows that in the case K = Q, S = {co}, Corollary is
valid without fixing the degree n. In the general case such a finiteness assertion

is not true. For instance, suppose that S contains all prime ideals lying above a
given rational prime number p and consider the polynomials X' — g with k =
1,2,...and & € O}. The polynomial X”* — u has discriminant p*”'&” - € O%.
Hence there are monic polynomials in Og[X] of arbitrarily large degree having
discriminant in O. However, it follows from Theorem in Chapter
and in a more precise form from Theorem [0.2.1] of Chapter [9] that we can
bound the degree of f if we assume that its zeros lie in a prescribed finite
extension of K. The following is an immediate consequence of Theorem[9.2.1]

Theorem 8.2.5 Let G be a finite extension of K of degree g, suppose that
the set S has cardinality s, and let § be a non-zero S -integer in K such that
there are at most w prime ideals corresponding to places outside S in the
factorization of (6). If f € Os[X] is a monic polynomial with D(f) € 605 all
whose zeros lie in G, then

degf < 2l6g(s+a)).
We state a further corollary of Theorem [8.2.1]

Corollary 8.2.6 Let 6 € Og \ {0}, and let f € Og[X] be a monic polynomial
of degree n > 2 with discriminant D(f) = 6. Then f(X) = f*(X + a) for some
a € Os and monic polynomial f* € Og[X] such that

H (f*) < exp [C3PE T W max (h(8), 1)}, (8.2.8)

where Cy is an effectively computable positive number which depends only on
d, n Cli’ld Dg(f).

In some applications it happens that D(f) € O, but the coefficients of f
belong to a subring of Og. We state now a result for this situation. Let T be
a subset of S containing the infinite places, and denote by Oy the ring of T-
integers in K. Then obviously O C Og.

Theorem 8.2.7 Let§ € O7 \{0}, and let f € Or[X] be a monic polynomial of
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degree n > 2 with discriminant D(f) = 6. Then there are a € Ot and a monic
polynomial f* € Or[X] such that f(X) = f*(X + a) and

1 3n-1
H) < HOYexp{ CsPy™ (041Dx"Ns )™},
where Cs = n¥41(10p3 5)167"s,

In the special case D(f) € Og, i.e. if 6 € Or N O, von Kinel [von Kénel
(2014a), Prop. 5.2, ()], following the method of Gydry, established a slightly
weaker version of Theorem He used it to prove a former version of
Theorem (i) of Chapter|[I8]

Let .= Og (N O. The following corollary will be deduced from Corollary
B2.6

Corollary 8.2.8 Let 6 € Ok \ {0}, and let f € Ok[X] be a monic polynomial
of degree n > 2 with discriminant D(f) € 605. Then there are a € Ok, n € .7
and f* € Og[X] such that f(X) =" f* (n"(X+ a)) and

H (f") < exp{C5(Ps Ws )" log” N5(9)}. (8.2.9)

where Cg is an effectively computable positive number which depends only on
n, d and Dgyy).

From Theorem one can deduce another version of Corollary in
which the upper bound for H(f™) depends neither on Dq(y) nor on the splitting
field of f for a version of this kind see [Gy&ry (1981c)].

For 6 € Ok \ {0}, we denote by wg(d) and Pk(5) the number of distinct
prime ideal divisors of ¢ in Ok and the greatest norm of these prime ideals,
respectively.

Corollary [8.2.8] enables us to get some information about the arithmetical
structure of those non-zero integers in K which are discriminants of some
monic polynomials with coefficients in Og. For a square-free monic f € Og[X],
I[Nk (D(f))| cannot be estimated from above in general in terms of K and
Px(D(f)). This is the case if f(X) = n'g (n‘lX) such that g € Og[X] is
monic, n = deg f, n € Ok and |Ngq (17)| is sufficiently large compared with
Prx(nD(G)).

Corollary 8.2.9 Let f € Ok[X] be a square-free monic polynomial of degree
n > 2. Suppose that there are no monic g € Ok[X] and non unit n € Ok \ {0}
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for which f(X) = n7"g(nX). Then there are effectively computable positive
constants Cy, Cg, Co, No which depend only on d, n and Doy such that

Cg .
pe { C7(logN)™* if t <log P/log, P, (8.2.10)

Cq (log, N) (log; N) /log, N otherwise ,
provided that N > Ny, where
P = Pr(D(f)), t=wk(D(f)), N =INkq (D).
Corollary [8:2.9| motivates the following
Conjecture 8.2.10 Under the assumptions of Corollary[8.2.9|
Px(D(f)) > Cio (log Nxjg (DUN D™,

where Cyg, Cy are effectively computable positive numbers which depend only
on K, n and Dqy).

The next theorem will be deduced from Theorem 8.2.1]and Corollary [4.1.3]

Theorem 8.2.11 Let § and u be non-zero elements of Os, and let f € Os[X]
be a monic polynomial of degree n > 2 with D(f) € 60§ and f(0) € uOy.
Then f(X) = &'f* (s‘lX), where & € Oy and f* is a monic polynomial in
Oy [X] such that

H(F) < exp {(ents=™ (PR D Ns@) " og" Ny}, 82.11)
where c1, c; are effectively computable positive absolute constants.
For f and f* the theorem implies that
D(f) = €"VD(f*) and £(0) = £"f*(0). (8.2.12)

If in particular D(f) = & or f(0) = u, then, using (82.11) and .2.12), it is
easy to deduce an upper bound for A(g) and hence for A(f).

We note that in the special case K = Q, § = {co}, that is for Og = Z, Theorem
[:23] and Theorem [8.2.11] imply slightly weaker and less explicit versions of

(6-4T) in Theorem [6.4.1] and Corollary [6.4.3] Further, Corollary [8.2:4] gives

Corollary [6.6.3] but only for polynomials of bounded degree.

8.3 Proofs

We shall generalize the basic ideas of the proof of Theorem [6.1.1] Our main
tools are the effective results on equations in two unknowns from a finitely gen-
erated multiplicative group from Sectiond.1.2} in particular Theorem[#.1.3]and
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Theorem Further, we need effective estimates for S -units from Section
in particular Propositions[3.6.3]and[3.6.1} estimates for discriminants, class
numbers and regulators from Subsection[3.1.3] and the upper bound (3.4.8)) for
the S -regulator.

We recall that the absolute height of an algebraic number £ is defined by

H) = | | max(1, )",
veMg

and the absolute logarithmic height by 4(8) := log H(8), where G is any num-
ber field containing 8. Sometimes, in the proofs, it will be more convenient to
use the absolute logarithmic height. Further, we put n3 = n(n — 1)(n — 2) if
n>3.

Let f € Os[X] be a monic polynomial of degree n > 2 with discriminant
D(f) € 6005 and with zeros ay, ..., @,. Putting A;; := @; — a;,
we have

]_[ A} € 505, (8.3.1)

1<i<j<n
Further, if n > 3, then the identity
Aij+Ajk+Aki:0 fori,j,kE{l,...,n} (832)

holds.
The proof of Theorem [8.2.1]is based on the following lemma.

Lemma 8.3.1 Assume that n > 3. For each triple of distinct indices i, j,
ke{l,...,n}we have

H(A;j/Ai) < Cr2 (8.3.3)

where

) L1
Ci2 = exp {C13P§3+1|Dﬂ(f)|2" : (lDQ(f)l * 24 log N (5))},

and
C13 — (25ln48s14)n2x.
Further, ift > 0,
H(Aj/Ai) < exp{CHy! P& W Tog” Ny (6), (8.3.4)

where C\4 is an effectively computable positive number depending only on d,
n and Dqyy).
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Proof Using (83.1), we reduce (8:3.2) to a two term S -unit equation, and
then we apply Theorem [4.1.3]and Theorem to prove (8:33) and (8:3:4),
respectively.

Put L; = K(a;) for i = 1,...,n. Let D; denote the discriminant of L; over
Q. For distinct i, j = 1,...,n, denote by L;; the compositum of L; and L;, by
d;j, Djj, h;j and R;; the degree, discriminant, class number and regulator of L;j,
by T;; the set of places of L;; lying above those in S, and by Or,, the ring of
T;j-integers in L;j, i.e. the integral closure of Og in L;;. Then d;; < nod where
ny :=nn-1).

Let i, j € {1,...,n} be distinct indices. The numbers A;; and D(f)/A;; are
contained in L;; and are integral over Og. Hence A;; € Or,; and, by @), Aizj
divides & in Or, . Proposition @ yields a decomposition A;; = B;je;; with
Bij € Or,, & € O’;’_j and with an effective upper bound for the height of 3;;.
The first step of our proof is to compute such an upper bound. Denote by Ny,
the T;;-norm in L;;. Using the fact that N7, (6) = Ns(6)*/?, we deduce from

(8:3.1) that

ijs

Nz, (Aij) < Ns(@)™/. (8.3.5)

We can estimate |D;;| from above in terms of |D;, |D;| by means of (@)
and then in terms of | Do)l and n, using ®2.2) and [L;; : L;],[Li; : L;j] < n—1.
This gives

Dy < |DE DB < 1Dy g P12 (8.3.6)

By inserting this into (3.1.8)) we obtain for the class number and regulator of
L;; the estimates

" dny—1
max(hij, Rij, hijRij) < 51Dapl"™™" (2nlog” Do) (8.3.7)
nad n—1 * nad—1
< @)™\ Doy " (log” Do) =t Cis.
Further, we have
Cis < (PdY"|Dop|" =: Cie. (8.3.8)

Here we have used the inequality (log X)® < (B/2¢€)2X€ for X, B, € > 0.
Lastly, we have the following bound for absolute norms of ideals

[Lij:K]
Qij = H N, (B) < []_[ NK(p)] <Py, (8.3.9)
P P

where the products are taken for all prime ideals B corresponding to the finite
places in T;; and p corresponding to the finite places in S, respectively. Ap-
plying now Proposition [3.6.3|to A;; (with L;;, T;; instead of K, ) and using
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®33). 837, B3:8), 83.9), we infer that there are 8;; € Or,, and &;; € O
ij

such that

Ajj = Bijgij, h(Bij) < Ciz (8.3.10)
where
Cyy = 2]71 log N5(8) + 29¢ (mad)™ (¢ + 1) (log" Ps) C16
< %1 log Ns(6) + (nSdZ)"z" (t+ 1) (log" Ps) Doy
For convenience, we assume that 8; = —;; and g; = g;; fori # j.
Let now i, j, k be any three distinct indices from {1, ..., n}. Denote by L;

the compositum of L;, L; and Ly, and by d;j, Dij, hijx ad R;j the degree,
discriminant, class number and regulator of L;x over Q. Let T;j denote the
set of places of L;; lying above those in § and Or,, the ring of T;-integers
in L;j. Then O*Hk, the unit group of Or,, has rank at most n3s — 1 where
n3 = n(n—1)(n—2). Denote by I" the multiplicative subgroup of L;‘jk generated
by O7. and O;. . Obviously, I is a subgroup of O}ifk.

We ;get from (8.3.2) and (8:3.9) that
Bijéij + Bjxjx = Pix&irs
whence
(ﬂij/ﬂik> (Sij/Sik) + (ﬂjk/ﬁik) (Sjk/Sik) =1 (8.3.11)

This is an equation in L;j;. Here &;;/&i, & i/ &ix are unknowns from I' and O*ijk’
respectively, while the coefficients 5;;/Bi, Bji/Bix have heights not exceeding
2C 17.

We shall first prove (8:3.3). We apply Theorem[d.1.3]to the equation (8:3.1T)
with unknowns from I'. We first choose a system of generators {£, ..., &,} for
I'/T'rs and give a bound for

O :=h(&)) - h(Em).

We apply Proposition @ to the group 0. , where p, g are any two indices
from i, j, k. The cardinality ¢,, of T, does not exceed n,s. Then we infer that

there is an fundamental system {7, ..., Ut,)q—l} of Tp,-units in L, such that
tpg—1
1_[ h(n;) < CisRz,,, (8.3.12)

i=1

where Cig = ((tpg — HNH? /2%*2(1;;’;1’_1 and Ry, denotes the T)p,-regulator. By
Stirling’s inequality m! < e "22am) 2 (m/e)y" for m > 1 and tyy < nos, we
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have Cg < (ns)**. Using the upper bound (3.4.8) for the S -regulator, applied
with T;; instead of S, and (8:3.7), we get the upper bound

Rr,, < hpgRpq | [1og Ny, ($) < Cis [ [1og Ny, (¥),
where the product is taken over all prime ideals B corresponding to the finite
. . . . L,;:K
places in T,. Since each of these prime ideals has norm at most P[S ikl < P¢
and since T, contains altogether at most n,¢ prime ideals, we have

Rt

Pq

<Cs (ﬂ2 log”* PS)W . (8.3.13)

We choose as set of generators for I' the union of the fundamental systems of
units for Or,, and Or, considered above. Then from (§.3.12) and §:3.13) it
follows that

2

Q< (C15(ns)2"2“ (n2 log" Pg )nzt)
< (zn)and(ns)4n2Sn4n2t|DQ(f)|2(n—1) %

x(log” [Dacp))*™* V(log* Ps)™ =: C19.  (8.3.14)

We now apply Theorem F.1.3] to the equation (8:3.11) with H, m, d, s re-
placed by 2Cy7, 2(nys — 1), n3d and njs, respectively. Then we get
/13

heij/ei) < 13Czo1 S C19Ci7 %
og" Ps

x max(log(CaonzsPg’),log Cio) =: Ca1,

where Cyo = s*(16en3d)®™*. By (8.3.9) this implies
h(Aij/Aik) <2C17 + Cy1 < 2Cy;.

To estimate C5, we insert the expressions for Cy7, Ci9, use d < 2s,t+1 < s for
terms d, t occurring in the basis and %d +t < s for terms d, t in the exponent.
Further, we estimate Pg’ (log" Pg)*™*! from above by (n;s)*2*! P?” and the
quantity [Do(p*""2(log" [Dagp|)*"*~2 by (n2d)*¢|Dap|**~! using (log X)? <
(B/2€)BX¢ for X, B, € > 0. Then after some simplifications we get (8:3.3).
Suppose now ¢ > 0 and consider (8.3.11) as an equation in the 7;j-units
€ijl€iks €je/€ik. Applying Theorem to (8.3.T1) we shall get an upper
bound for the heights of these T ;-units. First we have to estimate from above
some parameters in terms of those involved in our lemma. We have d,; < n3d.
This gives the same upper bound for the unit rank of L; . By a similar compu-
tation as in (8:3.6), we get an effective upper bound for |D; | in terms of n and
Dqyy). By susbstituting the latter in (3.T.8)) we obtain effective upper bounds for
hijk, Rijx in terms of n, d and Dgqy). The number of prime ideals corresponding
to the finite places in 7T is at most n3t and the maximum of the norms of
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these prime ideals is at most Pg’. Together with (3.4.8), this implies that the
T;jx-regulator in L;j; has an upper bound

hiijijk 1_[ log NL”k (P) < hiijijk (nSZWS )”3
P

where the product is taken over all prime ideals P corresponding to the finite
places in 7. Further, in view of (8.3.10) and (8:3-8) we have

h(Bij/Bix), Bk /Bix) < Caa(t + 1)Ps log Ng (6), (8.3.15)

where Cy; and Cy3 below are effectively computable numbers which depend

only on d, n, and Dgqy). Applying Theorem [.1.7] to (8.3.T1)), we obtain for
each distinct i, j and k, that

h(eij/2i) < 35 PET W log” Ns(6). (8.3.16)
Together with (8:3.10) and (8:3.13) this gives (8:3.4). O
Proof of Theorem[8.2.1] Let again f € Og[X] be a monic polynomial of de-
gree n > 2 with discriminant D(f) € 605 and with zeros ay, ..., a,. We recall

that (8-3.T) holds, where A;; = a; — ;. Using Proposition[3.6.3]and combining
it with the effective upper bound (3.1.8) for the class number and regulator of
K, we infer from (8:3.1)) that there are & € O and ¢’ € 6Oy such that

§ = gD ]_[ A}, (&) < Co, (8.3.17)

I<i<j<n

where
1
Cas := — log N5(8) + 29en’d|Dx' (log’ D)™ (t + 1) log” Ps.

So we have

]_[ (A = 6. (8.3.18)

1<i<j<n

First consider the case when n > 3. We apply Lemma [8:3.1] It follows that
if at least one of distinct i, j € {1,...,n}is 1 or 2 then

h(A;j/A1z) £ Cos,
while if i and j are different from 1 and 2 then
h(Aij/Ar2) < h(Aij/Ai) + h(Ain[Ar2) < 2Cs.

Here C»s denotes the logarithm of the bound C, in (8:3.3) or, if + > 0, the
logarithm of the bound occurring in (8:3.4). This implies that

/’l(SAij/gAlz) < 2Cy5 for distinct i, € {1,...,n}. (8.3.19)
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Further, it follows that

[T @rirean) =6 1Ay

1<i<j<n

whence, by (8:3.17) and (8:3.19) we get
h(eAr2) < 2Cy5 + Cog/n(n - 1).

Together with (83:19) this gives

h(SA,'j) < 4Cs5 + Coy =: Cog (8.3.20)
for distinct 7, j € {1,...,n}.
Putting @} := &a;, we have eA;; = a;] —cz; for each distinct i, jwith 1 < i, j <
n. Further, we obtain fori = 1, ..., n that

n
i~ ta= 13 (o)
i n n £ i il
j=1

where a = @] + -+ + ;. Since a € Oy, by Proposition[3.5.7/and (3.5.TT) there
is a p € Ok such that

h(p) < log* (dnlDk|'?) =: Cx. (8.3.21)
and a — p € nOg, that is,
a=nb+p withb € Oy.

Puta} :=a;—bfori=1,...,n Then a] = ea; — b. Further, we have
* 1 - ’ ’ 1 .
a; = —Z(ai—aj)+;p fori=1,...,n,

n
J=1

and together with (8.3.20) and (8.3.21) this implies

max Wa}) < (n—1)Co + Co7 + 4logn.
<i<n

Putting
X =X=-a) X -ap),

f* has its coeflicients in Og, and is Og-equivalent to f. Further, in view of
Corollary 3.5.5| we infer that

h(f*) < Z h(e}) + nlog2.
i=1
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By (3.1.T1) and (8:2.2), we have |Dg| < |Dqy)l. Thus, if in 8:34) C\4 is large
enough, we get

h(f*) < 4nCss.

Substituting now the logarithms of the bounds in (8:3.3) and (8:3.4) into Cs,

we obtain (8:2.3) and (8:2.4).
Finally, for n = 2 we infer from (8:3.18) and (8:3.17) the estimate (8.3.20)
with 1Cs4 in place of Csg, and (8:2-3) and (8:24) follow as above, with P& Wi

replaced by log” Ps in (8:2:4). i

To deduce Theorem 8.2.3]from Theorem[8.2.1] it will be enough to estimate
Dqyy) from above in (8.2.3) in terms of the parameters involved. We shall need
the lemma below.

Let K be a number field of degree d and of discriminant Dg, and let S be
a finite set of places of K consisting infinite places and of the finite places
corresponding to the prime ideals py, ..., p, of Ok. Put

Qs = Nx(p1---p) with Qg :=1ifr = 0.

Further, let Q be a finite étale K-algebra with [Q : K] = n and let Dg be the
discriminant of Q, viewed as étale Q-algebra, and dgo/x = Do, 0, the relative
discriminant of Q/K.

Lemma 8.3.2 With the above notation we have
Dl < (n"|Dk| - Os)" Ns (daxOs) . (8.3.22)

Proof We first consider the case that Q = L is a finite extension of K of
relative degree n = [L : K]. By (3.1.4) we have

|Dil = Ng(dr/x)|Dkl".

Write
k ke
Dk =P,
where ki, ...,k, are non-negative rational integers and a is an ideal of Og
composed of prime ideals different from py, ..., p;. Then a has absolute norm

Nk(a) = Ns(drxOs). It suffices to estimate from above the absolute norm
Nk(plf1 "'plf’). Fori=1,...,t,pute; := e(pilpi), f; := f(pilp;) where p; is the
prime number below p;. Then according to Proposition [2.8.3] (iii) we have for
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i=1,...,1

I 1
ki = ordy, (k) < n(l TR ) - n(l + eiﬁﬂ)
log p

i log Nx(p;)

< n(l ; ‘“i)
log Nx(p:)

This implies

ki
NS - pf) < Ng(py -+ p)"'n™ = Q™.

Now (8:3.22) easily follows in the case Q = L.

We now consider the general case. We may assume that Q = L; X --- X L,
where Ly, ..., L, are finite extensions of K. Letn; := [L; : K] fori=1,...,q.
Then n = ny +- - - +ny. Further, from (2.10.2) and from Proposition[2.10.2 with

A = Ok, we get
q q
Dq = 1—[ Dy, Dok = 1—[ D,k
i=1 i=1

We now obtain (8:3:22) in general by applying (8:3:22) with L,, ..., L, instead
of Q, using n < gt and taking the product. O

Let K, S and Qg be as above. Let f € Og[X] be a monic polynomial of
degree n > 2 with non-zero discriminant D(f), and let Dgs) be as in (8.2.2).
Lemma 8.3.3 Under the above assumptions and notation we have

Dol < (n"IDkl - Qs) Ns (D(f). (8.3.23)
Proof From (5.3:8) it follows that D(f) € Dgyy)xOs . Hence
Ng(ba/kOs) < Ns(D(f)).
By combining this with Lemma [8.3.2] inequality ([8:3:23) easily follows. O

Theorem 8.2.3] follows from Theorem [8.2.1|by means of Lemma[8.3.3]
Proof of Theorem[8.2.3] Since by assumption D(f) € 50}, we have
Ns(D(f)) = Ns(6). Now (8.2.3) and (8:3.23) give (8.2.7). O

Proof of Corollary[8.2.4] The finiteness assertion of Corollary [8.2.4] follows
immediately from Theorem [8:2.3]and Theorem [3.5.2]

Suppose now that K, S and 6 € K* are effectively given. We shall use several
algebraic number-theoretic algorithms collected in Section We can decide
whether 6 € Ogs; if 6 ¢ Oy there is nothing to prove. So assume ¢ € Og and let
f € Os[X] be a polynomial of degree n > 2 with D(f) € 6O5. Then by The-
orem [8.2.3] f is Os-equivalent to a monic polynomial f* € Og[X] for which
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holds. Here in the upper bound every parameter and hence the bound
itself can be computed. Indeed, d and Dg can be determined. Further, S being
effectively given, ¢, s and Pg can also be computed. Finally, in view of
one can give an effective bound for Ng(9). Thus the heights of the coefficients
of f* are bounded by an effectively computable constant, say C. All elements
of K of height < C belong to a finite and effectively computable subset of K,
and by selecting the S-integers among them, one gets a finite and effectively
computable subset of Og. Considering the polynomials f* € Og[X] of degree
n with coeflicients contained in this finite subset, one can determine their dis-
criminants D(f™), and then can determine those f* for which D(f*)/¢ € Oy.
Finally, it can be decided for any two remaining polynomials f*, f** whether
they are Og-equivalent or not, i.e. whether f**(X) = ™" f* (X + a) for some
€ € O and a € Os. Indeed, denoting by a} and aj” the coefficients of X"lin
S* and f**, respectively, we have a}* = &(aj + na), f**(0) = &" f*(a). We may
assume without loss of generality that a}* # 0. It follows that

' f(0)
(a7’
Then one has a polynomial equation for a with coefficients in K from which
one can determine a and can decide whether a € Oy, except for the case when
X = (X +aj /n)n which case is however excluded. From ¢ = a}*/ (a’lk + na)
one can decide whether £ € O which completes the proof. m}

@)=

(a+aj/n)".

Proof of Corollary[8.2.6] Let f(X) be a polynomial with properties specified
in Corollary According to Theorem Sfi%lwe have f(X) = s”f(s’lX + E)
with some ¢ € Og, a € Og and fe Os[X] for which H (j?) does not exceed the
upper bound occurring in (8.2.4). This bound will be denoted by C»s.

We have

§ = D(f) = """V D(f). (8.3.24)

Further, h(D(f)) < 2n(n — 1)log Cys. Together with (8.3.24]) this implies that
h(e) < 2log Cyg + h(5). Putting

fx=ef(e'x),
we have f(X) = f*(X + a) with a = €a € Os and f* € Og[X] such that

h(f*) < 2n+ 1)log Cag + nh(6). Finally, by (3.5.1) we have log Ng(0) < dh(9),
hence our assertion follows. O

Proof of Theorem Let f € Or[X] be a monic polynomial of degree n >
2 with discriminant D(f) = § # 0 and with zeros @, . . ., @,. Using the notation
and following the arguments of the proof of Theorem 8.2.1] we infer that there
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is an & € Oj such that for A;; = @; — a;, & = &' V¢, 83:17) and (8:3:20)
hold. From (8:3:17) we deduce that

<
he) < = l)h(é) + Coa,
and so (8:3:20) implies that
1
h(a; — (Yj) < ———h(6) +4Cr5 + 2C4 =: Cy9 (8.3.25)
nn—-1)

for each distinct i and ;.
We obtain fori = 1,...,n, that

1 1 ¢
== :—E =), 8.3.26
a na p j:1(a a;j) ( )

where a € Or. We can now proceed in the same way as in the proof of Theorem
[B:2.1] There are b € Or and p € Ok such that a = nb + p and h(p) < Cx.
Then f(X) = f*(X — b) where f* is a monic polynomial in Or[X] with zeros
o' :=a;—b,i=1,...,n. Further, we deduce from (8.3.26)) and (8.3.23)) that

l

h(a}) < (n = 1)Ca9 + Ca7 + 2logn =: Cso.

Finally, since f* is monic we get by Corollary[3.5.3] that

h(f*) < Z h(a) + nlog?2 < nCs + nlog?2,
i=1

whence, substituting the upper bound form (8:2:3) into C,s and using Lemma
[8:3:3] the upper bound occurring in Theorem [8.2.7] easily follows. m]

Proof of Corollary[8.2.8] Let h and R denote the class number and regulator
of K, and py,..., p; the prime ideals corresponding to the finite places in S.
There are n; € O such that (r;) = pj? and that, by Proposition and

BG.13),
h(nj) < Csitlog™ Py for j=1,...,1, (8.3.27)
where Cj3, is an effectively computable number which depends only on d and

Dk, the discriminant of K. Suppose that f € Ok[X] is a monic polynomial of
degree n > 2 with discriminant D(f) € 605. We may write

(D(f) = ap' - p(t - = @)y

where a is an ideal of Og composed of prime ideals corresponding to places
outside S and r;, z; are non-negative rational integers, with 0 < r; < hn(n —
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1) for i = 1,...,t Clearly, [Ngjq(61)| < Ns(8)Py """ Then, using again
Proposition and (3.1.8)), we can write

D(f) = 6y (en -+ n}

where £ € O} and ¢ is a non-zero element of O such that

)n(n— 1)

h(So) < log Ns(6) + C3on’tlog Ps (8.3.28)

with an effectively computable positive number C3, depending only on d and
Dg. But we have |Dg| < |Dqy)|. Hence the dependence on Dk in C3; can be
replaced by that on D).

Letay,...,a, denote the zeros of f. Putting

Q) = ai/(sﬁ‘---ﬂf’),iz 1,...,n

and f'(X) = (X — a})--- (X — a;) we infer that f" € Og[X] and D(f") = o.
Applying now Corollary to f’, we obtain that f'(X) = (X + b) with
some b € Og and f” € Og[X] such that

h(f") < C35PE W max (h(Sp), 1) =: Ca, (8.3.29)

where C33 > 1 and Css,C36 and Csg . .., C4; below are effectively computable
positive numbers which depend at most on d, n and Dqyy). Further, «” := a;+b
are the zeros of f”,i=1,...,n.

Since b € Og, we can write b = b’/(n‘l" ~--7r§“), where b’ € Ok, uy,...,u;
are non-negative rational integers and none of the xr; divides b’ in Ok. Since
is integral over Os, there are non-negative rational integers ki, . . ., k; such that
with the notation x = n’]“ .- 'nf‘, the number «a” is an algebraic integer for i =
1,...,n. Suppose that ki,...,k; are minimal with this property. Considering
the ;" for which ka;’ is not divisible by 7; and using the definition of the
height, we get

(kj — 1)hlog Nx(v;) < dnh(e}).
But by Corollary [3.5.3]
h(e!) < nlog2 + h(f")
whence, using (8.3.29), k; < C35Cs4. Together with this gives
h(k) < Cs6t*(log* Ps)C34 =: Cs7.

Then y; = ke is an algebraic integer and A(y;) < C33C37 fori=1,...,n.
It follows from @} = o’ — b that
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where u; < max {z j,kj} for each j. Consequently, there are non-negative ra-

tional integers k7,...,k; and z], ..., z; with the following properties: k;. =0or
. K / ’ /

z;. =0 and k; < k; for each j, for A := 7r1‘ -~-7r];’,p = ﬂi‘ ---nf’ and for some

7€ Ok

a,-e_I/l:pyi+T, i=1,...,n

holds, and h(1d) < C37. Since A and p are relatively prime in Ok, there exists
a1 € Ok such that T = pr’ (modJ). Further, by Proposition [3.5.7]7" can be
chosen so that 4(7") < Cz9 + log Nk q(D)| < C40C37. Then @} = (7" +y;)/ A is
an algebraic integer and

Wa}) < CyCsy fori=1,...,n. (8.3.30)

Further, with the notation 7 = gp we have 17 € .’ and @; = na; + a with some
a€ Ok, i=1,...,n Putting f*(X) = (X — a])--- (X — a;,), we infer that

FOO =" 07 (X + )
and f* € Og[X]. Further, in view of (8.3.28)-(8.3.30), (8.2.9) follows. ]

Proof of Corollary[8.2.9 Let f € Og[X] be a separable monic polynomial of
degree n > 2 for which there are no monic g € Ok[X] and 57 € O\ O} U{0} such
that f(X) = i"g(177' X). Let S denote the minimal set of places of K, containing
the infinite places, for which D(f) € .#" := O () Og. Then it follows from
Corollary@ that f(X) = " f* (n‘l(X + a)) with some a € Ok, 1 € . and
monic f* € Og[X] such that, with the notation of Corollary[8:2.8]and Corollary

B2.9

h(f*) < CiH(Ps W)™ H, (8.3.31)

Here Cy, is an effectively computable positive number which depends only on
n, d and Dgq(y). But by the assumption made on f, the number 7 must be a unit
of Ok. Thus

N = Nk o(D())] = [Nkso(D(f*))

whence it is easy to deduce that

i

log N < Cush(f"), (8.3.32)

where C43 and Cy6 below are effectively computable positive numbers which
depend at most on d and n. Using Ws < (log* Ps)' we deduce from (8.3.31)

and (8:3:32) that

Ps(log* Ps)' > Cys(log N)<* (8.3.33)

holds, provided that N > N (d, n, Dg(f)), where N, is effectively computable
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and sufficiently large. Further, C44, Cy4s are effectively computable positive
numbers depending only on d, n and Dgqy). For t < log Ps/log, Pg, the first
inequality of (8.2.10) is an immediate consequence of (8.3.33). In the remain-
ing case we use the inequality ¢ < CuPs/log Ps to derive from (8.3.33) the

second inequality of (8.2.10). O
Proof of Theorem[8.2.11] By Theorem[8.2.1] we can write

fX) =" f(e'X +a)

with some € € O, a € Os and some monic fe Os[X] such that h(f) < Cy7,
where Cy47 denotes the bound occurring in (8:23).
It follows from the assumption f(0) € uO% that

f(a) € uos. (8.3.34)
Denote by a1, ..., @, the zeros of jT[X] in Q. Then, by Corollary ,
h(a;) < nlog?2 +nCyy =: Cas. (8.3.35)

Let L; = K(a;), T; the set of places of L; lying above those in S, Or, the ring of
T;-integers, 0’}’_ the group of T;-units and Nr, the T;-normin L;, i = 1,...,n.
Since f is monic, we have @; € Oy, for each i. Further, l| implies that
Nr.(a — a;) divides Nr,(u) in Z for each i. But Nz,(u) = Ns(u)“1, hence

Nr(a— ;) < Ng(u)* fori=1,...,n. (8.3.36)

The degree of L; over Q is at most dn. Let D;, denote the discriminant of L;.
We give now an upper bound for |Dy,|. If f~ = fi--- f, is the factorization of
finto monic irreducible polynomials fi,..., f, over K, then, for each j with
1 < j < g, K[X]/(fj) as a number field over Q is isomorphic to one of the
number fields Ly, ..., L,, say to L;. But {Ly, ..., L,} consists of all conjugates
of Ly,...,L, over K. Hence, by @), |Dy,| < |Dopl fori = 1,...,n. Thus,
in view of (3.1.8) the class number and the regulator of Z; do not exceed

« dn—1
5IDap|'? (log |DQ(f)|) =: Cyo.

We apply now Proposition [3.6.3|to a — a; in L;. Using (8.3.36) and the other
above estimates we infer that

a—-a;=nB;, i=1,...,n, (8.3.37)
where 7; € O}i and S; € Or, such that

h(B:) < n?log Ns(u) + c3(dn)™® (t + 1) (log® Ps) Cao =: Cso.  (8.3.38)
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Here c3, c4 and cs, ¢ below are effectively computable positive absolute con-
stants.

We get from that
nBi—-mBr=a;—q; fori=2,...,n (8.3.39)

Let L;; denote the number field K(a;, @), Dy, its discriminant, T;; the set of
places of L;; lying above those in S and Oy ~the group of Or, -units in L;;.
Then (8.3:39) is a T;;-unit equation in the unknowns 7; and 7;.

We are going to give an upper bound for the heights of n; and ;. The degree
of L;; is at most dn, over Q, where n, = n(n — 1). Hence, in view of (3.1.10)
we deduce that |Dy,| < |Dop*"~D. By the product of the class number
and regulator of L;; is at most

_ _ " dny—1
@ny™|Docp "™ (log" IDagpl) =t Cs1.

The unit group O}, has rank at most 7,5 — 1. The maximum of the norms of the
prime ideals corresponding to the finite places in T} is at most Pg’. Further,
the product of the logarithms of the norms of these prime ideals is at most
(n2’W5 )nz =: Cs,. Hence, by (3.4.8), the Ry, -regulator is at most Cs;Cs,. Now
applying Corollary f.T.3]to (8.3.39), we obtain that

h(m;) < (CsnS)CG"Z‘YP?H(Cso + C43)C51Csy (8.3.40)

=:Cs3 fori=1,...,n.

Putting o = a; — a, we deduce from (8:3.37), (8:3.38) and (8.3.40) that

h(@}) <Cso+Cs3=:Cs4, i=1,...,n0.

Putting f*(X) = (X — a})--- (X — a}), in view of Corollary@]we infer that
h(f*) < nCsq + nlog2.
Finally, using the fact that
(1og” IDacp)” < (1/26) IDagp) |
and
Ws < (log” Ps)' < (t/2€') P§

for any k > 0, € > 0 and € > 0 and utilizing Lemma 8.3.3] to estimate from
above |Dq(p)| in terms of the other parameters involved, after some straightfor-
ward computation (8:2.1T) follows. ]
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8.4 Integral elements over rings of S -integers

In this section we generalize the results of Sections[6.1]and[6.2]in three different
directions. Namely, we consider the corresponding discriminant equations and
index equations over a ring of S-integers of an arbitrary number field K instead
of Z and Q. At the same time we extend our results to the case of K-algebras
Q in place of field extensions L/K, where Q is a finite étale K-algebra, that
is a K-algebra which is isomorphic to a direct product of finitely many finite
field extensions of K. This latter extension has not yet been published. Finally,
we establish some general effective finiteness results for algebraic integers of
bounded degree.

8.4.1 Integral elements in étale algebras

Let K be an algebraic number field, S a finite set of places of K containing the
infinite places, Os the ring of S-integers and Og the group of S-units in K. Let
Q be a finite €tale K-algebra, isomorphic to L; X - -- X L, say, where Ly, ..., L,
are finite field extensions of K. We view K as a K-subalgebra of Q. Let Os g
denote the integral closure of Og in Q, and consider the equation

DQ/K(Q) S (50; ina € OS!Q, (841)

where ¢ is a given non-zero element of Og. If « is a solution of then so
is " = ea + a for every € € O and a € Os. Such elements a, a* of Q will be
called Og-equivalent and for S = M3, i.e. for Os = Ok, Ok-equivalent.

Keeping the notation of Section let d and Dg denote the degree and
discriminant of K, s the cardinality of S, py,..., p; the prime ideals of Og
corresponding to the finite places in S, Py the maximum of the norms and Wy
the product of the logarithms of the norms of these prime ideals if ¢ > 0, and
Pg =Wg =1ift=0.

We denote by n the dimension of Q over K, and by Dgq the discriminant of
Q viewed as finite étale Q-algebra. Further, let

ny=nn-1)(n-2).
The absolute height of an element « of Q is defined as
H(a) := max (H(ey), ..., H(ay)),

where ¢ : Q= L; X--- X L, denotes the K-algebra isomorphism and ¢(a) =
(ai,...,aq). We shall also use the absolute logarithmic height of o € Q defined
as

h(a) :=log H(a).
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From Theorem [8:2.T| we deduce the following.
Theorem 8.4.1 Let 6 € O \ {0}. Every solution a of (84.1) is Os-equivalent

to a solution " for which
H(a") < exp {C Py Do~ (1Dl + log Ns(B)} . (8:4.2)
where C| = (10n3s)16"2S.

It will be clear from (8.2.T) and from the proofs of Theorem[8.4.Tand Theo-
rem [8.2.1] that Theorem [8:4.T)and Theorem 8.2.T| with (8:23) are in fact equiv-
alent. In view of the close connection between the elements of Q and their
characteristic polynomials, most results presented in Chapter [§] can be formu-
lated both in terms of monic polynomials and in terms of integral elements.

If G denotes the normal closure of the compositum of the number fields
Ly,...,L, over K, m is the degree of G over K and D is the discriminant of

M over Q, then it follows from (3.1.10), (3.1.11)) and (2.10.2)) that D and Dg

have the same prime factors and

IDo|"™ < |Dg| < |Dg|™.

Hence, in @ and throughout this chapter, |Dg| can be estimated from above
in terms of |Dg| and n. Further, it will be clear from the proofs that n3 can be
replaced everywhere by m.

Let © be an Oy -order of Q. Then © C Oy . As a consequence of Theorem
[8:4.T)we prove the following.

Corollary 8.4.2 Let 6 € Os \ {0}, and let & € O with discriminant Dg, g () =
0. Then @ = " + a for some a € Og and a* € O such that

H(a") < exp{4dCy Py Dol (IDal" + h(6))}, (8.4.3)
where C| = (10n3s)16”zs.

Let dg,p, be the discriminant ideal of the Og-order © of Q. If @ € O g is
contained in O then the Oy -equivalence class of « in Os g also belongs to ©O.
For @ € © with Q = K[«], denote by Io(a) the index ideal [D : Osla]lo, in
Os. Let 3 be a non-zero ideal of Og, and consider the index equation

Jo(@)=J ina e D. (8.4.4)
In view of (5.3.7) this equation is equivalent to the discriminant equation
(Dgyx(@)) = I*dgj0, ina € O, (8.4.5)

where the left-hand side is the ideal of Os generated by Dq k(). For © =
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Os.q ., (8.4.5) gives (8.4.1) with the choice (6) = 3?do, /0, » that is in §
must be divisible by dgy /05 -

If « is a solution of (8:44) or (8:4.3) then so is every element of its Og -
equivalence class in O. Taking (6) = I*dg, 0, in , we obtain immediately
from Theorem 8:4.1] the following.

Corollary 8.4.3 Every solution of (8.4.4), (8.4.3) is Os -equivalent to a solu-
tion " for which

H(e") < exp (2C1 P¢ ! IDa"™" (IDal” + log Ns (Sdgj0,))} . (8.4.6)
where Cy = (10n3s)16”25.

We note that apart from the values of the numbers C; and 2C,, Corollary

[:43]and Theorem [8.4.T]are equivalent.
Corollary [8:4.3]does not yet imply that the Og-equivalence classes of & with

(8:4:3) or (8:43) can be determined effectively. In addition we need a method
to determine whether an element a of Os o belongs to O. This is provided by
the following result.

Corollary 8.4.4 Let {wy,...,wi} be a set of Os-module generators for O.
Put
H = max (H(wy),...,H(wy)).

Then every solution of (844), (8:4.3) is Os-equivalent to a solution a* such
that

' = xywy + -+ xwp with xg, ..., x; € Og,
{2% H(x;) < exp {(C7ks)"8”2sP§3+] |Do|" ! x (8.4.7)

X (IDol" +log H +log N5 (3)) |,
where c7 and cg are effectively computable absolute constants.

We fix again an effectively given algebraic closure Q of Q. All number
fields below are subfields of Q. Following Section we say that a finite
étale K-algebra Q is effectively given if K is effectively given and if Q is K-

algebra isomorphic to Ly X --- X L,, where Li,...,L, are effectively given
as finite extensions of K. Further, an element @ of Q is said to be effectively
given/determinable if in p(a) = (a1, ..., a,) the element a; of L; is effectively
given/determinable for i = 1,. .., g. Finally, we say that the non-zero ideal J of

Ogs 1is effectively given/determinable if a finite system of Og-module generators
of 3 is effectively given/determinable.
From Corollary 844 we deduce the following.
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Corollary 8.4.5 Suppose that K, S, Q, the ideal I of Os and a finite system
of Og-module generators of the Og-order O of Q are effectively given. Then
it can be decided effectively whether ([8.4.4), (8.4.5) are solvable. Moreover,
if (8:44), (8.4.9) is solvable, then a full system of representatives for the Os -
equivalence classes of solutions can be determined effectively.

In view of Corollary[8:4.4] equation (8:4.3) can be reformulated as a discrim-
inant form equation and Corollary 8.4.4]can be used to give all its solutions.

Let again © be an Og-order of Q, and suppose that O is a free module
over Og having a basis of the form {1, w», ..., w,}. Denote by I(X», ..., X,) the
corresponding index form and let I € Og \ {0}. Then together with Proposition
[5.2.1] Corollary [8.4.4] gives immediately an upper bound for the heights of the
solutions of the index form equation I(x,,...,x,) = I in x3,...,x, € Os. We
recall that if K = Q and O is an order of Q, then O always has a Z-basis of
the form {1, w», ..., w,} and Corollary@applies to the corresponding index
form equation.

We recall that an Og-order © of Q is called monogenic if © = Og[a] for
some a € O. Then we have also © = Og[a*] for every a* € O that is Os-
equivalent to a. In this case D is a free Os-module having {1, a,..., a”’l} as
power basis over Og. Obviously, O = Og[a] holds for some a € O if and only
if 3o(e) = [D : Og[allo; = (1). Hence Corollary 8.4.3] gives immediately an
effective result for monogenic orders.

The following theorem immediately follows from Corollary [8:4.4]

Theorem 8.4.6 Let O be an Og-order of Q, and {w, . . . , wi} a system of Og -
module generators of O. If O is monogenic, then every a with O = Ogla] is
Ogs -equivalent to an element «* such that

a = xjw; + -+ xpwi with xq,...,x; € Og

and

max H(x;) < exp {(cvks)“‘”zsP?“|DQ|2”*1 (IDq|" + log H)}
1<i<k

with the same effectively computable absolute constants c;, cg as in Corollary
8.4.4

The next corollary is an immediate consequence of Corollary [8.4.3]

Corollary 8.4.7 Let O be an Og-order of Q. Suppose that a system of Os-
module generators of O is given. Then it can be decided effectively whether
D is monogenic or not. Further, if O is monogenic, then there are only finitely
many Og -equivalence classes of a € O such that O = Ogla], and a full set of
representatives of these classes can be effectively determined.
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Since © = Og[a] for some a € O if and only if {1, a,..., " isa power
Og-basis of O, Theorem and Corollary can be reformulated for
power Og-bases.

Theorem 8.4.8]and its Corollary [8.4.9below will enable us to get some new
information about the arithmetical properties of those non-zero integers of K
which are discriminants of integral elements of Q.

Let
7= 04 Ok
This is a multiplicative semigroup which consists of those non-zero integers of
K which are not divisible by prime ideals different from py,...,p,. Fort = 0,

Zis just the unit group of K.

Denote by Oq the integral closure of Z in Q. It is at the same time the
integral closure of Ok in Q. Further, let O be an Og-order of Q with index
ideal 3¢ := [Oq : Olg, in Og. We show that up to multiplication by elements
of . and translation by integers of K, there are only finitely many elements
in © with discriminants contained in .. We prove this in the following, partly
explicit form.

Theorem 8.4.8 Let 6 € Og \ {0}. If
Dgk(@) € 505, with @ € O, (8.4.8)
then there are n € ., a € Ok, o* € O such that @ = na* + a and
H(a") < exp {C5(Ps Ws)"™* log" (Ns(8)Nk(30))} (8.4.9)

where Css denotes an effectively computable positive number which depends
only on d, n and Dg.

Theorem is a consequence of Corollary

We recall that Pg(5) denotes the greatest norm of the prime ideal divisors
of 6 in Og. If @« = pB with @, B € Og and nonunit p € Ok \ {0} then, in
general, |NK/Q (DQ/K(a/))| cannot be estimated from above in terms of K, Q
and Pk (Dq/k(@)). We say that § € Ok \ {0} is a reduced element discriminant
with respect to Q/K, if it is the discriminant of some @ € Og, but is not the
discriminant of any pS with 8 € Oq and nonunit p € Ok \ {0}.

The next corollary is a consequence of Theorem [8.4.8]

Corollary 84.9 Letr 6§ € Ok \ {0} be a reduced element discriminant with
respect to Q/K. Then

P > Cs6 (log, N) (logz N) / log, N,
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provided that N > Ny, where P = Pg(6), N = |NK/Q(6)| and Cse, Ny are
effectively computable positive numbers which depend only on d, n and Dq,.

Roughly speaking this says that if § is a reduced element discriminant with
respect to Q/K then § must be divisible by a prime ideal of large norm.

Let again O be an Og-order of Q with index ideal Jp := [Oq : D]y, in Ok.
For @ € © with K[a] = Q, denote by Jo() the index ideal [O : Ok[a]lo, in
Ok. Then, by (5.3.7), we have

(Dayk(@)) = (3o(@))*do/0 (8.4.10)

where dp,o, denotes the discriminant ideal of © over Og. Let dg/x denote the
relative discriminant of € over K, that is the discriminant ideal dp,;0,. As a
further consequence of Theorem [8.4.8| we prove the following.

Corollary 8.4.10 Let 3 be a non-zero ideal in Ok, and let « € O \ {0} with
Jo(@) = 3. Then there are n € ¥, a € Ok and o € O such that a = na* + a
and

H(a") < exp {C3,(Ps Ws)"™*! log" (Nk(32) - Ns ()}, (84.11)

where Cs7 is an effective computable positive number which depends only on
d,n and Dq.

From Corollary [8.4.10] we deduce a result, similar to Corollary [8.4.9] on
arithmetical properties of indices of the Og-order O of Q considered above. If
an integral ideal 3J of K is the index of some « in O, then

(0" 23 = I (pa)

for every non-zero p € Og. We say that J is a reduced index with respect to
D/K if it is the index of some @ € O, but is not the index of any p8 with § € O
and nonunit p € Ok \ {0}.

Corollary 8.4.11 Let 3 be a non-zero ideal of Ox which is reduced index
with respect to O/ K. Then

P > Csg (log, N) (logy N) / logy N (8.4.12)

provided that N > Ny, where N = Nk (3), P denotes the greatest prime factor
of N and Csg, Ny are effectively computable positive numbers which depend
only on d, n, Dg and N (3p).

Finally we note that in the special case when K = Q, Os = Z and Q is a num-
ber field, Corollary [8.4.2] Corollary and Corollary imply slightly
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weaker and less explicit versions of Corollary[6.2.3] Corollary [6.2.T)and Theo-

rems|6.1.1]and [6.1.2] respectively. Further, Corollary[6.2.4]and Corollary[6.2.6|
are special cases of Corollary and Corollary [8.4.13]| below.

8.4.2 Integral elements in number fields

Of particular importance are the special cases of the results of Section [8.4.1]
when Q is a finite extension field, say L, of K with n = [L : K]. Then it suffices
to replace everywhere Q by L and Dq, by Dy, the discriminant of L over Q. We
present now some consequences in this important special case.

Keeping the notation of Section [8.4.1] let L/K be a field extension of de-
gree n > 2 with relative discriminant d;/x, and Oy, Dy, the ring of integers
and discriminant of L, respectively. Let © be an Og-order of L with index
ideal 3p = [Of : O]y, in Ok. For & € O, denote by Ip(a) the index ideal
[O : Oklal] in Ok. Then in the special case Q = L Corollary [8:4.10] gives the
following.

Corollary 8.4.12 Let 3 be a non-zero ideal in Ok, and let « € O \ {0} with
So(@) = 3. Then there are n € ¥, a € Ok and o* € O such that @ = na* + a
and

H(a") < exp {Cly (Ps W)™ log" (N (30) N5 (3))}

where Csq is an effectively computable positive number which depends only on
d, nand Dy.

In the case © = Oy, a prime ideal p of Ok is called a common index divisor
of L/K if p divides Iy, (o) for every primitive integral element @ of L/K. The
number of common index divisors is finite and a theorem from [Hasse (1980)]
gives a characterization of these divisors. It is interesting to apply Corollary
@ to the case when J is composed of the prime ideals py,..., p, which
are just the common index divisors of L/K. There are relative extensions of
arbitrarily high degree in which there exists no element & with index not divis-
ible by prime ideals different from the common index divisors; see [Pleasants
(1974)]. Corollary [8:4.12] provides an algorithm for deciding whether such an
element a exists and for determining all @ having this property.

For ¢ = 0, Corollary [8:4.12] provides a partly explicit result on monogenic
Ok-orders O of L. However, in this special case Corollary [8:4.3|implies a fully
explicit version. In particular, for t = 0, Q = L and © = O, Corollary 843
immediately gives Corollary [§:4.13]

Corollary 8.4.13 If O, = Okla] for some a € Oy, then there is an a* € O
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which is Og-equivalent to « such that
H(a") < exp {2CeolDL " log” Ny (dp/)} » (8.4.13)
where Cey = (10n°d)'0".

Equivalently, if, fora € O, {1, «,..., "1} is a relative power integral basis
of L over K, then « is Og-equivalent to an «* for which (8.4.13) holds. Thus
Corollary which is an improved version of [Gy&ry (1978a), Cor. 3.3],
makes it possible, at least in principle, to decide whether L has a relative power
integral basis and to determine all @ € O which generate relative integral
bases.

Pleasants [Pleasants (1974)] gave an explicit formula which enables one
to compute a positive integer m(Oy, Ok) such that if #(Op, Ok) denotes the
minimal number of generators of O as Og-algebra, then

m(0p, Og) < (O, Ok) < max {m(Oy, Ok),2} .

Pleasants proved that if K = Q, then m(Oy, Ok) < [(logn/log2) + 1]. Further,
he showed that there are number fields L of arbitrarily high degree over Q such
that m(Oy, Ok) = 1 and Oy, is not monogenic. Consequently, his theorem does
not make it possible to decide whether the ring of integers of a number field is
monogenic. Together with Pleasants’ result, our Corollary [8.4.13] provides an
algorithm for determining the least number of elements of Oy, that generate O,
as an Og-algebra.
In Chapter[IT|we consider more generally Og-orders of finite étale K-algebras,

and give a method to determine a set of Og-algebra generators of minimal car-
dinality of such an order.

8.4.3 Algebraic integers of given degree

In this subsection some general effective finiteness results are established on
algebraic integers of given degree which, in contrast to the assumption made
in Subsection [8.4.2} do not belong to a fixed number field. These are conse-
quences of our results obtained in Section [8.2]on monic polynomials of given
degree.

Keeping the notation of Subsection[8.4.2] let again K be an algebraic number
field and S a finite set of places of K containing the infinite places with the
parameters introduced in Subsection @} Let Os and O} denote the ring of
S-integers and the group of S-units in K.

For an algebraic number « of degree n > 2 over K, we denote by Dg(a) the
discriminant of « relative to the extension K(a)/K. An immediate consequence
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of Corollary is that for given n > 2 and § € Os \ {0}, there are only
finitely many and effectively determinable Og-equivalence classes of algebraic
numbers a, integral over Oy, with degree n and discriminant Dk (a) € 6O} over
K. We deduce this from Theorem 8.2.3]in an explicit form.

Theorem 8.4.14 Let 6 € Os \ {0}, and let a be an algebraic number with
degree n > 2 and discriminant Dg(a) € 60} over K which is integral over Ogs.
Then « is Og -equivalent to an algebraic number o* such that

(n n 3n
H(a") < exp {2Ca (P 1Dx"N5(®) '},

2 2
where Cg; = n® 4+1(10n35)167s,

Theorem [8.4.14]can be compared with Theorem[8.4.T)which provides a sim-
ilar result for algebraic numbers a, but only in the case when the @ under con-
sideration belong to a fixed finite extension of K.

The next corollary is a consequence of Corollary [8.2.6] A partly explicit
version can be deduced from (8.2.8). We choose again an effectively given
algebraic closure Q of Q and agree that all algebraic numbers and number
fields considered below are contained in it. For definitions concerning effective
representations/computability of algebraic numbers, number fields and sets of
places we refer to Section

Corollary 8.4.15 Letn > 2 be an integer and let 6 € Os \ {0}. Then there are
only finitely many strong Os-equivalence classes of algebraic numbers in Q
with degree n and discriminant § over K which are integral over Og. Further,
a full system of representatives for these equivalence classes can be effectively
determined, provided that K, S and 6 are effectively given.

We recall that . = O N Ok. The following corollary is a consequence of
Corollary for a quantitative version see [Gy6ry (1978b)].

Corollary 8.4.16 There is a finite set &7 such that the set of algebraic integers
ain Q with [K(@) : K] = n and Dk(a) € 605 is given by

na*+a: a" € ,ne .’ ac Ok}

Such a set o can be effectively determined provided that K, S and § are effec-
tively given.

We give now some consequences of Theorem [8.2.11|for algebraic numbers.
For any algebraic number @, we denote by Nk (@) the norm of « relative to
the extension K(«a)/K. Further, we recall that the discriminant of « relative to
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K(@)/K is denoted by Dg(a). Let ¢ and ¢ be non-zero S-integers in K. If an
algebraic number « satisfies

Dg(a) € 60§ and Nk(a) € uOs, (8.4.14)

then so does every element of the coset @O5. It is a consequence of Theorem

that there are only finitely many cosets a0 with « integral over Og
for which (8:4.14) holds. Further, a full set of representatives of these cosets
can be, at least in principle, effectively determined. This can be deduced from
Theorem [8:2.11]in the following partly explicit form.

Corollary 8.4.17 Let 6, u € Og \ {0}. If a is an algebraic number of degree
n > 2 over K which is integral over Os and which satisfies (8.4.14), then

H(za) < exp {Cea (N5(8))*" log” Ns(u))} (8.4.15)

with some € € O, where Ce, is an effectively computable number depending
only on n, s, Ps and Dk.

We note that from (8:2.11) one can derive (8.4.13) with the more explicit
bound occurring in (§.2.T1)). Further, if in particular in (8.:4.14) Dg(a) = 6 or
Ng(@) = p then, as in the polynomial case, one can easily derive an upper
bound for A(«), too, by means of (8.4.13).

We recall that for K = Q, Os = Z, Theorem [6.4.1] and Corollary [6.4.3] are
more precise versions of Theorem [8:4.T4]and Corollary 8.4.17] respectively.

Denote by Os,@ the integral closure of Oy in Q. It follows from Corollary

with the choice u = 1 that if n € O* <3 with degree n > 2 and with

Dk (n) € 605 over K, then there is an € € O% such that
Ns(Dk() > Ce3(log H(em)!/ @D

Here Cg; is an effectively positive number which depends only on n, s, Pg and
Dk. From Theorem [8.2.11] we deduce the following

Corollary 8.4.18 Let n > 2. There is a finite subset & of O* _ such that the
setofn e 0* — with [K(n) : K] = n and Dk(n7) € 005 is given by

{en” : e € O5," € &).

Further, if K, S and 6 are effectively given, such a set & can be effectively
determined.

Corollaries [6.4.2] and [6.4.4] show that in the special case K = Q, Os = Z,
Corollaries [8.4.15] and [84.18] are valid without fixing the degree of the ele-
ments in question. On the other hand, the example presented after Theorem
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[B:Z:4)implies that Corollary [8:4.18]is not valid without fixing the degree of the
elements under consideration.

Open problem. Does Corollary remain valid without fixing the degree

of the algebraic numbers under consideration?

8.5 Proofs

In the proofs, it will be more convenient to use the absolute logarithmic height.

Proof of Theorem We deduce Theorem [8:4.1] from Theorem [8:21]

Let @ € Osgq be a solution of 8:41), and let @ — o denote the K-
homomorphisms from Q to K,i=1,...,n Then by Lemma f(X) =
X = aM)--- (X = &™) is the monic minimal polynomial of @ over K and
Q = Q(f), where Q(F) = K[X]/(f). Further, we have f(X) € Os[X] (see
Lemma [1.6.1) and, in view of Corollary [I.5.2] we get Do k() = D(f). It fol-
lows now from Theorem [8.2.1] that

fX) =& f (' X +a)

for some f* € Og[X], & € O5 and a € Og such that (8:2.3) and (8:2.4) hold
with Dq(y) replaced by Dgq. Then

o =g'a+acOsq

is Og-equivalent to a. Putting «*® = & 'a® + a, we have f* (a*(i)) = 0 for
i =1,...,n. Using Corollary [3.5.5] we infer that

n

Z h(a®) < nlog2 + h(f"). (8.5.1)

i=1

Together with (8.5.1) and h(a*) < h (a*(”) +eoth (a*(”)), Theorem gives
Theorem [8.4.11 O

Remark The proof of Theorem|[8.2.1] gives (8:2.3) in a slightly stronger form
in terms of s, namely with 5" in place of s'9"’%. Using this stronger bound
in (8:2:3), the term nlog2 in (8:5.1) can be incorporated in the bound to get

(®4.2).
Proof of Corollary[84.2] Let @ € O with Dg/x(e) = 6. Then it follows from

Theorem that @ = e + a with some € € O, a € Os and @ € Osq
such that (@) does not exceed the logarithm of the upper bound occurring in

(®42). By (3:3.1) we have

log N5 (8) < dh (5) .
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Replace log Ns (6) in the bound in (8.4.2) by dh (6). Denote by Ce4 the upper
bound so obtained for £ (a).
We have

8 = Dojk(@) = """V Dok (@).
Further, by we have
h(Dayx(@)) < 2n(n — 1)Ces.
Thus we obtain

h(g) < 2Ce4 + h(9),
whence, putting a* = &a, it follows that
h(a™) < 3Ce4 + h(5).

This gives (8.4.3).

]

To prove Corollary [8.4.4 we need some auxiliary results. We keep the no-
tation of Sections[8.2]and[8.3] Let K be an algebraic number field of degree d
with discriminant D, and Q a finite étale K-algebra with [QQ : K] = n. Let S
be a finite set of places of K, containing all infinite places.

Our first tool is a result on inhomogeneous systems of linear equations over
the §-integers, obtained in [O’Leary and Vaaler (1993)]. We state a weaker
version, which is amply sufficient for our purposes.

We need some notation. For the moment, for a given set R we denote by R¥
the set of k-dimensional column vectors with entries in R. Given an nXk-matrix
A and a column vector a of dimension n, we denote by Ala the nx (k+1)-matrix,
obtained by putting the column a to the right of A.

—k
For a vector X = (x1,..., x)’ € Q we define
1/[L:Q]
H) = (| | max(L by, . ladv)
VeM;
where L is any number field containing xi, ..., x;. Let A be an n X k matrix of

rank n < k with entries in Q. Let L be any number field containing the entries
of A. Define
1/[L:Q]
HA) = (] | maxAdly, ... 18w)v)

VeM;

where A, .. .,A(k) are the subdeterminants of A of order »n. This notion of
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height does not depend on the choice of L. Clearly, H*(A) > 1. From the
product formula, it follows that

H(CA) = H"(A) for C € GL(n, Q). (8.5.2)

Moreover, if A = (ajj)i=1,..n, j=1,..x has its entries in L, say, then for V € M,
I=1,..., (s) we have, by expanding the determinant and using (3.3.2),

n k
Ady < ) T T [ max(i,laijiv),

i=1 j=1
where s(V) = 1 if V is real, s(V) = 2 if V is complex, and s(V) = 0 if V is
finite. By taking the product over V € M| it follows that

n

k
H @ <nt | [[ | Heap. (8.5.3)
j=1

i=1 j

Lemma 8.5.1 Let A be an nxk-matrix of rank n with entries in K, and a € K".
Assume that

Ax=a inx € Of (8.5.4)

is solvable. Then (8:5.4) has a solution x € O% with

H(x) < A(n, k, K)H"(Ala), (8.5.5)
where
Ak, K) = Wz(k—nn)/2|DK|1+(k—n)/2d'
Proof See [O’Leary and Vaaler (1993)]. O
We deduce the following.
Lemma 8.5.2 Let .# be an Og-lattice of Q, generated by wy, . .., wy and let
a € M. Then there are x, . ..,x; € Os such that
@ = XW + -+ Xy, (8.5.6)

1<i<k

k
max h(x;) < (k + 1)log ((2k + 2)|Dgl) + n( Z h(w) + h(@)). (8.5.7)
i=1

Proof In matrices occurring below, we always denote the row index by i and
the column index by j. We assume without loss of generality that wy, ..., w;
are all non-zero. Let n := [Q : K] and denote by x — x® (i = 1,...,n) the
K-homomorphisms from Q to Q.
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By applying these K-homomorphisms, we see that §5.6), i.e., Y~ | xiw; =

ain xy,...,x; € Og is equivalent to the system
Bx=b inx = (x,...,x)" € Of (8.5.8)
where B is the n X k-matrix (wy')) andb = (&P, ..., a"7.
Choose a K-basis {61, ..., 6,} of Q. Then there are an n X k-matrix A = (a;;)
with entries in K, and a vector a = (ay, ..., a,)" € K" such that

n
w,~=Za,~j9i fOI'jZ 1,...,k, a = a b, +-~-+a,,0n.
i=1

Since .# is an Og-lattice of Q, it contains a K-basis of Q. Hence the matrix A
has rank n. Clearly,

B=CA, b=Ca (8.5.9)

where C is the n X n-matrix (Hg.i)). Since {6y, ...,6,} is a K-basis of Q2, we have
(detC)* = Dq/k(wi,...,w,) # 0. Hence system (8.3.8), and therefore also
(8:3.6), is equivalent to

Ax=a inx e Of. (8.5.10)

Since @ € .4, (8:3.6), hence (8:5.10) is solvable in x € O% . Now Lemma|8.5.1|
in combination with (8:5.2), (8:5.9), implies that (8:3.10), hence (8:3.6), has a

solution x € 0% with
H(x) < A(n,k, KYH"(Ala) = A(n, k, K)H(B|b). (8.5.11)
It remains to estimate the term on the right. By (8.3.3) and the fact that

conjugate algebraic numbers have the same height, it follows that

H'\(Bb) < n! ]_[ (H<w<;'>) . -H(w}?)H(a%) < n!(H(wy) - Hw)H(@))",
i=1

L

and by inserting this into (§.3.11) this leads to
max H(x;) < H(x) < n!A(n, k, K)(H(w)) - - Hwi)H(@))".
Now Proposition [8:3.2] easily follows by taking logarithms. m|

Our last auxiliary tool is an estimate for the S -norm of the discriminant of a
lattice.

Lemma 8.5.3 Let .# be an Ogs-lattice of Q, generated by w, ..., wy. Then

k
log Ns(b./0,) < 2d(nlogn+n )" hw;)).

i=1
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Proof We assume without loss of generality that wy,...,w, are linearly in-
dependent over K. Let .#’ be the Og-lattice generated by wy,...,w,. Then
M' C A, hence by Proposition 2.10.3] b_4/0, € d.4/0,. Further, using
Proposition[2.10.1] we infer that

Ns(d.2/05) < Ns(0.45) = Ns(A?), where A = det (w;”) (8.5.12)

1<i,j<n
Let G be a finite normal extension of K containing the images of the K-
homomorphisms x — x. Then, if T is the set of places of G lying above the

places in §' and s(V) = 1,2 or 0 according as V € T is real, complex or finite,
we have

n k
Aly < @@ T ] [max@, 10l forveT.
j=1 =1

It follows that
Ns@) = ([ T1al )" ™ < (niH@) - HwoY')

VeT
= (n!(H(a)l) s H(wk))n)

where d = [K : Q]. Now Lemma 8.5.3|follows easily by invoking (8:5.12) and
taking logarithms. O

Proof of Corollary[8:4.4] 1In view of Corollary[8:4.3] every solution of (8:4.4),
(8:423) is Og -equivalent to a solution a* for which (8:4.6) holds. Further, Lemma

[B:5.2]implies that there are xi, ..., x; € Os such that @* = xjw; +- - - +xwy and
(8577) holds with h(a) replaced by h(e*). Finally, Lemma 8.5.3] applied with
A = O gives an upper bound for Ns(do,0,). The proof of (8.4.7) is finished
by using that d < 2s, Dk divides Dq and Zle h(w;) < kH. O

2[G:Ql/[G:K]

2d
9

Proof of Corollary We deduce the assertion from Corollary[8.4.4] To do
so, we have to use some algebraic number-theoretic algorithms from Section
B2

Suppose that a system of Og-module generators {wi, ..., wi} of O is given.
Further, assume that (8:4.4), (8:4.3) have a solution « in O. Then by Corollary
B:44] a is Og-equivalent to a solution a* = xjw; +- - - + Xgwi With xy, ..., X €
Os whose heights satisfy the inequality (8:4.7). Since by assumption K, S, Q
and J are effectively given, the parameters in the upper bound occurring in
(8:4.7), and so an upper bound Ces for H(x;) can be computed.

All x € Os with H(x) < Ces belong to a finite and effectively computable
subset .77 of Og. Then the elements of the set

M:{a*:x1w1+~-~+xka)k|x,-€<%ﬂ,i:1,...,k}
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can be determined.

In view of Proposition 2.10.1] the ideal do,o, can be determined. Hence in
(B-435) I%*dg,0, can also be determined. By assumption, (8.4.3) has a solution.
This implies that I?dp,o, must be a principal ideal in Og, and a generator
of it, say &, can be effectively determined. For each @* € &/ one can com-
pute Dq/k(a*) and Dg,k(a*)/8, hence one can select all o* from &7 for which
Dq/k(a*) € 605, that is (§.4.3) holds.

Below we explain how to decide whether two such elements a* are Og-
equivalent. Having done so we can select, from the solutions a* so obtained, a
full set of representatives of Og-equivalence classes of @ € O for which (8:4.4),
(8:4.3) hold.

We want to decide whether for any two given o*, @™ € & with (8:4.3)
there are £ € O, a € O with @™ = ga” + a. If such &, a exist, we have
gn=b = Dq k(™) /Dgk(a™). So one simply has to compute all n(n — 1)-th
roots ¢ of the latter number, check which of them lie in Og, and then check for
which of these &, the number a := o™ — ea* lies in Og. O

Proof of Theorem|[84.8] In the special case O = Oq we have Jg = (1), and
Theorem [8:4.8]follows from Corollary[8.2.8]in the same way as Theorem[8.2.1]

gives Theorem 8.4.1]
Next we assume that Theorem [8.4.8] is already proved for O = Ogq. This

implies that if © C Oq and @ € O is a solution of (8.4:8) then there are 17; € .7,
a € Ok and @, € Og such that @ = nya; + a and

h(@)) < Cig (PsWs)**! log" Ny (8) =: Ce7, (8.5.13)

where n3 = n(n—1)(n—2) and Cg is an effectively computable positive number
which depends only on d, n and Dq.

As was seen in the proof of Corollary @, there are 7; in Ok such that
(7)) = p’]? and

h(r;) < Cestlog™ Ps =: Cgo for j=1,...,¢

where Cgg and Cg9 below are effectively computable positive numbers which
depend only on d and D ,the discriminant of K. Using Proposition [3.6.3] and

inequality (3.1.8), we can write

— 21 2t
m = &mn; -

with some & € O}, non-negative rational integers zi,...,z; and 172 € < for
which

h(12) < CeoCro.
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Notice that nja; = @ —a € O. Putting a; := may, we have a; € Oq,
e'ma =" nia, €O (8.5.14)

and

haz) < CeoCr0 + Cg7.

Since Dk divides Dg, C7 can be regarded as an effectively computable number
which depends only on d, n and Dq,.

Let a be the ideal of ¢ € Ok with éa, € O. Then, in view of (8:3.14), a is
composed of the prime ideals py, ..., p; in S. On the other hand, 3o - @ € O
by Proposition [2.9.3] Denote by d the greatest common divisor of the ideals
(pzln ...pf/)h and Jp. Then we have da, € O. Now for j=1,...,¢, leta; be the
smallest non-negative integer with /- a; > ord, (3o) if hz; > ord,; (3p) and let
aj = z; otherwise. Then z; > a; for j=1,...,tand n}" - - - 7" € O.

Leta* := n{' ---7{'ay. Then a* € O,

a=na"+a with a € Og, n:=en]™ .7} € .7,
and

h@") < (@) + ) ajhix))

=1

h

- ord, (3o)
< Cg7 + (1 + C79)Ce9 + Ceo Z (1 + DJ—B)
=1

C
< Ce7 + (1 + Crp + )Ceo + % log (Nk (39)).

Now insertion of (8:3.13) and a simple computation yield the estimate (8.4.9).
O

Proof of Corollary[8.4.9] Corollary [8.4.9] follows from Theorem [8.4.8] with
O = Oq in the same way as Corollary [8:2.9) was deduced from Corollary

B238 o
We now deduce Corollary [8:4.10] from Theorem [8.4.8]

Proof of Corollary[8.4.10] Leta € O\ {0} with Ip5(@) = 3. Put Dg/k(a) = 6;
then (8) = bp;0, 32 by (8.4.10). Further, in view of Proposition we have
Do/o = Sébg/[{, where 3o = [Oq : O] and do/x = Do, 0, is the relative
discriminant of Q over K. So altogether,

(6) = do/k(3p - I)%. (8.5.15)
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It follows from Theorem [8.4.8] that there are y € .7, a € Ok and * € O such
that @« = na* + a and

h(a") < Ci5(PsWs)™*' log" (N5 (§)Nk(30)) (8.5.16)

where Css is an effectively computable number which depends only on d, n and
Dq. Notice that in Ns(6) there is also a factor Ng(dq/x). However, Ns(dg,/x) <
Nk(dg/k) can be estimated from above in terms of Dgq, and so this factor can
be absorbed into Cs; if we choose Cs; sufficiently large. Hence together with

(8:3.13) and Ng(SI9) < Nk(3o), (8:5.16) implies (8:4.1T). o

Proof of Corollary[8.4.11] Let < be a non-zero ideal of Ok which is a reduced
index with respect to O/K, and let Io(a) = I for some @ € O. Denote by
P1,..., P, the distinct prime ideal divisors of J in K, by S the set of places of
K consisting of the infinite places and the finite places corresponding to the
prime ideals pi,..., p; of Ok, and let .7 := O () Ok. Then Corollary
implies that @ = na* + a with some 17 € ., a € Og and «* € O such that H(a™)
satisfies (§.4.11) with Ng(J) = 1. Further, we have

n(n-1)

()2

Since, by assumption J is a reduced index with respect to O/K, n must be a
unit in Ok. Using (8:4.10), for N = Nk (J) we have

SD (ﬂ!*) =3.

log N = log Nk (3o (@) (8.5.17)
<log |NK/Q (Dr/k (Cl*))| < Crih(a’),

provided that N > N;. Here C7;, N; and Cy,,...,C7s below are effectively
computable positive numbers that depend only on the parameters listed in

Corollary [8:4.11] Further, implies that 7 > 0 if N, is sufficiently large.
Together with Wy < (log* Ps)’, Corollary [8.4.10| gives

ha*) < Chy (Ps (log” Ps)) ™. (8.5.18)

Using the inequality ¢ < C74Ps/log Ps from prime ideal theory and the fact

that log Ps > Cys if N, is large, (8:4.12) follows from (8:5.17) and (8:5.18).

O

Proof of Theorem[8.4.14] Let « be an algebraic number with degree n > 2
and discriminant Dx(a) € 605 over K, and suppose that « is integral over
Os . Then its monic minimal polynomial, say f, over K is also of degree n and
D(f) € 60j. Further, f has its coeflicients in Oy. It follows from Theorem
23] that f is Og-equivalent to a monic polynomial f* in Os[X] such that,
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for H(f"), holds. Then f* has a zero o* which is Og-equivalent to «
and, by Corollary H(a*) < (2H(f*))". The assertion now immediately
follows. O

Proof of Corollary[S4.13] Let Q be an effectively given algebraic closure of
Q and let 4 be the set of a € @ of degree n > 2 over K and with discriminant
Dg(a) = 6 over K which are integral over Og. Take @ € 4. Then its minimal
polynomial, say f, over K is of degree n with discriminant 6 and f € Og[X].
By Corollary we have f(X) = f*(X + a) for some a € Og and monic
f* € Os[X] such that H(f*) satisfies (8.2.8). Then ¢* := a + a is a zero of
f*. By Theorem [3.5.2] this leads to a finite set of numbers a* representing the
strong Og-equivalence classes of elements of Z.

Suppose now that K, S and ¢ are effectively given. Using Lemma
(3.5.1) and some algorithms from Section[3.7] from (8:2:8) one can compute an
upper bound C such that H(f*) < C for all polynomials f* considered above.
One can compute a finite set of monic polynomials f* € K[X] of degree n
containing all such polynomials of height at most C. For each of the polyno-
mials f* one checks whether it belongs to Og[X], has discriminant D(f*) = ¢
and whether it is irreducible over K. Subsequently one computes the zeros in
Q of all polynomials f* satisfying these conditions. In this way one obtains a
subset #* of # representing the strong Og-equivalence classes of . Finally,
one can compute a full system of representatives, containing one element from
each strong Ogs-equivalence class, by checking for each pair of elements in
PB* whether their difference is in Og. This completes the effective part of our
proof. O

Proof of Corollary[S4.16] Let again Q be an effectively given algebraic clo-
sure of Q. Let @ be an algebraic integer in Q with [K(a) : K] = n > 2 and with
discriminant Dg(a) € 605 over K, and let f € Ok[X] be its minimal polyno-
mial over K. Then D(f) € 60y. By Corollary 8.2.8] there are a € Ok, n € &7
and f* € Ok[X] such that f(X) = 7"f*(7"'(X + a)), and for H(f*) (8.2.9)
holds. This implies that @ = na* — a for some zero o of f*. Since clearly the
number of possible f* is finite, for the set 7 we may take the union of the sets
of zeros of the polynomials f*.

Suppose now that K, S and & are effectively given. Then using (8.2.9),
Lemma and some algebraic number-theoretic algorithms from
Section one can compute a number C such that H(f*) < C. Similarly as
in the proof of Corollary one can compute a finite set of irreducible,
monic polynomials f* € Og[X] of degree n and with D(f™) € 6O, containing
all such polynomials of height at most C. Then by computing the zeros in Q



8.6 Notes 187

of these polynomials we obtain a set .27 as above. This completes the effective
part of our proof. O

Proof of Corollary[8.4.17] We proceed in a similar way as in the proof of The-
orem 8.4.14l Let Q be an effectively given algebraic closure of Q and let a be
an algebraic number of degree n > 2 over K which is integral over Os and
which satisfies (8:4.14). Denote by f(X) the monic minimal polynomial of &
over K. Then f(X) is of degree n with coeflicients in Og and with D(f) € 60g
and f(0) € uOj. Then it follows from Theoremthat f(X) = e f*(eX),
where & € Oj, f* is a monic polynomial in Og[X] satisfying @) But o
is a zero of f*. Hence, by Corollary [3.5.3] H(ea) < 2"H(f*). Observing that
d <2s+2and < s, (8:4.15) immediately follows. m]

Proof of Corollary[8.4.18 Letn € 0; 3 with given degree n > 2 and discrim-
inant Dg(n) € 60 over K. By Theoréml@with u =1, there is £ € O}
such that for n* := en we have h(n*) < Cys, where Cyg is effectively com-
putable in terms of n, s, Pg, Dg, and Ng(6). By Northcott’s Theorem, there are
only finitely many possibilities for 7*. This proves the existence of a set & as
stated. Further, if we assume that K, S, ¢ are effectively given, then we can
effectively compute all parameters occurring in C7¢ and thus, Cyg itself, and
then a finite set ¢ containing all n* € Q with i(np*) < Cye and of degree n.
Then for & we can take the set of all 5* € ¢ with [K(n") : K] = n, n* € §0%,
Dg(") € 6045 . We can determine & by by computing for each n* € ¢
the monic minimal polynomial f* of * over K, and checking if f* € Og[X],
f7(0) € O, D(f*) € 605. This completes our proof. m]

8.6 Notes

In this section we make some historical remarks, and make mention without proof on
some generalizations and other applications over rings of S -integers of number fields.
Further generalizations and applications over arbitrary finitely generated integral do-
mains over Z will be discussed in Chapter@

8.6.1 Historical remarks

As was mentioned before, the main results of this chapter are Theorems[8.2.T]and[8:2.3]
In the special case when S consists of all infinite places, Theorem [8.2.3| and Corol-
lary m (concerning polynomials) were first proved with weaker bounds in [Gydry
(1978a)]. In the general case, the first quantitative version of Corollary [8:2:8] can be
found in [Gy6ry (1978b)]. An earlier version of Theorem [8.2.1| was first established
in [Gy6ry (1984)] without using étale algebras. Corollary [8.4.16|(concerning algebraic
integers) was obtained in quantitative form in [Trelina (1977a)] over Q, and indepen-
dently in [Gy6ry (1978b)] in the general case. Less general and weaker versions of
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Corollary (on index form equations) were first established in [Gydry and Papp
(1977, 1978)] and, over Q, in [Trelina (1977b)]. Theorem@] (concerning the degrees
of the polynomials involved) was proved with a much weaker bound in [Gy&ry (1984)].
The other results presented in the chapter are generalizations or improvements of the
corresponding results of [GySry (1978a, 1978b, 1980a, 1980b, 1981b, 1981c, 1984,
1998, 2006), Gy6ry and Papp (1977, 1978) and Trelina (1977a, b)]. As was already
mentioned, the results involving étale algebras are new, not yet published.

8.6.2 Generalizations and analogues

e Corollary was generalized with weaker bounds to more general decomposable
form equations, see [Gy&ry (1981a, 1981b) and Evertse and Gy6ry (1988b)].

e Generalizations to the so-called “inhomogeneous” case were obtained by Gadl, see
e.g. [Gaal (1986)].

e Versions of Theorem and Corollary with larger bounds were extended to
the case when D(f) is not necessarily different from zero. Then, considering the corre-
sponding equations with f, instead of f, where f; is the maximal square free divisor of
f in Og[X], resp. in Og[X], one can get an effective result of the same type as in the
case D(f) # 0; such results can be found in [Gy&6ry (1981c, 1998)].

e Some results of this chapter have function field analogues. We present some of
these, due to [Gy6ry (1984, 2008b)], [Gaal (1988)] (characteristic 0) and [Shlapen-
tokh (1996)] (positive characteristic). For basic concepts, we refer to [Mason (1984)]
and [Evertse and Gy&ry (2015), chaps. 2 and 7].

We first consider the zero characteristic case. Let k be an algebraically closed field
of characteristic 0, k(¢) the field of rational functions in the variable ¢ and K a finite
extension of k(7). Denote by My the set of discrete valuations on K with value group Z
that are constant on k. The height of @ € K (with respect to K) is defined as Hgx(a) :=
= Yven,, min(0, v(a)). We note that Hx(a) > 0 for @ € K. For a finite subset S of My
containing the infinite valuations, i.e., the valuations v with v() < 0, @ € K is called an
S -integer if v(a) > 0 for v € Mg \ S. The ring of S -integers is denoted by Oy .

Let G be a finite extension of K, § € Os \ {0} and n an integer > 2 and consider the
equation

D(f)=¢6 inmonic f € Og[X] of degree n

having all their zeros in G. 8.6.1)

As in the number field case, two monic polynomials f, f* € Og[X] are called strongly
Og-equivalent if f*(X) = f(X + a) for some a € Ogs. In that case they have the same
discriminant. If f € K[X] of degree n > 2 and non-zero discriminant, then every monic
polynomial f* € Og[X] that is strongly Os-equivalent to A" f(X/1) with some A € G*
is called special. It is easy to see that equation may have infinitely many strong
Os-equivalence classes of special polynomial solutions. On the other hand, it follows
from a result of [Evertse and Gy6ry (1988a)] that the number of strong Og-equivalence
classes of non-special polynomial solutions of (8:6.1) is finite.

The following effective version was proved in [Gy&ry (2008b)]. Let s denote the
cardinality of S, d the degree of G over K, and g¢ the genus of G over k.

Theorem 8.6.1 If f € Os[X] is a solution of equation (8.6.1), then f is strongly
Og -equivalent to a monic polynomial f* € Og[X] such that

Hg(@") <52n - 1)(d(s + Hg(6)) + 2g6 — 2) (8.6.2)
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for each zero & € G of f*.

Further, f is special or f* belongs to a finite, effectively determinable subset of Os[X],
which depends only on K, S, G, 6 and n.

Using the bound in (8:6.2) one can easily derive a bound for the heights of the coef-
ficients of the polynomials f* under consideration.

Open problem Does the finiteness of the number of strong Os-equivalence classes
of non-special polynomial solutions in Theorem [8.61] remain valid without fixing the
field G?

Let now L be an intermediate field between K and G of degree n > 2 over K and
denote by Ogs . the integral closure of Og in L. Consider the equation

DL/K((I) =f§ inae OS,L- (863)

Two elements «, @ of Oy ; are called strongly Os-equivalent if o* —a € Os. They have
the same discriminant. Theorem[8.6.1]implies the following.

Corollary 8.6.2 Ifa € Os is a solution of equation (8.6.3), then it is strongly Os-
equivalent to an «* whose height Hg(a") does not exceed the bound occurring in .
Further, o« belongs to a finite, effectively determinable subset of Oy 1, which depends
onlyon K, S, L and é.

Proofs  Theorem [8.6.1] was proved in [Gy6ry (2008b)] and Corollary [8.6.2] with a
different bound, in [Gadl (1988)]. Both proofs depend on Mason’s effective theorem
concerning homogeneous unit equations in three unknowns in function fields, see [Ma-
son (1984)]. m]

The bound (8:6.2) can be compared with the bound (2.17) of [Gy&ry (1984)], ob-
tained over function fields of several variables where the ground field k is not neces-
sarily algebraically closed. That result of Gy6ry led to applications, among others to
power integral bases over function fields. Corollary [8.6.2]has a similar application over
Os, see [Gadl (1988)].

e Some results of [GySry (1984)] and [Gadl (1988)] obtained for function fields of char-
acteristic 0 were extended in [Shlapentokh (1996)] to the positive characteristic case.
Though the characteristic 0 results in their original form are not true for positive char-
acteristic, one can still effectively classify polynomials with a given discriminant over
function fields of positive characteristic.

We state special cases of some results of Shlapentokh. The following notation is
used. Let ¢ = p™ be a power of a prime p. For a finite extension L of the rational
function field F,(#), denote by M the set of discrete valuations on L of value group
Z. We define the degree degv of a valuation v € M, to be [k, : F,l where Fy is the
algebraic closure of F, in L and k, is the residue class field of v. Then the height of
« € L with respect to L is given by Hy (@) := — Xy, degvmin(0, v(a)).

Now let K be a finite extension of F,(¢), S a finite set of discrete valuations on K
containing all valuations v with v(¢) < 0, Oy the ring of S -integers of K, i.e., the ring of
elements @ with v(e) > Oforall v € Mg\ S, and G a finite extension of K with genus g
over F,. The following theorem of Shlapentokh can be regarded as an analogue of the
first part of Theorem 1 of [Gy&ry (1984)], obtained over function fields of characteristic
0.
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Theorem 8.6.3 Let f € Os[X] be a monic polynomial of degree n > 2 with non-zero
discriminant D(f) and with zeros ay, . .., a, € G. Assume that [G : K] > n. Then either
A(f) := max Hg(e; —a;j) < Cy,

1<i<j<n

or for each pair (i, jywith 1 <i< j<n,

(CY,- _ a/j_)n(n—l) — D(f)y,-pj”,

where y;; is a non-constant unit of the integral closure of Os in G, t;; is a non-negative
integer, and Hg(y;;) < C,. Here Cy and C, are effectively computable numbers that
depend only on Hg(D(f)), K, S, |G : K] and gg.

Proof The proof of Shlapentokh depends on Mason’s effective theorem on unit equa-
tions over function fields of positive characteristic, see [Mason (1984)]. m}

As is pointed out in [Shlapentokh (1996)], the results in the positive characteristic
case are weaker than the corresponding results for the case of characteristic 0. The
relative weakness of Theorem [8.6.3] is due to the second case of the theorem which
does occur. In that situation, A(f) cannot be bounded above in general. Further, it is
shown that even if one has a bound on A(f), one still could not conclude that the zeros
of f are strongly Og-equivalent to an element of bounded height.

When the degree of f is not divisible by the characteristic p, Theorem [8.6.3]implies
the following.

Corollary 8.6.4 Let f € Os[X] be asin Theoreml@ If p does not divide the degree
of f, then f is strongly Os-equivalent to a polynomial f* € Os[X] whose coefficients
can be described effectively in the sense of [Shlapentokh (1996)].

This can be compared with Theorem [8.6.1]
More complicated is the situation when the characteristic p divides the degree of f.

Corollary 8.6.5 Let f € Os[X] be as in Theorem[8.6.3] and let a be a zero of f in
G. If p divides the degree n of f, then there exist a non-negative integer r with p" < n,
elements cy, . ..,cr+1 of Os, and @ € G such that cy, . ..,c, and @ can be described
effectively and

i
E Ci(l'p +Cry1 = a’.

i=0

As in the zero characteristic case, the results of [Shlapentokh (1996)] have applica-
tions to integral elements of given discriminant and to power integral bases.

8.6.3 The existence of relative power integral bases

Let K be an algebraic number field, L/K a field extension of degree n > 2 with rela-
tive discriminant d;,, and O, the ring of integers of L. By a theorem from [E. Artin
(1950)], L/K has a relative integral basis if and only if the index of a primitive integral
element « of L with respect to L/K is principal. Consequently, if d;/x is principal and
for example the class number of K is odd, then L/K has a relative integral basis. Numer-
ous special relative extensions L/K have relative power integral bases. Further results
and references concerning the existence of relative power integral bases can be found
e.g. in [Hasse (1980)], [Cougnard (1988)], [Schertz (1989)], [Cougnard and Fleckinger
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(1990)], [Narkiewicz (1974)], [Thérond (1995)], [Akizuki and Ota (2013)] and [H.Y.
Jung, J.K. Koo and D.H. Shin (2014)].

In case of cubic and quartic relative extensions, efficient algorithms were established
in [Gadl (2001)] and [Gadl, Pohst (2000)] for finding all relative power integral bases.

8.6.4 Other applications

e Let f € Z[X] be a monic polynomial of degree n > 3 with discriminant D(f) # O,
and consider the solutions x,y € Z of the equation f(x) = y", where m > 2. As
was mentioned in Subsection @ there are effective bounds for |y|, which depend on
m,n and D(f), but not on the height of f. Using an earlier variant of Corollary [8:2.8]
Gyo6ry and Pintér [GySry and Pintér (2008)] showed that for each solution (x,y) with
gcd(y, D(f)) = 1, |y|" can be effectively bounded in terms of the radical of D(f), i.e.,
the product of the distinct prime factors of D(f). It should be noted that |D(f)| can be
arbitrarily large with respect to its radical. For further related results, we refer to [GySry
and Pintér (2008)] and [Gydry, Pink and Pintér (2004)].

o Following Gy&ry’s method of proof, von Kénel [von Kinel (2011, see also 2014a)]
established a slightly weaker version of Theorem[8.2.7]and used it in his effective proof
for the hyperelliptic Shafarevich conjecture. A similar application of Theorem([8:2.7 will
be given in Chapter [T8]to prove an improved version of von Kiinel’s result concerning
the Shafarevich conjecture.

e A recent application of Theorem 8§ of [Gyo6ry (1984)] and Corollary @ of this
chapter is given in [Petsche (2012)] to critically separable rational maps in families.
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The number of solutions of discriminant
equations

We continue the study of discriminant equations, both in monic polynomials
with coefficients in the ring of S-integers of a number field, and in elements
from an order of an étale algebra. In the previous sections we obtained effective
finiteness results, in which we showed that the discriminant equations have
only finitely many equivalence classes of solutions (polynomials or elements
of an order), and that a full system of representatives for the equivalence classes
can be determined effectively.

In the present chapter, our focus is on estimating from above the number
of equivalence classes, and to obtain uniform bounds depending on as few
parameters as possible. Again our results are formulated over the ring of S-
integers of a number field.

Let K be an algebraic number field, and S a finite set of places of K, con-
taining the infinite places. Our first result deals with equations

D(f) € 50

to be solved in monic polynomials f € Og[X] having their zeros in a prescribed
finite extension G of K. Here, we do not fix the degree of f. Our general result
gives an upper bound for the number of Og-equivalence classes that depends
only on [G : Q], the cardinality of S, and the number of prime ideals of Og
dividing d. In the special case K = Q, Os = Z, we get an upper bound for the
number of Z-equivalence classes depending only on [G : Q] and the number
of primes dividing 6.
Other results deal with the discriminant equation

DQ/[((CY) € 50;
to be solved in @ € O, and as a particular case of this, with the “equation”

Osla] =0

192
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where O is an Og-order of a given finite étale K-algebra Q2. Among other
things, we obtain that the number of Og-equivalence classes of @ € O with
Os[a] = D is bounded above by a quantity that depends only on [Q : K] and
the cardinality of S, and is otherwise independent of O. In the special case
Os = Z, this gives a bound depending only on [Q : Q]. These results are stated
in Section[9.2]and proved in Sections [9.3]and

Some of the above results were proved in [Evertse and Gyd&ry (1985)] and
[Evertse and Gyory (1988a)] with weaker bounds, but in the latter paper over
finitely generated domains instead of just over the § -integers.

The following result will be proved not only over the S -integers, but over ar-
bitrary integrally closed domains of characteristic O that are finitely generated
over Z. Let A be such a domain and K its quotient field. Then for every finite
étale K-algebra Q with [Q : K] > 3, there are only finitely many A-orders O
of Q with the property that there are more than two A-equivalence classes of
a € O with Ala] = O. It is shown that this bound 2 is best possible. The pre-
cise result is stated and proved in Section[9.5] This result is a generalization of
work of [Bérczes (2000)] and [Bérczes , Evertse and Gy6ry (2013)]. In the lat-
ter paper, this result was proved in the special case that € is a finite extension
field of K.

In Section[0.1)we present all above results in the special case that the ground
ring is Z to give the reader some of the flavour.

9.1 Results over Z

Let G be an algebraic number field of degree g, and § a non-zero rational
integer. Denote by w(6) the number of distinct primes dividing 6.
We consider the equation

D(f)=¢6 inmonic f € Z[X] with deg f > 2,

d1.1
having all its zeros in G. ©.1.1)

We recall that two monic polynomials fi, f, € Z[X] are called Z-equivalent
if H(X) = (£1)%e/i fi(£X + a) for some a € Z. Then they have the same
discriminant. Our first result is as follows.

Theorem 9.1.1  The polynomials f with (9.1.1)) lie in a union of at most
exp (217g(w(6)+1))
Z-equivalence classes.

A feature of this bound is that it depends on few parameters only, and that it
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does not impose any restrictions on the degree of f. The main tool in the proof
is Theorem

We now turn to discriminant equations for elements of an étale algebra. Let
Q be a finite étale Q-algebra and O a Z-order of Q. View Q as a subfield of
Q. Recall that two elements @, @’ € O are called Z-equivalent if @ = +a’ + a
for some a € Z. Then they have the same discriminant. Further, by (5.3.3), for
every @ € O with Q[a] = Q we have Dq)g(a) = Io(@)? Do, where Io(@) =
[O : Z[a]] is the index of Z[«a] in © and where Dyg is the discriminant of O,
that is Do = Dqjq(wi, . . ., w,) for any Z-basis {wy, . .., w,} of O.

We want to study the discriminant equation

DQ/Q(Q’) =0 inaeD,

where ¢ is any non-zero integer. By the remark just made, for this equation
to be solvable one has to require that § = I>?Dg for some positive integer 1.
Therefore we consider the discriminant equation

Dgjo(@) = Dy ina € O, 9.1.2)
or, equivalently, the index equation
Io(@) =1 inaed, 9.1.3)

where [ is a positive integer.
In Lemma [5.4.3] we saw that if [Q : Q] = 2, then the solutions of (9.1.2),
(0.1.3) lie in at most one Z-equivalence class. Henceforth we assume that

[Q:Q]=n=>3.

Our next result gives an explicit upper bound for the number of Z-equivalence
classes of solutions. By w(I) we denote the number of distinct primes dividing
I

Theorem 9.1.2 Equations , have at most

25n2(¢u(1)+ 1)

Z-equivalence classes of solutions.

The proof is based on Theorem[4.3.3]

Now choose a Z-basis of the form {1, w,,...,w,} of O. Such a basis exists
by Lemma([I.6.3] Then every Z-equivalence class contains up to sign precisely
one element of the shape xyw, + -+ + x,w, with x,,...,x, € Z. Denote by
Dqjg (Xows + - -+ + X,w,) the discriminant form corresponding to the above
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basis. According to (5.3:3), equations (9.1.2) and (9.1.3) are equivalent to the
discriminant form equation

Dojg(xpwy + -+ + Xyw,) = Dy inxa,...,%, €Z, (9.1.4)

in the sense that a pair of solutions +(x», ..., x,) of (9.1.4) corresponds to the

Z-equivalence class of )", x;w; in (9.1.3)) or (9.1.2). Thus, Theorem has

the following equivalent formulation.

Theorem 9.1.3 Equation has at most

7 % 25n2(w(1)+1)

solutions.

A special case of equation (9.1.4) was considered in [Evertse and Gy&ry
(1985), Thm. 10]. In fact, that theorem gives, for / = 1 and Q = L an algebraic

number field, an upper bound (4 738 )n—2 for the number of solutions of (9.1.4)),
where g is the degree of the normal closure of L over Q.

Since the discriminant form factors into linear forms over Q, equation (9.1.4)
is a special type of decomposable form equation. Thus, another possibility to
derive an explicit upper bound for the number of solutions of (9.1.4) would be
to apply the general results on the number of solutions of decomposable form
equations from [Evertse (1996)] and [Evertse and Gyory (1997)]. However,
this leads to larger bounds.

We now consider monogenic orders. Clearly, we have © = Z[a] with @ € O
if and only if Io(@) = [O : Z[a]] = 1. By applying Theorem [9.1.2 with I = 1
we obtain:

Theorem 9.1.4 The set of @ € O with Z[a] = D is a union of at most

2

25n
Z-equivalence classes.

In Section[9.2) we present generalizations of these results over the S -integers
of a number field.

One can show that for “most” orders O, the number of Z-equivalence classes
of @ with © = Z[a] is much smaller than the bound in Theorem [0.1.4} It
will be convenient to adopt the following terminology. An order O of Q is
called k times monogenic if there are at least k Z-equivalence classes of @ with
O =Z[e].

Our result is as follows.
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Theorem 9.1.5 Let Q be a finite étale Q-algebra with [Q : Q] > 3. Then there
are only finitely many orders O of Q such that O is three times monogenic.

In Section 0.5 we state and prove a generalization of this result to orders
over integrally closed finitely generated domains of characteristic 0.

We observed in Remark that if © is an order of a quadratic étale Q-
algebra, then there is at most one Z-equivalence class of @ with Z[«a] = O, i.e.,
it is at most one time monogenic.

Theorem [9.1.5| is a refinement of work of [Bérczes (2000)]. In [Bérczes,
Evertse and Gydry (2013)], the authors proved this result in the special case
that Q = L is an algebraic number field.

It is possible to produce examples of finite étale Q-algebras Q that have
infinitely many two times monogenic orders. Let again Q be a finite étale K-
algebra with [Q : Q] > 3. Assume that for every proper Q-subalgebra T of Q,
the rank of the unit group O, of the ring of integers of I is smaller than that
of Og,. Then there are infinitely many distinct orders of € of the shape Z[¢]
where £ € OF,. For these orders we have Z[g] = Z[e™ "], and & and &7! are
not Z-equivalent. In Section [9.5] we generalize this construction to orders in a
finite étale K-algebra over a finitely generated domain and provide full details
of the arguments sketched above. In the Notes in Section 0.6] we recall from
the literature some more general constructions of infinite classes of two times
monogenic orders in a finite étale K-algebra.

9.2 Results over the S -integers of a number field

Let K be an algebraic number field, and let S be a finite set of places of K,
containing the infinite places. Given 6 € K*, we denote by wg () the number
of places v € Mg \ S such that |5], # 1. Further, for a fractional ideal a of Og
and v € Mg \ S, we put |a], := max{|a|, : @ € a}. Then we denote by wg(a)
the number of v € Mg \ S with |a], # 1. This is equal to the number of prime
ideals of Og occurring in the prime ideal factorization of a.

Our first result concerns the equation

D(f) € 605 inmonic f € Og[X] with deg f > 2,

2.1
having all its zeros in G, ©-2.1)

where G is a finite extension of K and ¢ a non-zero element of Og. The set
of solutions of (9.2.I) can be divided into Og-equivalence classes, where two
monic polynomials fi, f» € Og[X] are called Og-equivalent if there are a € Oy,
£ € O such that 2(X) = &~ degfi £ (X + a).

We prove the following.
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Theorem 9.2.1 Let K be an algebraic number field, S of finite set of places
of K containing the infinite places, G a finite extension of K, and 6 a non-zero
element of Og. Put g :=[G : K], s :=|S|.

(i) The polynomials f € Os[X] with (0.2.1) lie in a union of at most

exp (217g(s+w5 (6)))

Ogs -equivalence classes.

(ii) For every polynomial f with (9.2.1) we have
degf < 216g(s+ws(6)).

The proof depends heavily on Theorem [.3.3]

Notice that in the case Og = Z we have s = 1, and ws(9) is precisely the
number of primes dividing é. So in this case, Theorem [9.2.1] gives Theorem
9. 1.1]

Let again K be an algebraic number field and S a finite set of places of K,
containing the infinite places. Further, let Q be a finite étale K-algebra, and O
an Og-order of Q. We consider discriminant equations Do,k (@) € 605 to be
solved in @ € O. Recall that the solutions of this equation can be divided into
Os-equivalence classes, where two elements «, 8 of O are called Oy -equivalent
if 8 = ea +afor some a € Oy, € € O5. By we have an identity of ideals

(Dajk(@))s = Io(@)* - dojoy,

where Jp(@) = [O : Ogla]]o, is the index ideal of Os[a] in O with respect
to Os and we write (8)s for the fractional ideal SOs. Hence there is no loss of
generality to assume that (8)g = 32 0g J0, for some non-zero integral ideal 3
of Og. This leads us to consider the discriminant equation

(Dgx(@))s = I*dgjo, inae . 9.2.2)

Theorem 9.2.2 Let K be an algebraic number field, S a finite set of places
of K containing the infinite places, 3 a non-zero ideal of Og, Q a finite étale
K-algebra, and O an Ogs-order of Q. Suppose S has cardinality s, and assume
that [ : K] =:n > 3.

Then the set of « € O satisfying (9.2.2)) is a union of at most

25n2(s+w3 ()

Ogs -equivalence classes.

The proof is based on Theorem The most important feature of the upper
bound is, that it is independent of the order O. In the case [Q2 : K] = 2, Lemma
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(5:43) gives that the solutions of (9.2.2) lie in at most one Og-equivalence
class.
In the case Og = Z this result gives Theorem[0.1.2]
An immediate consequence concerns monogenic orders. Consider the equa-
tion
Os[al= O ina e O. (9.2.3)

Obviously, this is equivalent to equation (9.2.2)) with I = Og. Now from The-
orem [9.2.2] we immediately obtain the following result which we have stated
as a theorem because of its importance.

Theorem 9.2.3 Let K, S, Q, O be as in Theorem[9.2.2] Then the set of @ € O
with (9:2.3) is a union of at most

25n2s

Ogs -equivalence classes.

In the case Og = Z we obtain Theorem [9.1.4] Remark [5.4.9] gives an upper
bound 1if [Q : K] = 2.

A similar result with a different upper bound was derived in [Evertse and
Gy6ry (1985)] in the special case where ) = L is a finite extension of degree
n over K. According to Theorem 11 of that paper, the set of @ € O with © =
Og[a] is a union of at most

(4-70)"

Os-equivalence classes, where g is the degree of the normal closure of L over
K.

In Section[9.5|we state and prove a result that implies that for any given finite
étale K-algebra €, there are only finitely many Og-orders of Q for which there
are more than two Og-equivalence classes of o with (9.2.3); in fact we prove
this for arbitrary integrally closed finitely generated domains of characteristic
0.

9.3 Proof of Theorem

In what follows, K is an algebraic number field, and S a finite set of places of
K of cardinality s, containing the infinite places. We start with a simple lemma
which is used also in the proof of Theorem[9.2.2}

Let G be a finite extension of K of degree g, and ¢ a non-zero element of Oy .
For n > 2, denote by .%, the set of monic polynomials f € Os[X] of degree n
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with D(f) € 605, having all their zeros in G. Our strategy is as follows. We first
estimate the number of G-equivalence classes in .%, where two polynomials
fi, f € F, are called G-equivalent if £(X) = u~ %8/ fi(uX + a) for some
a € G, u € G*. As it turns out, for n sufficiently large the number of G-
equivalence classes is 0 and this implies part (ii). Next we estimate the number
of Og-equivalence classes going into a G-equivalence class, and finally, we
sum over n. This will prove part (i). We remark here, as can be easily verified,
that .7, lies in a single G-equivalence class.

Assume n > 3. Instead of .%, we consider the set .7}, consisting of all triples
(f, a1, as) such that f € %, and a, a, are two distinct zeros of f in G. Two
triples (f1, a1, @), (f2,51,52) are called G-equivalent if f,(X) = u~ degfi £ (uX+
a), @) = uBy + a, ay = uPBy + a for some a € G, u € G*. With (f, a1, an) € ,
we associate a set

@2 —ay

T(f,al,az)={ai_a' : i=3,...,n},

where a3, ..., @, are the other n — 2 zeros of f. We need the following easy
fact.

Lemma 9.3.1 Let (fi, 1, @), (f2.81.82) € Ty Then (fi, a1, @), (f2.51.52)
are G-equivalent if and only if T(fi, a1, @2) = 7(f2, B1,52)-

Proof 1If (fi,a1,2), (f2,B1,82) are G-equivalent then there are a € G, u € G*
such that @; = uB; + afori = 1,...,n, where a3, ..., a, are the other zeros of
fi and B3, ..., [, the other zeros of f,. This implies at once that 7(fi, @1, @) =
7(f2,81,52)-

Conversely, assume that 7(f1, a1, @) = 7(f2,51,52). Let a3, ..., a, be the

other zeros of fj. After an appropriate permutation of the other zeros 33, . . ., 8,
of f,, we may assume that

el Pi=Bi fori=3,...,n.

®m-—a PP
This implies @; = uB; +a fori = 1,...,n, with u = (a2 — a1)/(B2 — B1),
a = a; — uf;. Hence (fi, a1, a2), (f2,01,52) are G-equivalent. O

Completion of the proof of Theorem[9.2.1] Let T denote the set of places of G
lying above the places in S, and above the places p € Mg \ S with ord,(6) > 0.
Then |T'| < g(s + ws(6)) and thus, the group of T-units O} has rank

rank O < g(s + ws (8)) — 1. 9.3.1)

Take (f,a;,a2) € J,, and let as,...,a, be the other zeros of f. Then
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ap, ...,y lie in the ring of integers Oy and
D= [] (@-ap?eo;.
I<i<j<n
Hence
a—a;e07 fori,j=1,...,n,i# j.

It follows that the pairs in the set

{(_ _) 3} 932)
) — ] ay) — @)

are all solutions to the equation
x+y=11inxye 0. 9.3.3)
By estimate (9.3.1)) and Theorem .3.3] equation (9.33) has at most

28><2rank O +8 — 216(g+w5(5))—8 =N

solutions. This implies that for the set in (9.3.2) we have at most (nlfz) possi-
bilities. This gives at most (,111/ 2) possibilities for the set 7(f, a;, @;). By Lemma
, this gives at most (n[f 2) possibilities for the G-equivalence class of (f, a1, @3),

hence at most (nﬁ’ 2) possibilities for the G-equivalence class of f. As we have

seen, this is true also for n = 2.
A consequence of this is, that if %, # 0 thenn — 2 < N, and so

n< 2 l6g(s+ws (5)).

This proves part (ii).

We now fix n > 2. We consider a given G-equivalence class of polynomials
f from 7, and estimate the number of Og-equivalence classes contained in it.

Fix a polynomial f; in the given G-equivalence class. Then for any other
polynomial f in this class we have f(X) = u™ fy(uX + a) for some a € G,
u € G*. Since D(fy) € 60%, D(f) € 60%, D(fy) = u"" D D(f) we have "V ¢
05.

We subdivide our given G-equivalence class into subclasses, where the sub-
class to which a polynomial f belongs is determined by the coset uOy . Clearly,
the number of subclasses is at most the cardinality of the quotient group H/Oy,
where H is the group of u € G* with u"""D € O%.

We estimate from above the cardinality of H/Oy . First note, that the torsion
subgroups Hors and Oy o of H, Og, respectively, are cyclic since they are
contained in a field. Hence O% , . has index dividing n(n — 1) in H. Further,
05 /05 H|/H,ors are both free groups of the same rank s — 1, and O / O

S tors
S tors? S tors
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has index at most (n(n — 1))*~" in H/Hiys. It follows that |H/O%| < (n(n—1))".
So this last quantity is an upper bound for the number of subclasses.

We show that a subclass is contained in an Og-equivalence class. Suppose
fi, f> are in the same subclass. Then there are u; € G*, a; € G such that
[X) = ;" fo(w;X + a;) for i = 1,2 and & := upu;' € Oj. This leads to
LX) =" fi(eX+a) with € € O, a € G. We can order the zeros a1, ..., @, of
fi and the zeros B, ..., B, of f in such a way, thata; = gB;+afori=1,...,n.
Since £ € O and the «;,; are integral over Os, it follows that a is integral
over Og. On the other hand, a = %Z:’:l(ai - &B;) € K. So a € Os since Oy is
integrally closed. This proves that fi, f> are Os-equivalent.

It follows that each G-equivalence class of polynomials in .%, is a union of
at most (n(n — 1))° Os-equivalence classes. Consequently, .%,, that is the set
of polynomials of degree n with (9.2.1)), is a union of at most (n(n — 1))* - (nlfz)
Os-equivalence classes, where N = 2 168(s+ws(8)-8

It now follows that the complete set of polynomials with (9.2.T) (without
any restriction on the degree), is a union of at most

N+2 i N
;(n(n— 1) -(n_z)

00 —

N"
K s(n-2) | 17g(s+ws (6))
<4 E 2 —(n_z)!Sexp(Z s )

n=2

Ogs-equivalence classes. This proves part (i). O

9.4 Proof of Theorem [9.2.2

Let for the moment K be any field of characteristic 0 and Q a finite étale K-
algebra with [QQ : K] = n > 3. Recall that Q has precisely n distinct K-
homomorphisms Q — K, which we denote by x — x@ (i = 1,...,n). It
follows from Lemma that Q = K[a] if and only if oV, ...,a®™ are
distinct. For @ € Q with Q = K[a] we define the ordered (n — 2)-tuple

a® — o g™ g
(@) = (a(2> —aD T @ am)'

9.4.1)

Two elements a, 8 € Q are called K-equivalent, if 5 = ua + a for some a € K,
u € K*. We start with a simple lemma, which will be used also in the proof
of Theorem [9.5.1] Therefore, we prove it in a form more general than needed
here.

Lemma 9.4.1 Let A be an integrally closed domain with quotient field K of
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characteristic 0 and Q a finite étale K-algebra with [Q : K] =n > 3.

(i) Let a, B with K[a] = K[B] = Q. Then a,f are K-equivalent if and only if
(@) = 7(B).

(ii) Assume moreover that Do, k(@) and Do k() generate the same fractional
ideal of A. Then a, 8 are A-equivalent if and only if (@) = 7(B).

Proof (i) If a,B are K-equivalent, then clearly (@) = 7(58). Assume con-
versely that 7(@) = 7(8). Then there are unique u € K *, a € K such that

BY, ... 8" = u@?,...,a™) +ad,..., 1. (9.4.2)

In fact, the unicity of u, a follows since thanks to our assumption Q = K[a],
the numbers oV, . .., ™ are distinct. As for the existence, observe that ([E])
is satisfied with u = (8% — 1) /(@® - V), a = BV — uaV.

Take o from the Galois group Gal (f/K). Then x —» oc(x?) (i =1,...,n)is
apermutation of x — x (i = 1,...,n). It follows that o permutes (a'", ..., a™)
and (8, ..., ™) in the same way. So by applying o to (9.4.2) we obtain

BY, ..., = cw)@?,...,a") + o(a){,..., 1).

By the unicity of u, a in (9.:4.2) this implies o-(4) = u, o(a) = a. This holds for
every o € Gal (E/K). Soin factu € K*, a € K, that is, @, 8 are K-equivalent.
(i) It suffices to prove that any @, 8 with K[a] = K[B] = Q that are K-
equivalent and whose discriminants generate the same fractional ideal of A,
are in fact A-equivalent. Assume 8 = ua + a with u € K*, a € K. Then
Do/x(B) = u"™ V. Do k(a), hence u""~D € A*. Since u € K* and since A is
integrally closed, this implies that u € A*. Further, a = 8 — uc is in K and is
integral over A, so it belongs to A. Hence indeed, a, 8 are A-equivalent. O

We keep the notation and assumptions from Theorem Thus, K is an
algebraic number field, S is a finite set of places of K of cardinality s, contain-
ing the infinite places, Q is a finite étale K-algebra with [Q : K] = n > 3, and
D is an Og-order of Q. Further, let I be the ideal of Oy from (9.2.2)), and let S*
be the set of places of K consisting of the places in S and the places p € Mg\ S
with ord,(J) > 0. Thus, S’ has cardinality

IS = 5" 1= s + wg(J).
Define
O = OSfD.

Then O’ is an Og--order of Q. If L is a finite extension of K, we denote by Os- 1,
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the integral closure of Og- in L. Then
rank Of, ; < [L: K]s' =1 <[L: K](s + ws(J)) - 1. 9.4.3)
Lemma 9.4.2 Let a € O be a solution of (9.2.2). Then O’ = Oy-[a].

Proof We have an identity of ideals of Os/, do/jo,, = Dpjo, Os'. Indeed, by
Proposition[2.10.T]the first ideal is generated by the numbers Dok (a1, . . ., @)
(@1,...,a, € D), and clearly so is the second. Now multiplying (9.2.2) on the
left and right with Og, we obtain

Dqx(@)Os+ = doy oy,
and subsequently, using @ € O’ and Proposition[5.3.T| we get Os-[a] = O’. O

We denote by S (D) the set of solutions @ € O of (9.2.2)). Further, we denote
by G the compositum of the images of (2 under the K-homomorphisms of Q to
K.

Lemma 9.4.3 The multiplicative subgroup of (G*)"""V/2 generated by the
tuples

pa):=(a”-a?: 1<i<j<n) (@eS(O) (9.4.4)
has rank at most %n(n - D(s + ws (J)).

Proof Denote by I the group under consideration. We fix 8 € §(D) (if no
such S exists we are done) and let @ € S (D) vary. Define the fields

Kij:= K@Y +p0. 98" (1<i,j<n, i#)),

and denote by O;; the integral closure of Oy in Kj;, and by ij its unit group.
By Lemma[9.4.2] we have for any other a € S(9O) that @ = f(B) for some f €
Os/[X]. Hence fori, j = 1,...,n with i # j, the number (@ —a)/(8? — g1)
is integral over Og.. In fact, this number is a symmetric function in g%, 8,
hence it belongs to O;;. But by reversing the role of @, g, one infers that also the
multiplicative inverse of this number belongs to O;;. Hence for every a € S (D)
we have

a® — o o o
u,-j(a/,ﬁ) = m € Oij for 1,]= 1, e, n 1< g (945)
We partition the collection of 2-element subsets of {1,...,n} into classes

such that {i, j} and {7, j’} belong to the same class if and only if there exists
o € Gal(G/K) such that o-(8? + g) = B + ), o-(BDBD) = B)BY) . Then
by (0:43) and since u;;(, B) is a symmetric function in 8, Y we have

uy y(a,B) = o(u;j(a,B)) fora € S(O). (9.4.6)
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Clearly, the cardinality of the class represented by {i, j} is [K;; : K].
Denote the different classes by C1, ..., C;, and choose from each class Cy a

representative {ix, ji}. From (9.4.5), (9.4.6) it follows that
(X,‘j t1<i< ] < l’l) = (x,»l,j],...,x;,,j,)

defines an injective homomorphism from the group generated by the tuples

'Z(—(Z; =Wja,B): 1<i<j<n) (@ €SD)
into O; ; X=X O; ;.By ©43),
rank O; . <[Kj ; : K1I(s + ws () = 1 = |Cil(s + ws(I)) — 1

UesJk

for k = 1,...,t. Taking into consideration the tuple p(B), it follows that I" has
rank at most

1+ Z (ICH(s + ws(3) = 1) < 3n(n = (s + ws (). o
k=1

Proof of Theorem[9.2.2] Let O be an Og-order of Q. Notice that we have the
relations
aD — o g® _ g

+
2@ — a0 T 4@ — g

=1 (=3,...,n). 9.4.7)

We may view this as a system of equations with tuple of unknowns taken from
the multiplicative group I" generated by the tuples

a® —aD q@ _o® a® — gD o®@ _ o

2@ — oD’ @ — g’ @ — o)’ o@ — o))’

k(@) =

for @ € S(D). We want to apply Corollary £.3.3]to this system, and to this end,
we have to estimate the rank of I'.
Notice that the group homomorphism from (G*Y"=D/2 o (G*)™ 4,

(xij: 1 <i<j<d) (x31/%21, %23/ X215 -+ s Xn1 [ X21, X20/ X21)

maps, for every @ € S(D), the tuple p(e) as defined in Lemma [9.4.3] to «(e).
Together with Lemma [9.4.3] this implies that the rank of T is bounded above

by 1n(n—1)(s + ws(3)). By applying Corollary to (9:4.7), it follows that
among the tuples «(a) (@ € S (D)) there are at most

28((n(n—1)/2)(s+w5 @) +2n-5) o 25n2(s+ws(3))

distinct ones.

Notice that the tuple k(@) contains the tuple () defined by (9:4:1). So by
Lemma([9.4.1] (ii), it uniquely determines the Os-equivalence class of @. Theo-
rem[9.2.2]immediately follows. m]
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9.5 Three times monogenic orders over finitely generated
domains

For an integral domain A with quotient field K and a finite étale K-algebra Q,
we denote by Ag the integral closure of A in Q. We call an A-order © of Q
k times monogenic if there are at least k A-equivalence classes of a such that
Ala] = . In this section we prove the following theorem.

Theorem 9.5.1 Let A be an integrally closed domain with quotient field K
of characteristic O that is finitely generated over Z and let Q be a finite étale
K-algebra with [Q : K] > 3.

(i) There are only finitely many A-orders of Q that are three times monogenic.

(ii) Assume that for every proper K-subalgebra Y of C, the quotient of unit
groups Ag, /A% is non-torsion. Then there are infinitely many A-orders O of Q
that are two times monogenic.

The proof of Theorem is based on Theorem In [Bérczes, Evertse
and Gyory (2013)], the authors proved a similar result, but only in the special
case that Q = L is a finite field extension of K.

We start with some generalities on Krull domains. Let A be an integral do-
main with quotient field K. We denote by Z?(A) the collection of minimal
non-zero prime ideals of A, i.e., those non-zero prime ideals of A that do not
contain strictly smaller non-zero prime ideals.

Definition 9.5.2 A is called a Krull domain if there is a family of discrete
valuations ord, (p € #(A)) such that

(i) A={eeK: ordy(@)=0forpe ZA))};
(i) p={ae€A: ordy(a)> 0} for p € Z(A);
(iii) for every @ € K* the set of p € Z(A) with ord,(@) # 0 is finite. m

For an extensive treatment of Krull domains, see [Bourbaki (1989), chap. VII,
§1]. Clearly, the unit group of a Krull domain A satisfies

A" ={a € K: ordy(a) = 0 for p € 2(A))}. 9.5.1)
We need the following fact.

Proposition 9.5.3 Let A be an integrally closed integral domain that is finitely
generated over Z. Then A is a Krull domain.

Proof  Ashas been explained in Section[5.1] any integral domain that is finitely
generated over Z is Noetherian, and according to [Bourbaki (1989), chap. VII,
§1.3, Corollary], an integrally closed Noetherian domain is a Krull domain. O
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In what follows, we keep the notation from Theorem Let x > x®
(i =1,...,n) be the distinct K-homomorphisms of Q to K, and let G be the
compositum of the images of Q2 under these K-homomorphisms.

Proof of part (ii) of Theorem([9.5.1] 'We first prove part (ii) which is the easi-
est. By Corollary Q has only finitely many proper K-subalgebras, and
by assumption, for each of these K-subalgebras 7, the group Ag, /A%, is non-
torsion. Hence there is 7 € Ag, such that 7" ¢ A’ for every non-zero integer
m and every proper K-subalgebra Y of Q. That is, K[n"'] = Q for every non-
zero integer m. Further it follows that the elements ™ (m € Z) lie in different
A*-cosets. Now Corollary [5.4.10] implies that for every A-order O of Q, there
are only finitely many integers m with A[r"'] = O. Hence if m runs through the
non-zero integers, then A[77"] runs through infinitely many different A-orders.

We show that for every non-zero integer m, A[n"] = A[n™""] and that n",
n~™ are not A-equivalent. This clearly implies (ii). Fix a non-zero integer m.
Let f(X) = X" + a,_1 X" ' +--- 4+ ay € K[X] be the monic minimal polynomial
of 7" over K. Then f € A[X] and ay € A", and, with @, := 1,

n n—1
= _agl(zaj(nm)j), 7" =— Zaj(n—m)n—j—l.
J=1 =0

This implies A[™] = A[;7"]. Suppose that 7™ is A-equivalent to n"". Then
n™ =en™ + aforsome a € A, £ € A*. But then, " has degree at most 2 over
K, contradicting that Q = K[5] and [Q : K] > 3. This proves part (ii). m]

Proof of part (i) The idea is as follows. We first show that there are at most
finitely many K-equivalence classes of 5 €  such that

KB =Q, BeAq 9.5.2)

and

the set of @ with A[a] = A[S]

. . . 953
is a union of at least three A-equivalence classes. ( )

Next, we show that if € is any given K-equivalence class in Q then the set of
B € ¢ with (0.5.2), is a union of at most finitely many A-equivalence
classes. Clearly, any A-order with the properties specified in part (i) of The-
orem can be expressed as A[S]. By the above, the § lie in a union of
only finitely many A-equivalence classes, and so there are only finitely many
possibilities for the order A[S]. Thus, part (i) of Theorem[9.5.1]follows.

We use the following notation. Given @ € Aq with K[a] = Q and distinct
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indices i, j, k from {1, ..., n}, we put

. a® — o)
QM = o (9.5.4)
By Lemma|[I.5.1] this number is well-defined and non-zero.

Fix g with 8 € Ag and K[B] = Q, and consider those @ € Aq for which
Ala] = A[B]. Let i, j be. distjnct indices from {1,...,n}. Since @ = f(B) with
f € A[X], the number Z,Z%Z;j; is integral over A, so belongs to Ag. By reversing
the role of «, B, we see that its inverse is also in Ag. We conclude that if « is

such that Ag[a] = Ag[B], then

oD — g

ﬁ’(i) _ﬁ(j)

Now let i, j, k be distinct indices from {1, ..., n}. Using (9.3.3) and the iden-
tities

eAgfori, j=1,...,n,i#j (9.5.5)

ﬂ(ijk) + ,B(kji) =1, QWP 4 ki = q (9.5.6)
we infer that for every @ with A[a] = A[S], the pair

i kD
B Bk

is a solution to
B x + Ry =1 inx,ye A (9.5.7)
We start with a preparatory lemma.

Lemma 9.5.4 There exists a finite subset o/ of G with the following property.
Let i, j,k be any three distinct indices from {1,...,n} and B € Q with (9.5.2)
and with B0 ¢ of . Then

{aeG: 3o e Quith a = a, Ala] = Al | <2.

Proof By Corollary[5.1.3] the group Ay; is finitely generated. So by Theorem
and (9.5.6)), there is a finite subset &7 of G such that if B/% ¢ o7, then
has not more than two solutions, including (1, 1). i

Lemma 9.5.5 The set of B with (9.5.2), (0:33) is contained in a union of at
most finitely many K-equivalence classes.

Proof Assume the contrary. This means that there is an infinite sequence of
triples {(B1,,B2p.B3p) : P = 1,2,...} such that

Bip € A, KlBip) = Qforh=1,2,3, p=1,2,...; (9.5.8)

Bip, (p=1,2,...) lie in different K-equivalence classes 9.5.9)
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and forp=1,2,...,
Alpip] = AlB2p] = AlBsyl, (9.5.10)
Bip,B2p, B3p lie in different A-equivalence classes -

(so the By, play the role of 8 in the statement of our lemma). In analogy to
©5). we put

(i) (j)
By ,3;;,
ﬁ(l) ﬁ(k)
forh =1,2,3, p = 1,2,... and any three distinct indices from {1,...,n}. The
crucial observation, following at once from Lemma [9.5.4] is that there is a

finite set <7 such that if i, j, k are any three distinct indices from {1, ...,n} and
p is any positive integer, then

ﬁ(z]k) .

ﬁ(”k) ¢ o/ = two among ﬁ(”k) ﬁ(”k) ,B(”k) are equal. (9.5.11)

We start with the case n = 3. Then 7(8),,) = (,8(132)) forh=1,2,3.By 0.5.9)
and Lemma [9.4.1[(i) the numbers ﬁ(1132) (p = 1,2,...) are pairwise distinct.

. .p. “es .o
Using subsequently (9.5.11), Proposition [5.3.1] (iii) and Lemma 9.4.1](ii) we
infer that for all but finitely many p, two among the numbers ﬁhm) (h=1,2,3)
are equal and then that two among 8, (h = 1,2,3) are A-equivalent which

contradicts (9.5.10).

Now assume n > 4. We have to distinguish between subsets {i, j, k} of
{1,.. } and indices & for which there are infinitely many distinct numbers
among ,Bh LK) (p =1,2,...),and {i, j, k} and h for which among these numbers
there are only finitely many distinct ones. This does not depend on the choice
of ordering of i, j, k, since any permutation of (i, j, k) transforms ﬁ(  into one
of (ﬁ;l]k)) 11 ﬂ(l]k) (1 - ﬂ(uk)) 1= (B(ljk)) L= (ﬁ(uk)) L.

There is a subset {i, j, k} of {1,...,n} such that there are infinitely many dis-
tinct numbers among ,B(']k) (p = 1 ..). Indeed, if this were not the case,

then among the 7(8;,) = (ﬁ(m), . ﬁ“"z)) there would be only finitely many
distinct tuples, and then from Lemma [9.4.1],(i) it would follow that the num-
bers B1, lie in only finitely many K —equivalence classes, contradicting (9.5.9).
Choose an infinite subsequence of indices p such that the numbers B(]’Zk) are
pairwise distinct. Suppose there is another subset {i’, j', k'} # {i, j, k} such that
if p runs through the infinite subsequence just chosen, then ﬁ(' /%) runs through
an infinite set. Then for some infinite subsequence of these p, the numbers
ﬁ(’ ) are pairwise distinct. Continuing in this way, we infer that there is a
non-empty collection . of 3-element subsets {i, j, k} of {1,...,n}, and an in-
finite sequence 2 of indices p, such that for each {i, j, k} € % the numbers
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B(”k) (p € 2) are pairwise distinct, while for each {i, j, k} ¢ .7, there are only

finitely many distinct elements among [3(” D(pe D).

From assumption (9.5.10) and some observations made above, it follows
that the pairs (,lej)k)/ﬁ(”k) ﬁ(kﬂ) /ﬁ(ll;f’)) (h = 2,3) satisfy (9.3.7) with 8 = Bi,.
For each fixed S, equation (9.5.7)) has only finitely many solutions. Therefore,
if {i, j,k} ¢ .7, then there are only finitely many distinct numbers among
B(”k) /ﬁ(”k) hence only finitely many among ﬂ;;zk) (h = 2,3, p € &). Con-
Versely, 1f {i, j,k} € 7, h € {2,3}, there are infinitely many distinct numbers
among ﬁ(”k) (p € &). For if not, then by the same argument, interchanging
the roles of Bhps Bip, it would follow that there are only finitely many distinct
numbers among B(l’zk) (p € &), contradicting {i, j, k} € 7.

We conclude that there is an infinite sequence of indices p, which after re-
naming we may assume to be 1,2, ..., such that for 4 = 1,2, 3,

By (p=1,2,...) are pairwise distinct if {i, j,k} € ., (9.5.12)

there are only finitely many distinct numbers among

B (p=1,2,..)if{i, j,k} ¢ 7. ©.5.13)

Notice that this characterization of . is symmetric in 8y, (h = 1,2, 3); this
will be used frequently.

The following property of . will be important in the proof: if i, j, k,/ are
any four distinct indices from {1, ..., n}, then

li, ke & = {i,jl} € L orli,k,1I} € 7. (9.5.14)

Indeed, if {i, j, 1}, i, k, 1} ¢ % then also {i, j, k} ¢ .7 since B, = B2 B}

Pick a set from ., which without loss of generality we may assume to be
{1,2,3}. By (9.5.14), for k = 4,...,n at least one of the sets {1,2,k}, {1, 3, k}
belongs to .#. Define the set of pairs

€ ={(k: jel23hke3, .0l j<k{ljkes) (9515

Thus, for each k € {3,...,n} there is j with (j, k) € ¥. Further, for every
p=1,2,...there is a pair (j, k) € € such that

1jk 1jk
ﬁ( Jk) ﬂ( J: )
Indeed, if this were not the case, then since ,B(IZk) B/Bk)ﬁ(lz” for all i, p and
k=4,...,n, it would follow that there is p such that
ﬁ(12k) ﬂ(IZk) fork =3,.

and then 7(81,) = 7(8,,). Together with Proposition (iii) and Lemma
9.4.1}(ii) this would imply that 31,, 5>, are A-equivalent, contrary to (9.5.10).
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Clearly, there is a pair (j, k) € € such that ,B(IJk) # ,B(”k) for infinitely many p.
After permuting the indices 2, ..., n, we may assume that {1,2,3} € . and for
infinitely many p,

123 123
ﬁ( ) iﬂ( )'

We apply (9.3.17). It follows that ,8(123) € {,8(111)23) ﬂ(m) } for infinitely many p.
So ﬁ(m) ,8(123) * ,8(2123) for infinitely many p or ﬂ(m) ﬁ(m) # ﬁ(m) for
mﬁmtely many p. After interchanging 8y, and 3, for every p, Wthh does not

affect the definition of .% or the above arguments, we may assume that
(1,2,3ve., L7 =g # )7 for infinitely many p.  (9.5.16)

We repeat the above argument. After renaming again, we may assume that
the infinite sequence of indices p for which (9.5.16) is true is p = 1,2, ..., and
thus, (9.5.12) and (9.5.13) are true again. Define again the set ¢ by (9.5.19).
Similarly as above, we conclude that there is a pair (j, k) € % such that among
p = 1,2,... there is an infinite subset with ﬁlljk) # ,8(31’]‘) Then necessarily
k # 3. After interchanging 2 and 3 if j = 3 (which does not affect (9.5.16))
and rearranging the other indices 4, ...,n, we may assume that j = 2, k = 4.
Thus, {1,2,3},{1,2,4} € . and there are infinitely many p for which we have

©.5.16) and

124 124
,B( )iﬂ( )

By (9.5.11)), for all but finitely many of these p we have ,8(124) {B(124) ﬁ(124) :
After interchanging B, 83, for all p if necessary, which does not affect (m
we may conclude that {1,2,3},{1,2,4} € .% and there are infinitely many p

with (9:5.16) and

ﬁ(124) ,8(124) 581;24)' (9.5.17)

Next, by (9.5.14), at least one of {1,3,4}, {2, 3,4} belongs to .. The rela-
tions (9.5.16), remain unaffected if we interchange ﬁ;l) and ﬁ(z) for
all i, p, so without loss of generality, we may assume that {1, 3 4} € ,5” By

(93:17), for all but finitely many of the p with (9.5.16) and (9.53.17), at least
two among the numbers ,8(234) (h = 1,2,3) must be equal. Using (9.5.16),

mandﬂ(m) “24>/ﬂ“23> it follows that {1, 2, 3} {1,2,4},{1,3,4} € .%

and for 1nﬁn1tely many p we have (9:3.16),(9-3.17) an

ﬁ(134) ’8(134) ¢B(134). (9518)

We now show that this is impossible. For convenience we introduce the no-
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tation
(i) (4)
0 . P ﬁ’w _ pl4i3)
hp t T hp
P ,8;13; ﬂ(4) );
_ s _ _ . 53 _ 34
for h = 1,2,3,i = 1,2,3,4, p = 1,2,.... Notice thatﬁh =1, ,8 =0,

20 50
ﬁhp ’ﬁhp

dﬁ(uk) ot for any distinct i, j,k € {1,2,3,4}. Thus, (9:3.16)-(0.53.18)
hp~ Php
translate into

1 2 1 2 1 2
:8() :8() ﬁ() ﬁ();tﬁ() B()

ﬁ(l) ﬁ(l) ,8(1) > (9.5.19)
:8(1) :8(2) ﬁ(l) ﬁ(Z) ﬂ(l) 3(2)
ﬁ(l) - ﬁ(l) # ﬂ(l) s (9.5.20)
B(l) 1 ﬁ(l) 1 ﬂ(l)
9.5.21)

ﬂ(l) - ﬁ(l) * ﬁ(llp)

We distinguish between the cases {2, 3,4} € . and {2,3,4} ¢ .7.

First suppose that {2, 3,4} € .. Then by (9.3.11)), there are infinitely many
p such that (9:5.19)-(0:5.21) hold and at least two among ﬁ(z) ,8]42%) (h =
1,2,3) are equal. But this is impossible, since (9.5.19),(9:3.20) imply ,3(2)

A2 EST9). OS2 imply B2 # 52 and @520, 52T imply A2 # 52,

Hence {2,3,4} ¢ .. This means that there are only finitely many dlStlIlCt
numbers among ﬁ(z) ﬁ(423) (h=1,2,3, p =1,2,...). It follows that there
are (necessarily non-zero) constants cy, ¢;, ¢3 such that ,@f; =c,forh=1,2,3
and infinitely many p. By (9.5.21)), (9.5.20), respectively, we have for all these
p that ﬁ(l) ﬁ(l) and ,B(l) = (cz/cl),é(];). By substituting this into (9:5.19), we
get

1 (1
:8() c Cﬁ()—C1C3

ﬁ(l) - ﬁ(l)
By (9.5.19), (9.5.21) we have ¢; # c3, hence

A _ p@13) _ ci(c1 —¢3)
By, =8,
CiCy +Cp —Cy —C1C3
is a constant independent of p. But this contradicts {1, 3,4} € . and (9:5.12).

So our assumption that Lemma[9.5.3]is false leads in all cases to a contra-
diction. This completes our proof. O
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The next lemma is stronger than what is required to complete the proof of

part (i) of Theorem
Lemma 9.5.6 Let € be a K-equivalence class in Q. Then the set of B such
that

B €A BET,
there is a with Ala] = A[B] which is not A-equivalent to (3,

is a union of finitely many A-equivalence classes.

Remark Inthe case A = Og, our method of proof does not allow to estimate
the number of Og-equivalence classes.

Proof Denote the set of 8 with the properties specified in Lemma[9.5.6|by .
We assume that & is not contained in a union of finitely many A-equivalence
classes and derive a contradiction.

Pick B € £ and consider those @ such that A[a] = A[B] and « is not A-
equivalent to S. (9.3.3), imply that for i, j = 1, ..., n the pair

(au) —aD) g@ _ o0 )

2@ — o’ @ — gD (9.5.22)

is a solution to
x+y=1 in(x,y) €T,

where I' is the multiplicative group generated by Ag; X Ay; and the pairs

(ﬁ(i) _lg(l) ﬂ(Z) _ﬁ(i) ) )

R (i=3,...,n).
,3(2) _,B(l) ﬁ(Z) _ﬁ(l)
By Lemma [9.4.1] (i), the group I" depends only on the given K-equivalence
class ¢ and is otherwise independent of 8. By Theorem[4.3.3] the pairs
(i = 3,...,n) belong to a finite set depending on %. Therefore, the tuple (@)
belongs to a finite set depending on %'. In view of Lemma[9.4.1](i), this means
that a belongs to a union of finitely many K-equivalence classes which depends
on % but is otherwise independent of 8. Now by Dirichlet’s box principle and
our assumption on the set 8 we started with, there is a K-equivalence class ¢’
with the following property: the set of 8 such that

ﬁGAQ7 K[ﬂ]zgﬁE%’
there is @ € ¢ such that A[a] = A[B] (9.5.23)
and « is not A-equivalent to 8

cannot be contained in a union of finitely many A-equivalence classes.
Fix By with (9.5.23) and then fix aq such that Alay] = A[By], ap € €’ and
@y is not A-equivalent to 8.
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Let B be an arbitrary number with (9.5.23). Choose @ such that A[a] = A[],
a € €’ and « is not A-equivalent to 8. Then there are u, u’ € K*, a,a’ € K with

B=uBy+a, a=uv'ay+d. (9.5.24)
For these u, u’ we have

Do/k(B) = u"" P Da/k(Bo), Dajx(@) = """V Dok (ay).
On the other hand, our assumptions A[ag] = A[Bo], Ala] = A[B] and Proposi-
tion[5.3.1]imply
Dqk(B)/Dask(a) € A™, Daojx(Bo)/Dajk(ap) € A™.
Using that A is integrally closed, it follows that
u'jueA”. (9.5.25)

Since K[By] = Q and ay € A[By] there is a unique polynomial fy € K[X]
of degree < n, which in fact belongs to A[X], such that oy = fy(Bo). Like-
wise, there is a unique polynomial f € K[X] of degree < n which in fact
belongs to A[X], such that @ = f(B). Inserting (9.5.24), it follows that f(X) =
u' fo (X — a)/u) + @' Suppose that fy(X) = X', a;X’ with m < n and a,, # 0.
Then f has leading coefficient a,,u'u™ which belongs to A. Together with

(©:3:23) this implies

u'""a,, € A. (9.5.26)

Further, u"""YDq, k(o) = Dayx(B), hence
u""DDg,x(Bo) € A. (9.5.27)

We distinguish between the cases m > 1 and m = 1. Firstlet m > 1. We have
shown that every B with (9.3.23)) can be expressed as 8 = uf, + a with u € K*,
a € K and moreover, u satisfies (9.5.26), (9.3.27). We now employ Proposition
that A is a Krull domain. Let &?(A) the collection of minimal non-zero
prime ideals of A and ord, (p € Z(A)) the corresponding discrete valuations.
Then for every p € Z(A),

_ oDk Bo)) _ g iy < 2elm) 9.5.28)
nn—-1) m—1

For all but finitely many p € 2?(A) we have ord,(Dq,x(80)) = ordy(a,) = 0

and for these p we have also ord,(u) = 0. For each of the remaining p, there

are only finitely many possibilities for ord,(«). By (9.5.1)), we have for any two

numbers a,b € K* that a/b € A* if and only if ord,(a) = ord,(b) for every

p € ZP(A). This shows that the set of those u corresponding to some 8 with
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(©.5.23) is contained in finitely many A*-cosets, that is in sets of the shape
upA* = {upe : & € A*}. Thus, the set of § with can be divided into
finitely many classes, depending on the A*-coset to which u belongs. Now if
1,52 with belong to the same class, we have 8, = g8 + b with & € A*
and b € K. But b = 3, — g is integral over A, hence belongs to A since A is
integrally closed. So two elements with belonging to the same class
are A-equivalent. But then, the set of 8 with is contained in a union of
finitely many A-equivalence classes, which is against our assumption.
Now assume that m = 1. Then

ag =aifo+ap witha; € A\ {0}, ap € A.

Since

Dq,k(ag) = a'f(n_l)DQ/K(ﬁo), Dayx(@0)/Dask(Bo) € A”,

we have a'l’("_l) € A*, and then a; € A* since A is integrally closed. Hence ay,

Bo are A-equivalent, which is against our choice of @y, 8y. We arrive again at a
contradiction.

Consequently, our initial assumption that the set % cannot be contained
in finitely many A-equivalence classes leads to a contradiction. This proves

Lemma O
Now our proof of part (i) of Theorem[9.5.1]is complete. m]

9.6 Notes

e Let A be an integrally closed, finitely generated domain over Z with quotient field K
of characteristic 0 and ( a finite étale K-algebra with [Q2 : K] > 3. In Theorem(ii)
we constructed, under certain hypotheses on €, an infinite class of two times monogenic
orders of Q. These orders are all rather special, namely of the type A[e] where £ € A,.
We believe that in general, if Q is a given finite étale K-algebra of degree > 3 then
the collection of two times monogenic orders of Q consists of finitely many infinite
classes of “orders of a special type” and at most finitely many other orders. It is still
open to make this precise for arbitrary étale algebras Q. Below, we state without proof
a recent result of this type from [Bérczes, Evertse and Gy6ry (2013)] which is valid in
the special case that QO = L is a finite extension field of K of degree > 3 and the Galois
group of the normal closure of L over K satisfies certain conditions.

Let L be an extension field of K of degree at least 3. An A-order O of L is called of

type L if there are a, 8 € O and (‘j Z) € GL(2, K) with ¢ # 0 such that

aa +b

L=K(a), O=Ala] =A[B], B= catd

Notice that § is not A-equivalent to @, since ¢ # 0 and L has degree at least 3 over K.
A-orders O of type II exist only if [L : K] = 4. An A-order D of such a field L is
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called of type II if there are «,8 € O and ay, ay, a2, by, by, b, € A with agby # 0 such
that

L=K(), D=Ala]l=A[Bl, B=apa®+aia+as, a=>byS +bB+b,.

Clearly, a, B are not A-equivalent.
Denote by G the normal closure of L over K. We call L m times transitive over K

(where m < n = [L : K]) if for any two ordered m-tuples of distinct indices (iy, ..., iy),
(Jis---» jm) from{1,..., n}, there is o € Gal(G/K) such that
0-(901)) — Q(jl), o, a_(g(im)) = gum)

We denote by S, the permutation group on n elements.

Theorem 9.6.1 (i) Let L be an extension field of K of degree 3. Then every two times
monogenic A-order of L is of type L.

(ii) Let L be an extension of K of degree 4 of which the normal closure over K has
Galois group S 4 over K. Then there are at most finitely many two times monogenic A-
orders of L that are not of type 1 or of type 11.

(iii) Let L be a four times transitive finite extension field of K of degree at least 5. Then
there at most finitely many two times monogenic A-orders of L that are not of type 1.

Proof See [Bérczes, Evertse and Gy6ry (2013), Thm. 3.2]. The proof uses Theorem
B3-6]in a qualitative form. o

In [Bérczes, Evertse and Gy&ry (2013]) it is shown that if K = Q, A = Z and L is
not a totally complex quadratic extension of a totally real number field then there are
infinitely many Z-orders of type I in L. Further, in that paper it is shown that there are
infinitely many quartic number fields L with the property that L has infinitely many
Z-orders of type II.

o Bell and Hare [Bell and Hare (2009, 2012)] considered the equation Z[a"] = Z[B"] to
be solved in positive integers n where a, 8 are fixed algebraic integers, and formulated
sufficient conditions on «, 8 such that this equation has only finitely many solutions.
Their result was substantially generalized by Nguyen [Nguyen (2015)]. We formulate
Nguyen’s main result.

Let A be an integrally closed integral domain of characteristic O that is finitely gen-

erated over Z. Denote by K the quotient field of A. Fix a,8 € K that are integral over
A. Consider the equation

Ala™] = AlB"] inm,n € Zs,. 9.6.1)
Assume that a, g satisfy the following conditions:

- there is no positive integer n such that @" € A or 8" € A;
- there are no positive integers m, n such that g™ € A*;

- in case that @ € A[a]* and B € A[B]", there are no positive integers m, n 9.6.2)
such that @"B" € A*; e

- there are no positive integers m, n such that [K[g"] : K] = 2 and
a"o(B™") € A*, where o is the non-trivial K-automorphism of K[5"].

Theorem 9.6.2 Equation (9.6.1) has only finitely many solutions if and only if the
above conditions hold. Moreover, in that case the number of solutions can be bounded
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above by an effectively computable number depending only on [K(a) : K], [K(B) : K],
the number of roots of unity in K, and the ranks of the unit groups of the domains
Alo(a), c(B), T(a), T(B)] for each pair of K-isomorphisms 0,7 : K(a,) — K.

Proof  See [Nguyen (2015), Thm. 1.4]. The proof uses Corollary 3.4 and Theorem
4.3.6) O

o Bell and Nguyen [Bell and Nguyen (2015)] considered monogenic orders over inte-
gral domains of characteristic p > 0. We state special cases of some of their results.
For a prime power g = p™ let A = F,[t] be the polynomial ring in the variable ¢ over

F, and K = IF,(?). Further let y € K be integral over A and separable over K and define
O := A[y]. Lastly, let n := [K(y) : K], D := Dk ().
Theorem 9.6.3 There is a finite set . of cardinality at most

4

q”6 + (exp(lSlO) -m- pS)n

with the following property. For every a with Ala] = O, there are ay € .7, r € Zxy,
a,b € K such that

a= a(y(p)’ +b, " Vpr-te F;.
Proof See [Bell and Nguyen (2015), Thm. 1.2]. In their proof they use a quantitative
guy p y q

result, also proved by themselves, for unit equations in two unknowns in characteristic
p. For a similar result for unit equations, see [Voloch (1998)]. o

Further, Bell and Nguyen proved an analogue in characteristic p of Theorem @
Their actual result is more general, but for simplicity we keep the above notation.

Theorem 9.6.4 Let «,B be separable over K and integral over A and suppose that
they satify (9:6.2). Then the set of solutions of (9.6.1) is contained in finitely many sets
of the shape

{(aip” + ap”,asp™ + asp”) : i, j € Zo)
where ay, a,, as, ay are fixed elements of Q and r is a fixed positive integer.
Proof See [Bell and Nguyen (2015), Thm. 1.10]. The proof uses a result on unit equa-

tions in several variables in characteristic p from [Derksen and Masser (2012)]. As yet,
no quantitative version of this result has been derived. O



10

Effective results over finitely generated domains

In Chapter [§ we proved effective finiteness results for discriminant equations
over the ring Oy of S-integers of an algebraic number field. In this chapter,
we consider discriminant equations of a more restrictive type, and prove effec-
tive finiteness results for those over arbitrary integral domains that are finitely
generated over Z.

More precisely, let A be an effectively given integral domain which is finitely
generated over Z and denote by K its quotient field. We assume that A is in-
tegrally closed; this can be checked effectively using Theorem We
consider equations

D(f) =6 (101

to be solved in monic polynomials f € A[X] of given degree n > 2 having their
zeros in a given finite extension field G of K, and

DQ/K(O() =0 inaeD, @2)

where Q is a finite étale K-algebra, O is an A-order of Q2 and ¢ is a non-zero ele-
ment of A. Recall that two monic polynomials f;, f> € A[X] are called strongly
A-equivalent if f,(X) = fi(X + a) for some a € A. Similarly, two elements
a1, a; € O are called strongly A-equivalent if @, = @) + a for some a € A.
Then for both equations the solutions can be divided into strong A-equivalence
classes. By Theorems [5.4.1] (i), [5.4.4] (i) there are only finitely many such
classes. In the present chapter we prove that in a well-defined sense, a full
system of representatives for these classes can be determined effectively. Our
results extend those of [GyOry (1984)], where similar effective results were
proved for a restricted class of finitely generated domains. Here, the only re-
striction on the underlying domain A is that it be integrally closed.
According to Theorems [5.4.1] (ii), [5.4.4| (ii), the solutions to the equations

D(f) € SA* in monic f € A[X], 1)

217
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with f having its zeros in a finite extension G of K and
DQ/K(Q) €0A" ina e D, @2’)

lie in finitely many A-equivalence classes. Effective versions of these finiteness
results were proved in Chapter (8] in the case that A = Oy is the ring of S-
integers in a number field. It is as yet an open problem to prove such effective
finiteness results for arbitrary finitely generated integral domains A. The main
obstacle is to determine effectively a set of generators for the unit group A* of
A, for which at present to our knowledge no general method is known.

On the other hand, we give effective finiteness results for (TO[T’), (I0[Z’) in
the case that A = Og[Xy,...,X,, 1/P] where Og[Xi, ..., X,] is the polynomial
ring in g variables over the ring of S-integers Og of an algebraic number field
and where P € Og[Xj, ..., X,].

In Section [I0.1] we state our results. In Section [I0.2] we state and prove a
Proposition which is at the heart of our proofs. The main tool in the proof of
that Proposition is Theorem [4.2.1 on unit equations over finitely generated in-
tegral domains. In the remaining sections we deduce our theorems. In a supple-
ment, Section [10.7 below, we have collected some material on effective com-
putations in finitely generated domains over Z. This will be used very heavily.

10.1 Statements of the results

We start with the necessary definitions.

Let A be an integral domain which is finitely generated over Z and K its
quotient field. Suppose A = Z|[zi,...,z]. Denote by I the ideal of polyno-
mials P € Z[X,,...,X,] with P(z;,...,z,) = 0. Thus, A is isomorphic to
Z[Xi,...,X,]/I and z; corresponds to the residue class of X; mod /. Follow-
ing Section we say that A is given effectively if a finite set of generators
for the ideal 7 is given. Such a set of generators is called an ideal represen-
tation for A. We say that an element y of K is given/can be determined effec-
tively if polynomials P, Q € Z[ Xy, ..., X,] are given/ can be computed such that
y = P(z1,...,2)/0Q(z1,...,z,). By saying that a polynomial with coefficients
in K is given (can be determined) effectively we mean that its coefficients are
given (can be determined) effectively.

A finite étale K-algebra Q (so in particular a finite field extension of K)
is given effectively, if a monic, separable polynomial P € K[X] is given ef-
fectively such that Q = K[X]/(P). Using Theorem it can be decided
effectively whether P is irreducible, and thus, whether Q is a field. Further,
that theorem allows us to factor P into irreducible factors, and thus, to write Q
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as a direct product of fields. Elements of Q can be expressed uniquely in the
form Y a6 with ay,...,a,; € K, where n = deg P = [Q : K] and @ is
the residue class of X modulo P. We say that an element of Q is given/can be
determined effectively if ay, ..., a,- are given/can be determined effectively.

Recall that an A-order of Q is an A-subalgebra of the integral closure of A
in Q, which spans Q as a K-vector space. By a result from [Nagata (1956)],
see Theorem the integral closure of A in Q is finitely generated as an
A-module. Since the integral domain A is Noetherian, any A-order of Q is
finitely generated as an A-module as well. We say that an A-order O of Q is
given effectively if a finite set of generators {w; = 1, w», ..., w,} of O is given
effectively. Further, we say that an element a of O is given (can be determined)
effectively, if ay,...,a, € A are given (can be determined) effectively such
that @ = )7, q;w;. In Section we explain how to verify that wy, ..., wy,
do indeed generate an A-order of Q.

10.1.1 Results for general domains

In what follows, A is an integral domain finitely generated over Z, K its quo-
tient field and G a finite extension of K. We assume that A is intgegrally closed.
Further, § is a non-zero element of A and n an integer with n > 2. Consider the
equation

D(f)=06 inmonic f € A[X] with deg f = n,

10.1.1
having all its zeros in G. ( )

Recall that two polynomials fi, f> € A[X] are called strongly A-equivalent if
FH(X) = fi(X + a) for some a € A. If f is a solution to (T0.1.1)) then so is every
polynomial strongly A-equivalent to f.

Theorem [5.4.1] (i) implies that the polynomials with (I0.I.T) lie in only
finitely many strong A-equivalence classes. Our first result is an effective ver-
sion of this result.

Theorem 10.1.1 Given effectively an integrally closed integral domain A
which is finitely generated over Z, a finite extension G of the quotient field of
A, a non-zero 6 € A, and n > 2, we can effectively determine a full system
of representatives for the finitely many strong A-equivalence classes of monic

polynomials f € A[X] with (T0.1.1).

By Lemma|10.7.12|and Theorem|10.7.17] it can be checked effectively from
an ideal representation of the domain A whether it is indeed an integral domain

of characteristic 0 and whether it is integrally closed.
In Theorem|10.1.1]and Theorem|10.1.3|below, the condition that the domain
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A be integrally closed can be relaxed; see [Evertse and Gyé6ry (2016)] and
the Notes at the end of this chapter. We note, however, theat these theorems
become false if we do not impose any condition on the domain A.

In the next theorem, the condition that the domain A be integrally closed is
not necessary.

Theorem 10.1.2  Given effectively an integral domain A that is finitely gen-
erated over Z, a non-zero element 6 of A and a positive integer d, we can
effectively compute a finite number C = C(A, 6, d) with the following property:
If f € A[X] is any monic polynomial such that

D(f) € 6A%,

f splits into linear factors over an extension of degree d (10.1.2)
of the quotient field of A,

then deg f < C.

We mention that Theorem implies already, in ineffective form, the ex-
istence of such a bound C.

As we already mentioned in the introduction, as yet we are not able to prove
an effective version of Theorem [5.4.1] (ii) for the equation

D(f) € 5A*

in monic polynomials f € A[X] of degree n having all their zeros in a pre-
scribed finite extension G of K. In the next section we will prove an effective
result for this equation for a special class of integral domains A.

We now turn to elements of orders of finite étale algebras. Let again A be an
integrally closed integral domain finitely generated over Z and K its quotient
field. Further, let Q be a finite étale K-algebra with [Q : K] =: n > 2, let O
be an A-order of Q, and let 6 be a non-zero element of A. We consider the
equation

Dojx(@) =6 ina € . (10.1.3)

The solutions of (10.1.3) can be divided into strong A-equivalence classes,
where two elements a, a; of O are called strongly A-equivalent if a1 —a; € A.

Theorem 10.1.3  Given effectively an integrally closed integral domain A that
is finitely generated over Z, a finite étale algebra Q over the quotient field of
A, an A-order O of Q and non-zero § € A, we can effectively determine a full
system of representatives for the finitely many strong A-equivalence classes of

« € O with (10.1.3).
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Denote by Ag the integral closure of A in Q. From the above theorem we
deduce the following effective version of Theorem @).

Corollary 10.1.4 For effectively given A, Q, 6 as in Theorem|10.1.3|one can
effectively determine a full system of representatives for the strong A-equival-
ence classes of the solutions of

DQ/K(Q’) =0 inae AQ.

We already mentioned in the introduction that at present for general integral
domains A we cannot prove an effective version of Theorem[5.4.4]dealing with
equations of the type

DQ/K(Q’) € 5A"

in @ in an A-order © of Q or in Ag. Neither can we effectively determine the
solutions « to

Ala] = 9.

In the next subsection we formulate effective finiteness theorems for these
equations for a special class of domains.

10.1.2 A special class of integral domains

We state effective finiteness theorems for the equations D(f) € 6A™ in monic
polynomials f € A[X], Dg/k(a) € 6A™ and Ala] = O for elements in an
A-order O for domains A of the shape

A=0s[Xy,..., X4, 1/P] (10.1.4)

where Oy is the ring of S-integers in an algebraic number field L and P €
Os([Xi,...,X,]. Note that the quotient field of A is K := L(Xy, ..., X,).

For definitions of what it means for L, S to be effectively given we refer to
Section[3.7] In particular this means that L is contained in an effectively given
algebraic closure Q of Q. Finite extensions of K and finite étale K-algebras
are given effectively in the form K[6], where 6 is a zero of a monic, separable
polynomial Q € K[X] (and with Q irreducible in the case of a finite extension),
and where the coefficients of Q are given as quotients of polynomials from
Os(Xi,...,X,]. A-orders of a finite étale K-algebra are given effectively by
giving a finite set of A-module generators.

We say that an integral domain of the type (I0.1.4) is given effectively if
L,S,q and P are given effectively. Using the results mentioned in Section
10.7} one can show that in that case one can compute r and Py,...,P; €
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Z[X1,...,X,] such that A = Z[X,...,X,]/(P1,...,Py), i.e., A is also effec-
tively given in the sense of Subsection[I0.1.1] Likewise, elements of A and K
can be effectively described in the sense of Subsection[I0.1.1] We do not work
this out.

We first consider the equation

D(f) € 6A* in monic f € A[X] with degf = n,

having all its zeros in G, (10.1.5)

where G is a finite extension of K. The solutions of can be partitioned
into A-equivalence classes, where in the usual sense two polynomials fi, f> €
A[X] are called A-equivalent if f,(X) = g de/iF (eX + a) for some £ € A,
a € A. We prove the following effective version of Theorem [5.4.1] (ii) for the
special class of domains under consideration.

Theorem 10.1.5  Given effectively an integral domain A of the type (10.1.4),
a finite extension G of the quotient field of A and a non-zero § € A, we can
determine effectively a full system of representatives for the finitely many A-
equivalence classes of monic polynomials f € A[X] with (10.1.3).

We next consider
DQ/K((Y) €SA" inae D (1016)

where O is an A-order of Q. Recall that two solutions a;, @, are called A-
equivalent if @y = ea; + a for some € € A*, a € A. We prove the following
effective version of Theorem @ (ii) for our special class of domains under
consideration.

Theorem 10.1.6  Given effectively an integral domain A of the type (10.1.4),
a finite étale algebra Q) over the quotient field of A, an A-order O of Q and a
non-zero 6 € A, we can effectively determine a full system of representatives
for the finitely many A-equivalence classes of a € O with (10.1.6).

As a consequence, we have the following.

Corollary 10.1.7  Given effectively A, Q, 6 as in Theorem [[0.1.6] we can
effectively determine a full system of representatives for the finitely many A-
equivalence classes of a € Ag with

DQ/]((O’) € 0A”.
Finally, we have the following effective version of Theorem[5.4.8]

Theorem 10.1.8 Given effectively A, Q, O as in Theorem [[0.1.6] we can
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effectively determine a full system of representatives for the finitely many A-
equivalence classes of a € O with

Ala] = O.

10.2 The main proposition

We state and prove a central proposition from which our other theorems are
deduced. Its proof is based on Theorem [4.2.1] on unit equations over finitely
generated integral domains. We keep the notation from Section[10.1]

Proposition 10.2.1 For any integral domain A finitely generated over Z, finite
extension G of the quotient field of A, non-zero § € A, and any integer n > 2,
all effectively given, one can determine effectively a finite subset F = Fy G ns
of G with the following property: if f is any monic polynomial from A[X] of
degree n and discriminant § having all its zeros, say ay, ..., a,, in G, then

ai—a;€F fori,je{l,...,n},i # j (10.2.1)

Proof We use an argument from the proof of Theorem
Let B be the integral closure of A[6~!] in G. We can compute a finite set of
A[67!']-generators for B using Corollary [10.7.18} and then an ideal represen-
tation for B using Theorem [10.7.16 Thus, B is effectively given, and depends
only on A, G, 6. For the moment, we assume that n > 3. By (5.4.3) we have
a;—a;e B fori,j=1,...,nwithi# j
Hence the pairs
(M’ ﬂ) (i=3,....n)
) —@1 Qp —aq
are solutions to
x+y=11inx,y€ B".
By Theorem there is an effectively computable finte set 7, depending
only on B, hence only on A, G, 6, such that x,y € 7 for all solutions to this

equation. Hence
@i — Qg

=1y fori=1,...,n,
@y —

where y; = 0,9, = 1 andy; €  fori = 3,...,n. Using the identity D(f) =
[Ti<k<i<n(a@x — a))* = 6 we obtain

2
n(n— Yi—7j
(@ —a)"™ V=6 —
! 1—[ Ye =Y

1<k<i<n
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forall i, jwith 1 <i,j<n,i+# j. We proved this for n > 2, but it is obviously
true as well for n = 2. By letting (y3,...,7%,) run through all ordered tuples
of distinct elements from .7, the numbers occurring on the right-hand sides of
these identities run through a finite, effectively computable set .7, depending
only on A, 6, G, n. We have 9’ = {6} forn = 2.

By Theorem [10.7.5] we can effectively compute the zeros in G of the poly-
nomials X"*~1 — ¢, for all numbers 6 € .7". By taking together the n(n — 1)-th
roots in G of all elements of .7/ we obtain a set .% as in (10.2.1). ]

10.3 Rank estimates for unit groups

We use the following notation. Let zi, . . ., z, be algebraically independent ele-
ments, and define Ag := Z[zy,...,z4], Ko := Q(z1, ..., 2z4). Then Ag is a unique
factorization domain. Let &2 be a maximal set of pairwise non-associated irre-
ducible elements of Ap. Then every non-zero element x of K, can be expressed

uniquely as
Xx=+ l_] pardp(x),
pEDP

where the exponents ord,(x) are integers, at most finitely many of which are
non-zero. We put ord,(0) := oo for p € &. Then the functions ord,(p € &)
define discrete valuations on Q(zy,...,z,). We define another discrete valua-
tion ords on Kj by

ord,(0) := c0; orde (g) :=Degb —Degafora,b € Z[zy,...,z4],

where Deg denotes the total degree of a polynomial. Clearly,

Ao ={xeKo: ord,(x) 2 0 for p e 2}, (10.3.1)
Z ={x€Apy: orde(x) > 0}. (10.3.2)

We consider a more general class of rings. Let Q € Ag with Q # 0, and put
R:=Aolf ] = Z[Zu.-.,zq, Q_l] .

Further, let py,...,ps € & be the irreducible elements of A that divide Q.
Then, as can be easily verified,

R:{xeKo: ord,(x) >0 forpe@\{pl,...,ps}},

and the values ord,(x) (p € {p1,...,ps}) can be any positive or negative inte-
gers. Thus, R is a unique factorization domain with maximal set of pairwise
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non-associated irreducible elements &2 \ {py,..., p;}. Hence R is integrally
closed. The unit group R* of R equals

R = {xeKO :ord,(x) =0 forp e 9\{p1,...,ps}},
hence R* is generated by —1, py,. .., ps, and rank R* = s. Finally, by (10.3.2)
{xeR: ordy(x) 2 0forp € o, p1,....psl} = Z. (10.3.3)

After these preparations, we are ready to prove the following proposition,
which gives a more precise version of a theorem of Roquette [Roquette (1957)].

Proposition 10.3.1 Given effectively an integral domain A which is finitely
generated over Z and a finite extension G of the quotient field K of A, we can
effectively compute an upper bound for rank A7, which depends only on A and
[G: K].

Remark We do not know of a general method to compute the precise value
of rank A, let alone a system of generators for Af,.

Proof Assume A is given in the form Z[z,, ..., z,] with effectively given set
of generators for the ideal of P € Z[X,,..., X,] with P(zy,...,z,) = 0. Using
Corollary [T0.7.3] we can select a maximal, algebraically independent subset of

{z1,...,2/}, which we may assume to be {z1,...,z,},and fori = g+ 1,...,r
the monic minimal polynomial .%; € K[X] of z; over Ky := Q(z1,...,2),
with coefficients given in terms of zj,...,z,. Further, fori = g+ 1,...,r we
can compute non-zero a; € Ag := Z[zi,...,z4], such that a;.%; € Ag[X]. Let
Q :=ag.1---a,; then zg4q, ..., 2., and hence A, are integral over the ring R :=
Zlzi, .. .52 071, and thus, Ag is contained in the integral closure R of R in
G. We can compute an upper bound [G : K] ]—[f:q+l deg .Z; for [G : Kp].
Let py, ..., ps be the irreducible elements from &2 that divide Q. Letvy, ..., v,

be the discrete valuations on G that lie above orde, ord,,,...,ord, . Putd :=

[K : Q(z1,...,24)]. Then ¢ < d(s + 1) by Proposition [2.6.3] Denote by L the
algebraic closure of Q in G. Then using

Qz1,...,29) € L(z1,...,29) C K

we infer that [L : Q] < d.
Consider the group homomorphism

A= Z a (vi(),...,v(@).

We show that ker ¢ C O7, where Oy is the ring of integers of L. Let a € ker ¢.
Denote by f, the monic minimal polynomial of @ over K. Since A is integral
over R and R is integrally closed, we have f, € R[X]. Moreover, for each a €
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{oo, p1,..., ps}, the coefficients of f, have ord,-value > 0, since v(a) > 0 for all
valuations v of G lying above ord,. Now (10.3.3) implies that the coefficients
of f, lie in Z. This shows that @ € O;. Applying the same argument to o
gives a € O] .

As a consequence, rank Ay, < d(s + 1) + rank O] < d(s + 2). The latter
quantity is effectively determinable in terms of A and [G : K]. O

10.4 Proofs of Theorems [10.1.1 and 10.1.2]
We start with a lemma.

Lemma 10.4.1 For every integral domain A finitely generated over Z. and
every two monic polynomials fi, f> € A[X] with at least two distinct zeros, all
effectively given, we can:

(i) determine effectively whether fi, f> are strongly A-equivalent;

(ii) determine effectively whether fi, f> are A-equivalent.

Proof Suppose A is given in the form A = Z[z,,...,z,], and that the coeffi-
cients of fi, f> are given as polynomials in zj, ..., z, with integer coefficients.
If fi, f> have distinct degrees, they are certainly not (strongly) A-equivalent.
So we assume that deg f; = deg f> = n.

Denote by G the splitting field of fi - f» over the quotient field K of A.
The field G can be effectively constructed by Corollary Further, by
Corollary we can determine y € G such that G = K(y), ie., G =
Q(z1,...,2r,Y), and Corollary allows us to compute a representation for
G.

By Theorem [10.7.5] we can determine the factorizations of fi, f> in G[X],
say

=X -a) - X-ay), L=X-=B1) - (X-B),

withay,...,a,, B1,...,B, giveninterms of zy, . . ., z,,y. Now fj, f> are strongly
A-equivalent if and only if there exist a permutation p of (1,...,n)anda € A
such that
Bi=ayp+afori=1,...,n
Equivalently, this means that there is a permutation p of (1, ..., n) such that
ﬂi —Qpi) = ,31 — p(1) fori=2,...,n, ,31 —Qp) € A; (10.4.1)

here all terms are given in terms of z,.. ., z,,y. By Theorem|10.7.16|it can be
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checked whether 81 — @,(1) € A. Thus, the validity of (T0.4.T)) and hence the
strong A-equivalence of fi, f> can be determined effectively.

The polynomials fi, f, are A-equivalent if and only if there are a permutation
pof(l,...,n),a€Aande e A", such that

Bi=¢eayp +a fori=1,...,n. (10.4.2)
By our assumption that among «, ..., a, there are at least two distinct ele-
ments and among (8, ...,[3,) there are at least two distinct elements, system

(T0:42) has at most one solution (&,a) € G*> with & # 0. Now using linear
algebra, one can check for each permutation p of (1,. .., n) whether (10.4.2) is
solvable, and if so, determine the unique solution (g, a) € G2. Then by Theo-
rem one can check whether

c€A, &' €A, acA,
and decide in this manner whether or not fi, f, are A-equivalent. O
Henceforth, the integral domain A is given effectively in the form
ZIX1,..., X 1/(P1,..., Py) =Z[z1,- ., 2]

where z; is the residue class of X; mod (P, ..., Py) fori = 1,...,r. Further the
finite extension G of the quotient field K of A is given in the form K[X]/(Q)
or K(w), where w is the residue class of X (modQ). The polynomial Q may be
represented as bal Z;lzo b X with by, . ..,b, given as polynomialsin zj, ..., z,
with integer coefficients. Define

& := bow.

Then & has minimal polynomial

d d
OX) = X!+ Y bibg X = X4+ Y X e AX] (10.4.3)
i=1 i=1
over K. Now clearly, G = K(¢), € is integral over A, and every element of G
can be expressed in the form Zf;ol (a;/b)e' with ay,...,ay_1,b € A, given as
polynomials with integer coefficients in zy, ..., z,.

Proof of Theorem[I0.1.1] Let A,G,n,6 be effectively given and satisfy the
conditions of Theorem Further, let .% be the finite effectively deter-
minable set from Proposition[T0.2.1]

Take a monic polynomial f from A[X] with (TO.I.T). Then f has all its zeros
in G, say f(X) = (X —ay)--- (X — ap), with ay,...,a, € G. By Proposition
[[0.2 1] we have

a—a;e % fori,jel{l,...,n} withi# j.
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Recall that .% is finite, and effectively determinable in terms of A, G, n, §. For
each tuple (yij L jefl,...,n},i# j) with elements from .% we consider the
polynomials f with (I0.1.T) and with a; — «; = y;j fori,j € {1,...,n}, i # j.
That is, we consider polynomials f such that

f € A[X], f monic ,deg f = n, D(f) =6,

f=X-a) (X -a,) for some ay,...,a, €G (10.4.4)
such that o; — aj = y; fori, j€ {1,...,n},i # j,

Our proof will be completed as follows. We show that for each tuple {y;;}
it can be decided effectively whether a polynomial f with (T10.4.4) exists. If
so, we show that the polynomials with (10.4.4) lie in finitely many strong A-
equivalence classes, and determine effectively a full system of representatives
for them. Then from the union of these systems, we extract a full system of
representatives for the strong A-equivalence classes of solutions of (T0.1.T).

Fix elements y;; from .# (1 < i, j < n, i # j). Suppose there is a polynomial
f with (I0.44). For this polynomial we have

na;=y+vy; fori=1,...,n, (10.4.5)
withy=a; +---+a,, v =Z’j’.=1)/,-jf0ri= 1,...,n. Herevyy,...,y, are fixed
and y,ay,...,a, are variables. The number y is a coefficient of f, soy € A.

Further, if there is a polynomial f with (T0.4.4), then
X =y1)- (X =yy) = n"f((X +)/n) € AIX]. (10.4.6)

The coefficients of (X —y)--- (X — ¥,) belong to G and by Theorem[10.7.16]
it can be checked whether they belong to A. If not so, there is no polynomial
with (T0.4.4). So we assume henceforth that (X —y;) - -- (X —y,) € A[X]. Then
Y1,-..,Yy are integral over A.

Using Corollary we compute a finite set of A-module generators for
the integral closure Ag of A in G, say {4;,...,4,}. From this, we deduce a
system {aj, ..., a;} of A-module generators for A7,.

The numbers 1, . . ., @, from (10.4.4) belong to Ag. So there are xq, ..., x; €
A such that

=Xx1a; + -+ x4, (10.4.7)

@y
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and we can rewrite (T0.4.3)) as

1 Y1
xi(map)) +---+x(ma) =y - |+] : |. (10.4.8)

1 Vn

By linear algebra, one can determine a maximal K-linearly-independent subset
of {nal, coonan (L., DT (v, 7,,)T}, say {by,...,b,]). Further, we can
compute expressions of nay, ..., na,, (1,..., DT, y1s--- ,7,,)T as K-linear com-
binations of by, ..., b,,. By substituting these into (T0.4.8)) and equating the co-
ordinates of (10.4.8), we obtain a system of inhomogeneous linear equations:

Mx=b inx=(x;,...,x,y) €A™ (10.4.9)

where the matrix M and vector b have their entries in K. Using Theorem
[10.7.14] we can decide whether (T0:49) is solvable and if so, compute a so-
lution. Translating this back to (I0.4:8), we can decide whether (T0.4.8) is
solvable and if so, compute a solution.

If (TO-A:8) is unsolvable, then there is no polynomial f with (T0:4.4). As-
sume (T0.4.8) is solvable and compute a solution, say (x1, - - ., X.0, Yo) € A™*L.
Thus, Y/_; xo(ma;) — yo(1,..., DT = (y1,...,¥.)". Define a1, ..., @0 by

10
= X10a1 + -0 + X0 (10.4.10)
@ 50
Then
naj =yo+vy; fori =1,...,n with yy € A. (10.4.11)

Now let again f be an arbitrary polynomial with (T0.44) and let y be as in

(10.4.3). From (10.4.3), (T0.4.TT)) we infer that
@ —ap=2—2 . qfori=1,...n (10.4.12)
n
Clearly, a € Ag N K = A, since by assumption, A is integrally closed. This
implies that f is strongly A-equivalent to the polynomial

JoX) = (X —ay0) - (X — anp).

The polynomial f, can be effectively computed from the numbers ;;, hence it

belongs to a finite, effectively computable set, depending only on A, § and G.
Thus, we have effectively determined a finite list of polynomials, such that

every polynomial f with (T0-I.T)) is strongly equivalent to a polynomial from
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this list. In view of Theorem [I0.7.16] for each polynomial from the list we
can effectively decide whether it belongs to A[X] and remove it if this is not
the case. Further, for each polynomial from the list we can effectively de-
cide whether it satisfies (I0.1.T) and if not so, remove it. Finally, by means
of Lemma[T10.4.T| we can effectively decide whether two polynomials from the
list are strongly A-equivalent or not, and select a maximal subset of polyno-
mials, no two of which are strongly A-equivalent. This leaves us with a full
system of representatives for the strong A-equivalence classes of polynomials
with (TO-TT)). This completes the proof of Theorem [T0.1.1} i

Proof of Theorem[I0.1.2] Let A be an effectively given integral domain that is
finitely generated over Z and denote by K its quotient field. Further, let 6 be an
effectively given non-zero element of A. Take a monic polynomial f € A[X] of
degree n > 2 with (I0.1.2). Then

fX)=X-ay) - (X —a, withay,...,a, €G,

[_] (a; — a;)? = 6 with £ € A”,

1<i<j<n

where G is an extension of K of degree d.
Denote by B the integral closure of A[1/6] in G. Then «4,...,a, € B and

moreover, for each i, j,k,[ € {1,...,n} withi # j, k # 1,
o —a; o —a;
- = (5_114_1—[ J l_] (O,’l'] - 052)2 €B
¥~ A=A i ien
and then ai__a'i € B* by symmetry. It follows that the pairs
ap—q
G- u) (=3
) — ] ) — A
are solutions to
x+y=1inx,y€ B (10.4.13)

Using Proposition [10.3.1} which gives rank B* < C; for some effectively
computable number C; depending on A[1/6] and d, and the upper bound fol-
lowing from Theorem4.3.3|for the number of solutions of (T0-4.13)), we obtain
n < 24 28@rank B+ < 9l16(Ci+D) which is an effectively computable number de-
pending only on A, § and d. m}
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10.5 Proofs of Theorem [10.1.3]and Corollary [10.1.4]

Let A be an integral domain finitely generated over Z, effectively given as usual
in the form Z[Xy,..., X,1/(P:,...,Ps) = Z[z1,...,2-], Wwhere Py,...,P €
Z[X1,...,X,] and where z; is the residue class of X; mod (Py,...,P;) fori =
1,...,r. Denote by K the quotient field of A. Let Q be a finite étale K-algebra,
effectively given in the form K[X]/(Q) = K[6], where Q € K[X] is a monic,
separable polynomial and 8 is the residue class of X (mod Q). We say that an
element of Q is given effectively if it is given in the form 2;:0‘ (a;/b)d" where
n =[Q : K] and ag,...,a,-1,b are elements of A (given as polynomials in
21, .- ., 2 With integer coefficients).

Using Corollary we can construct the splitting field of Q over K; call
this G. By means of Corollary we can compute y such that G = K(y),
together with the minimal polynomial of y over K. In fact, if .# is the monic
polynomial of y over K, of degree d, say, we can compute a non-zero a € A
such that a.# € A[X]. Then G = K(w) where w := ay is integral over A.
Elements of G are always given in the form Zﬁl:_o] (a;/b)w’ where d = [G : K]
and ao, ..., a1, b are elements of A.

The polynomial Q factorizes as (X —61)--- (X—6™) in G, and by Corollary
we can compute expressions of 1, ..., #" as K-linear combinations
of 1,w,...,w%!. With these expressions we can compute, for any element
a = Y el € Qwith ¢g,...,c, € K, its images @ = Y7 ¢, (9D
(j =1,...,n) under the K-homomorphisms of Q in G.

Let O be an order of Q, effectively given by a set of A-module generators
{w) = L,ws,...,wy}; since A C O there is no loss of generality to insert 1 into
the set of generators. To check that {w;, w»,...,w,} generates an A-order, it
has to be verified first that {w;, wy, ..., w,} contains a K-linearly independent
subset of n elements. This can be done by elementary linear algebra, using
the expressions for wj,ws,...,w, as K-linear combinations of 1,6, ..., gL
Further, it has to be checked that for all i, j € {1, ..., m} there are agj ) € A with

m
wiw; = Z a" . (10.5.1)

k=1
By expressing w1, w,, ..., w, and all products w;w; as K-linear combinations
of 1,6,...,0"" and equating the coefficients, we can translate (I0.5.1)) into

systems of inhomogeneous linear equations as considered in Theorem[10.7.14]
Thus, we can check whether the systems are solvable in ag’j '€ A, and
if so, compute solutions to these systems. If is satisfied for certain
ag’j ) e A, it follows automatically that wy, w», ..., w, are integral over A, and
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hence that O is contained in the integral closure of A in Q. Indeed, (T0.5.1)
implies that w; is an eigenvalue of the matrix

(ay) (n
all e an;

di = b

(im) (im)
allm a"t:n

hence a zero of the monic polynomial det(X1 — 7;) € A[X].
We start with a lemma.

Lemma 10.5.1 For any integral domain A finitely generated over Z with
quotient field K of characteristic 0, any finite étale K-algebra Q 2 K, any A-
order O of Q and any a1, a; € Owith K[a] = K[az] = Q, all given effectively,
we can decide effectively

(i) whether a, a, are strongly A-equivalent;

(ii) whether a, ay are A-equivalent.

Proof Let G be the field defined above. Then a1, @, are strongly A-equivalent
if and only if @, = @ + a for some a € A, and the latter holds if and only if

a(zi) - a(li) = a/(zl) — a(ll) fori=2,...,n, a(zl) - a(ll) € A. (10.5.2)

Further, |, @, are A-equivalent if and only if @, = ea; + a for some € € A,
a € A, and this is equivalent to

(@) ) (1 ?2)
@, — @, @, — @

2 _ fori,je{l,...,n),i # j,
a,(ll) _ a,(lj) a,(ll) _ a,(12)
(1) ?2) (1) 2)
) a T a
€A, €
NONNG)
2 2

A; . (10.5.3)
a(ll) _ a(lz)

o' =) 0w
( D (2)]~a/1 —a, €A
@ T

Notice that by our assumptions K[a;] = K[ap] = Q, Q 2 K, we have that
n>2, oz(ll), . ,0/1") are distinct, and a(zl), . ,01(2") are distinct. Both (10.3.2),
(10-33)) can be checked effectively by Theorem[10.7.16]

Proof of Theorem[I0.1.3] Let A, Q, D, 6 be the effectively given integral do-
main, finite étale K-algebra, A-order of Q and element of A, respectively. So
for O a system of A-module generators {w; = 1,...,w,} is given. We have
[Q: K] =n>2.Let G be the field defined above, given in the form K(w) with
w integral over A.



10.5 Proofs of Theorem[10.1.3|and Corollary 233

Notice that if @ = Z;”:l xjw;j with xq,...,x, € Ais an element of O, then

o

Jj=1

n

X - (x—a™) =] ]|x

i=1

has its coefficients in G. But the coefficients of the polynomial are symmetric
under the permutations of the blocks (a)"l, ..., @), hence they belong to K.
Further, they are integral over A, hence they belong to A.

Let .Z be the finite set from Proposition [T0.2:1] This set can be computed
effectively in terms of A, Q, O, §. Now if « is an element of © with (I0.1.3),
i.e., Do/k(a) = 6, then fo(X) := (X — a'V) -+ (X — ™) has its coefficients in
A, D(f,) = 6, and f, has its zeros in G. Hence

V- e Z fori,je(l,...,n},i# j

We now pick elements vy;; from .% and consider the elements o with

@ €9, Dojk(a) =4, } (10.5.4)
bi# ]

a? —a¥) ey, fori,jell,...,n

We show that it can be decided effectively whether (10.5.4) is solvable and
if so, compute a solution of (10.5.4). Notice that (10.5.4) is certainly unsolv-
able if []i<icj<n yizj # 0. Assume that [];.;<, Yl-zj = ¢. Then the condition
Dq/k(@) = 6 can be dropped. Writing « as Y., xcwi with x1,...,x, € A, we

can rewrite (10.3.4) as
m
Zxk G _ (j) =y,j fori,je{l,...,n},i # J (10.5.5)
=1

Clearly, (x1, ..., X,) is a solution of (10.3.3)) in A™ if and only if @ := Y}J_; xxwy
is a solution of .

By expressing w a)k ) and the numbers vij as K-linear combinations of
Lw,...,wil Where d = [G : K] and w is the generating element of G over
K, we can rewrite (10.3.3) as a system of inhomogeneous linear equations like
in Theorem [I0.7.14] Thus, it can be decided effectively whether (10.5.5) is
solvable, and if so, a solution can be computed. Equivalently, it can be decided
effectively whether (10.5.4) is solvable and if so, a solution can be determined.

For each choice of y;; € .# (1 < i,< n, i # j), we check if is
solvable and if so, we compute a solution. Let .7 = {ay, ..., ®,} be the finite
set obtained in this manner.

Let @ be a solution of (T0.1.3). Then « satisfies (10.5.4) for certain y;; € .Z.
Let @ be an element from .7 satisfying (10.5.4) for these y;;. Then o - =
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a/g) —a/gj) fori,je{l,...,n}, hence

1) 1 _ N () (n)
a -y = =at —a .

It follows that @ — @p =: a € O N K = A, the latter being the case since A is
integrally closed. Now clearly, « is strongly A-equivalent to an element of .7.
This completes our proof of Theorem[10.1.3] o

Proof of Corollary[I0.1.4] Recall that Q is given in the form K[X]/(Q) with
Q a separable polynomial in K[X]. Using Theorem [[0.7.5] we can factor Q as
0 = 0;---Qy, where Qy,...,Q, are irreducible polynomials in K[X]. Then
by the Chinese Remainder Theorem for polynomials, we get a decomposition

Q = K[X1/(Q) = K[X]/(Q1) X - -- K[X]/(Qg) = L1 X - -- X L

where L; = K[X]/(Q;) is a finite extension of K. By Corollary for
each i we can compute a set of A-module generators for the integral closure
A, of Ain L;. By combining these, we obtain a set of A-module generators for
Aq = A, X---xAp,. Now we apply Theorem[@with 0 = Aq. O

10.6 Proofs of the results from Subsection 10.1.2]

Let L be an algebraic number field and K := L(X|, ..., X,) the rational function
field in ¢ variables. We introduce a collection of discrete valuations on K.

First, let &2 be the collection of prime ideals of O;. By Proposition
we can extend every discrete valuation ord, (p € 7)) to a discrete valuation
on K. More precisely, write x = Q;/Q> with 01,0, € L[X,...,X,], and
define (x) := (Q1)(Q»)~!, where (Q)), (Q>) denote the fractional ideals with
respect to Oy, generated by the coefficients of Q;, Q», respectively. Then the
values ord,(x) (p € &) are precisely the exponents in the unique prime ideal
factorization of (x):

@ =[] e (10.6.1)

pe?,

Second, let £, be a maximal collection of pairwise non-associated irreducible

elements of the ring L[Xj, ..., X,]. Then x has a unique polynomial factoriza-
tion
x=c [ ] p™® withce L, ordy(x) € Z for p € 2, (10.6.2)
p€<@2

where at most finitely many of the exponents ord,(x) are non-zero. Define the
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sets of valuations on K,
M, :=f{ord, : pe P}, M, := {ordp :pE€ @2}, M := M, UM,.
Notice that
Or[Xy,.... Xl ={x€eK: v(x) >0 forve M}. (10.6.3)

A valuation v € M is represented by giving a set of generators for the prime
ideal p if v = ord, € M, and by giving the coeflicients of p if v = ord, € M,.

It is important to remark here, that for any effectively given x € K* we can
effectively determine representations for those v € M for which v(x) # 0 and
moreover, for each of these v we can compute v(x). Indeed, let x € K* be
given as a quotient of two polynomials from L[X, ..., X,]. Then by means of
a factorization method for fractional ideals, we can compute the factorization
(10.6.1)) of (x) into prime ideals, with a finite set of generators for each prime
ideal p for which ord,(x) # 0. Further, by Theorem[10.7.5| we can compute the
factorization (10.6.2), with the coeflicients of all p occurring with exponent
ord,(x) # 0.

Let

A=0s[Xy,..., X4, 1/P]

where S is a given finite set of places of L containing all infinite places, and P
is a given, non-zero polynomial of Og[X{, ..., X,]. By combining the proof of
Theorem [5.1.4 with Theorem [10.7.16| we can compute r > ¢, and polynomials
Py,...,P; € Z[X;,...,X,], such that A = Z[X},...,X,]/(P1,..., P). Thatis,
A is given effectively in the sense of Section We do not work out the
details.

We prove some other properties of A. Let S* consist of the extensions to K
of the discrete valuations ord,, for each prime ideal p of Oy, corresponding to
a finite place in S. Notice that

Os[Xi,.... X l={xeK: v(x) >0 forve M\ S*}. (10.6.4)

Let T denote the set of valuations v € M such that v € S* or v(P) > 0. Clearly,
T is finite.

Lemma 10.6.1 A = {xe K:v(x)>0forve M\T}. Hence A is integrally
closed in K.

Proof First suppose that x € A, x # 0. Thus, x = Q - P™/, where Q is a
polynomial in Og[X{, ..., X,,] and [ is a non-zero integer. By we have
v(Q) = 0 forv € M\ §*, and by definition, v(P) = 0 forv € M \ T. Hence
v(x) >0forve M\ T.
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Conversely, let x € K* and suppose that v(x) > 0 forv € M \ T. There is a
non-negative integer / such that v(x) + iv(f) > O forv € T \ §*. Put Q := xP.
Then v(Q) > 0 forv e M\ S*, hence Q € Os[Xj,...X,] by (10.6.4). It follows
thatxzQ'P‘IwitthOS[Xl,...,Xq],i.e.,xeA. O

Lemma 10.6.2 For effectively given L, S, q, P, one can effectively compute
a finite set of generators of the unit group A* of A = Os[X1,...,X,, 1/P].

Proof By Theorem[I0.7.5] we can effectively determine the irreducible poly-
nomials pi, ..., p;in &, thatdivide fin L[X, ..., X,]. Units of A are certainly
units of L[X,..., Xy, 1/P], and the unit group of the latter is generated by L*

and by py, ..., p;. Hence every element of A* can be expressed as
epl--pl withce L, h,...,l, € Z. (10.6.5)
Notice that by Lemma [10.6.1]
A" ={xeK :v(x)=0forxe M\ T}. (10.6.6)

Let T’ consist of those valuations v € M such that v € S*, or there is i €
{1,...,t} withv(p;) # 0. If v € M \ T’ then certainly, v(p;) = 0. Hence T C T".
Further, TNM, =T' N M, = {ordp, e ordp,}, hence T’ \ T consists of those
prime ideals p of Oy, such that ord,(f) = 0, but ord,(p;) # O for some i €
{1,...,t}. We can effectively determine the prime ideals p such that ord, € 7’,
by factoring the fractional ideal generated by the coefficients of p; into prime
idealsfori=1,...,t.

Now (10.6.6) implies that if the element in (10.6.5) represents a unit of A,
then ¢ € Of,, where S’ consists of the finite places corresponding to those
prime ideals p for which ord, € 7’, together with the infinite places of L.
Using Proposition 3.6.1} we can determine effectively a finite set of generators
for O, say 1, ..., &y. Together with (I0.6.5), this implies that every element
of A* can be expressed as

gy ph o pl with ki, ke L € Z (10.6.7)

The elements in belong to {x € K : v(x) = 0 forv e M\ T’}, but not

necessarily to A*. By (10.6.6), the element given in (10.6.7) belongs to A* if
and only if

s’ t
D kive) + ) Lyv(py) =0 forve T'\ T. (10.6.8)
i=1 j=1

As observed before, the quantities v(g;), v(p;)) v € T'\T,i =1,...,5,j =
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1,...,t) can be computed. Now one can effectively determine a basis for the Z-
module of vectors (ki, ..., kg, l1,...,1;) € Z**" with (T10.6.8). By substituting
these basis vectors into (10.6.7]), we obtain a system of generators for A*. O

Lemma 10.6.3 For effectively given L, S, g, P, and any effectively given
non-zero element 6 of A = Os[Xq,...,X,, 1/P], one can effectively determine
a finite set {01, ...,0,} in A, such that for every element 3 of A that divides 6,
there exist 6; € {01,...,0,} and € € A" such that

ﬂ = 861'.

Proof We may write § = Q - P!, where Q € Og[X],... ,X,4] and [ is a non-
zero integer. Let B := Os[X),...,X,, 1/QP], and let T’ be the set of valuations
v € M and thatv € S*, or v(QP) > 0. Then T’ 2 T and

B={xeK:v(x)=0forve M\T'}. (10.6.9)

SoB* ={xe K*: v(x) =0forve M\ T'}. Notice that 8 € A divides 6 if and
only if 0 < v(8) < v(0) forv € M\T. Since v(#) = W(Q-P~") = 0forve M\T’,
this can be reformulated as

BIO = BeB, 0<v(B)<w®) forve T \T. (10.6.10)

By Lemma [10.6.2] we can effectively determine &i,...,&, € B, such that
every element of B* can be expressed as

e with ki, ... ky € Z. (10.6.11)

So in particular, the divisors of € are of this form. By combining this with
(10.6.10), we infer that the element given by (10.6.11) represents a divisor of
@ if and only if there are integers a, (v € T’ \ T') such that

h
Z kiv(g)) = ay, 0 <a, <v(®) forve T'\T. (10.6.12)

i=1
As remarked before, the quantities v(), v(g;) (i = 1,...,h,v € T\ T) can
be computed. Notice that for any given a, (v € T’ \ T), two distinct solutions
(ki, ..., ky) of (10.6.12) yield elements (T0.6.11)) which are associated with
respect to A*. Now for each fixed tuple a, (v € T’ \ T) with 0 < a, < v(6) for
v € T’ \ T, it can be decided whether (T0.6.12) is solvable and if so, a solution
(k1,...,ks) € Z° can be found. These solutions give rise to elements 0y, ..., 0,
of A as specified in the statement of Lemma[10.6.3] O

Proof of Theorem[I0.1.3] Let A = Og[X;, ..., X, 1/P] be the given integral
domain, G the given finite extension of K, n the given integer and ¢ the given
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non-zero element of A. Using Lemma[T0.6.2] we compute a finite set of gen-
erators {&1,..., &} for A*.

Take any polynomial f € A[X] with (T0-1.3). Then D(f) = én with n € A*.
m

Writing n = &) - -- & withmy,...,m; € Z, and

m;i=nn— DI +k withl; € Z, k; €{0,...,n(n—-1) -1},

we find an expression for 7 of the shape /""" where & € A*, and ¢ belongs
to the effectively computable finite set

Ro={el gl ke f0. . nn—1) = 1) fori=1,....1.
Define f; by
fiX) = 7" f(eX).
Then
D(fi) =6 (10.6.13)

and f] is A-equivalent to f. Further, f] has all its zeros in G.

Using Theorem[10.1.1 we can compute for each ¢ € Z a full system of rep-
resentatives for the strong A-equivalence classes of monic polynomials f; €
A[X] of degree n with (10.6.13), with splitting field contained in G. By taking
the union of these systems for all £ € &, we obtain a finite set .# of polynomi-
als, such that every polynomial f with (T0.1.3) is A-equivalent to at least one
polynomial from .%. By means of Lemma [10.4.1| we can compute a maximal
subset . of ., any two distinct polynomials of which are pairwise not A-
equivalent. Clearly, .7} is a full system of representatives for the A-equivalence
classes of polynomials with (TI0.1.3)). This proves Theorem [10.1.5} o

Proof of Theorem[I0.1.6] Let A,Q, 9O, be as in the statement of Theorem
[T0.1.6] and let {ey,...,&} be the system of generators for A*, computed by
means of Lemmal[l10.6.2]

Leta € O be a solution of (T0.1.6), i.e., Dok (@) = 6n withn € A*. Similarly
as in the proof of Theorem we can write 7 as £&""D where & € A* and
{ belongs to an effectively computable finite set %Z. Put ay := & 'a. Then
ay € O, a is A-equivalent to g, and

Dok (ag) = 4. (10.6.14)

Using Theorem [T0.1.3] we can compute, for each { € %, a full system of
representatives for the strong A-equivalence classes of solutions @y € O of
(10.6.14). By taking the union of these systems, and then computing a max-
imal subset of pairwise not A-equivalent elements, we obtain a full system
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of representatives for the A-equivalence classes of solutions of (T0.1.6). This
proves Theorem [10.1.6| O

Proof of Corollary[I0.1.7] Similar to the proof of Corollary [T0.1.4] by com-
puting a set of A-module generators for Ag. [

Proof of Theorem[I0.1.§ Let P € Os[Xi,...,X,] be the given polynomial,
L the given number field, S the given set of places, Q the given finite étale
K-algebra, and © the given A-order of Q, where A = Og[Xy,...,X,, 1/P] and
K = L(Xj,...,X,). Suppose O is given by a finite set of A-module generators

{wi,...,wy}. Putn :=[Q: K]. Since O spans Q as a K-vector space, there are
n K-linearly independent elements among wy, . .., W, which we may assume
to be wy,...,w,. Then

6= DQ/K(U.)], e wy) #0.

Since by Lemma [T0.6.1] the integral domain A is integrally closed, we have
6 € A. Using Lemma [[0.6.3] we compute a finite set {5y,...,6,} in A such
that for every 6 € A with 6|6 there is € € A" such that § = ¢,& for some
0; €{61,...,0,}.

Let @ € O such that A[a] = O. Then {l,a, ... ,a"‘l} is an A-basis of O.
Hence there are g;; € A such that

n—1
w; = Zaija’ fori=1,...,n.
=0

Now the basis transformation formula (1.5.3) implies
DQ/K(wl, e, W) = (detaij)zDQ/K (1, a,..., anil) = (detai_i)zDQ/K(a).

Hence Dq/k(a) divides 6 in A. Consequently, there is §; € {J1,...,0,} such
that

DQ/K(CY) <€ (5,A* (10.6.15)

Using Theorem [I0.1.6] we compute a full system of representatives for the
A-equivalence classes of solutions of (10.6.13), for each 6; € {6y,...,6,}. By
taking the union of these systems, and then applying Lemma[10.5.1| we com-
pute a finite set {ay, ..., ag} of pairwise not A-equivalent elements of O such
that if @ is any element of © with A[a] = O then « is A-equivalent to one of
ay,...,ag. Finally, we can check for each a € {ay, ..., ag} whether Ala] = O,
by expressing the given generators wy, ..., w, of O as K-linear combinations
of l,a,...,a""!, and checking whether the coefficients belong to A. This com-
pletes our proof. O
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10.7 Supplement: Effective computations in finitely
generated domains

We have collected some algorithmic results for fields finitely generated over
Q and for integral domains finitely generated over Z. Our main references are
[Seidenberg (1974)] and [Aschenbrenner (2004)]. We agree once more that
upper case characters such as X, Y denote variables whereas lower case char-
acters denote elements of rings or fields. Given a ring R, we denote by R™" the
R-module of m X n-matrices with elements in R, and by R" the R-module of
n-dimensional column vectors with coordinates in R.

By saying that given any input from a specified set we can determine effec-
tively an output, we mean that there exists an algorithm (i.e., a deterministic
Turing machine) that, for any choice of input from the given set, computes the
output in a finite number of steps. We say that an object is given effectively if
it is given in such a form that it can serve as input for an algorithm.

10.7.1 Finitely generated fields over Q

We start with the following.

Theorem 10.7.1 For any given positive integer r and any given polynomials
Pi,...,P, € Q[Xy,...,X,] we can:

(i) determine effectively whether a given polynomial Q € Q[Xy,...,X,] be-
longs to the ideal I = (Py, ..., P;) and if so, determine effectively Qy, ..., Qs €
QIX1,...,X,] such that Q = Q1P + - - - + Q;P; (ideal membership problem);

(ii) determine effectively whether I is a prime ideal of Q[ X1, ..., X,].

Proof The main ideas in the proofs of these results originate from [Hermann
(1926)] but her arguments contain mistakes. For correct proofs, we refer to
[Seidenberg (1974)]: see §4, p. 277 for (i) and §46, p. 293 for (ii) (in fact
Seidenberg gives a method to determine the prime ideals associated to a given
ideal I, which certainly enables one to decide whether [ is a prime ideal). O

To a field K = Q(zy,...,z,) that is finitely generated over Q we may asso-
ciate the polynomial ideal

I:={PeQ[X,....X,]: P(z1,...,2,) =0}

By Hilbert’s Basis Theorem, the ideal 7 is finitely generated, i.e., there are
Py,...,Py;elsuchthat] = (Py,...,Py). Then K is isomorphic to the quotient
field of

Q[X1,~--,Xr]/(Pl,~--,Ps), (10.7.1)
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and zj, ...,z may be identified with the residue classes of X|, ..., X, modulo
(P1,...,Py). We say that K = Q(z1,...,z,) is effectively given if a finite set of
generators {Py, ..., P,} for the ideal [ is effectively given. We call {Py, ..., P}
an ideal representation for K. We say that a field finitely generated over Q is
effectively computable if an ideal represntation for it can be effectively deter-
mined.

Notice that for polynomials P, ..., Py € Q[Xi,..., X,] to form an ideal rep-
resentation of a field it is necessary and sufficient that (Py, ..., P,) be a prime
ideal of Q[Xj, ..., X,]. This can be verified effectively by Theorem[I0.7.1] (ii).

Let K = Q(zy,. . .,z,) be an effectively given field. We say that y € K is effec-
tively given/can be effectively computed in terms of zj, ..., z,, if polynomials
P, Q0 € Q[X,,...,X,] are given/can be computed such that and y = %
Thanks to Theorem (ii) we can verify whether such an expression is
well-defined (i.e., Q(zy,...,2) # 0 or equivalently, Q ¢ I) and whether two
expressions % (i=1,2)areequal (i.e., P1Q> — P,Q; € ).

We note that if yy, .. ., y,, are effectively given in terms of z;, .. ., z,, then for
any given polynomial Q € Q[Y1,..., Y, ]itcan be decided if Q(yy,...,ym) # 0.
Moreover, for any two given P, Q € Q[Y1,..., Y,,] with Q(y1,...,yn) # 0 one

can effectively compute H in terms of z;,...,z,.
Finally, if yy,...,y, are effectively given elements of K, then we say that
the element y is given/can be computed effectively in terms of yi,...,yu,

if polynomials P,Q € Q[Yy,...,Y,] are given/can be computed, such that
PQis,...s m
OGi,...,ym) #0andy = Q((il.—y

Theorem 10.7.2 Forany r > 1 and any effectively given field K = Q(zy, . .. ,2;)
we can:

(i) in case that r > 2 determine effectively a finite set of generators for the ideal
Io ={Po € Q[Xy,..., X,1]: Po(z1,...,2-1) = O}

(ii) decide effectively whether z, is algebraic over Ky := Q(z1,...,2—1) and
if so, determine effectively the monic minimal polynomial of z, over Ky, with
coefficients given in terms of Z1, ..., Zr—1.

Proof See [Seidenberg (1974), §23 (p. 284), §25 (p. 285)]. O

Corollary 10.7.3 Foranyr > 1 and any effectively given field K = Q(zy, . .., zr)
we can:

(i) determine effectively a permutation xi, . .., Xq, Y1, .., Y1 0f 21, ..., 2 in Such
awaythat x,. .., x, are algebraically independent and y1, . . ., y; are algebraic
Over Q('xl7 AR _Xq);

(ii) for i = 1,...,t, determine effectively the monic minimal polynomial of
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yi over Q(x1,...,Xg4, Y1, -..,Yi-1) with coefficients given in terms of x1, ..., Xg
Vi Vit (Where {x1, ..., yic1} = {x1, ..., X, ifi = 1).

Proof Straightforward. O
Theorem 10.7.4  For any effectively given field K = Q(zi,...,z,) and any

Yi,---5 Y1,y € K given in terms of zy, ..., 2, we can:

(i) determine effectively a finite set of generators for the ideal
{PeQ[Xy,....X]: Ph1,..-,y) =0}

(ii) decide whether y € Q(y1,...,y;) and if so, determine effectively P, Q €

. P(yq,...,
ZIY:, ..., Y, with Q1. .., v) # 0and y = H

Proof By [Seidenberg (1974), §27 (p. 287)], one can compute a finite set of
generators for the ideal of P € Q[X1,..., X;+1] such that P(yy,...,y;,y) = 0.

Now (i), (ii) are an easy consequence of Theorem [10.7.2 O
Theorem 10.7.5 For any effectively given field K = Q(zi,...,z,) and any
effectively given polynomial F € K[X1,...,X;], we can determine effectively
the factorization of F into irreducible polynomials of K[Xi,...,X;], in such a

way that the coefficients of these irreducible polynomials are all given in terms
of z1, ...,z In particular we can decide whether F is irreducible.

Proof This follows from [Seidenberg (1974), §33-35 (p. 289)], together with
a repeated application of Corollary |

Let K = Q(z1,...,2,) be an effectively given field. We say that a finite ex-
tension L of K is effectively given/can be effectively computed, if a monic ir-
reducible polynomial f € K[X] is given/can be computed in terms of zj,. .., z,
such that L = K(y), f(y) = 0.

Corollary 10.7.6  For any effectively given field K = Q(zy,...,z,) and any
irreducible polynomial f € K[X] with coefficients given in terms of zi, . .., Zr,
we can:

(i) determine effectively a finite set of generators for the ideal
{PeQlXy,....X,,Y]: P(z1,...,2,) =0}

where y is a root of F;

(ii) for any element of K(y) given in terms of z1, . . ., z2r, y, determine effectively
an expression for this element as a K-linear combination of 1,y, ..., y%ef =1,
with coefficients given in terms of z1, . . . , 2.
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Proof Put L := K(y),d := [L : K]. Suppose K is represented by Py, ..., Pj,
ie., Py,..., Py generate the ideal of polynomials P € Q[X{,..., X,] for which
P(z1,...,2) = 0. We may express f as X + (a1 /b)X?" + --- + (ay/b) where
ai,...,aq, b are given as elements of Z[z, ..., z].

Lety’ := by. Then K(y') = L and y’" has minimal polynomial X? + a; X4~ +
-+ b%la, over K. Let Qy, ..., Qu be polynomials from Qg[X|, ..., X,] with
b~ 'a; = Qiz,...,z) fori = 1,...,d. Then the ideal of polynomials Q €
Q[Xi,..., X, Y] with Q(z1,...,2,Y) = O is generated by Py, ..., P; and Y +

flzl Q;Y%. Using Theorem we can compute a finite set of generators
for the ideal of P € Q[Xi,...,X,, Y] with P(z1,...,z-,y) = 0, and so these
form an ideal representation for L.

Finally, from an expression of an element of L in terms of zy, ... ,z,, y we can
compute an expression for this element as a K-linear combination of 1,y,. . .,yd‘l
using division by f with remainder. O

Corollary 10.7.7 For any effectively given field K = Q(zy,...,z,) and any
polynomial f € K[X] with coefficients given in terms of 7y, ...,z we can de-
termine effectively the splitting field of f over K.

Proof Denote by L the splitting field of F over K. We first factorize f in K[X]
by means of Theorem Let f; be one of the irreducible factors of f over
K, and define the field K| := K(y;) = K[X]/(f1), where y; is the residue class
of X modulo f;. By the previous result, we can compute an ideal representa-
tion for K;. Next, compute an irreducible factor f> of f/(X — y;) in K;[X] and
construct the field K; := K;(y;) = K;[X]/(f1), etc. Continuing in this man-

ner, we construct the splitting field L of F over K in the form K(yy,..., V),
where yi,...,y, are the distinct roots of f. By induction, we obtain an ideal
representation for L. O

Corollary 10.7.8 For any effectively given field K = Q(zy,...,z,) and any
effectively given finite extension L = Q(z1,...,2r,Y1,---,Yn) Of K of degree d,
we can:

(i) determine effectively an element y of L in terms of 21, ..., Zr, Y1, -« - s Yn SUCh
that L = K(y), together with the monic minimal polynomial of y over K, with
coefficients given in terms of Z1, . .., Zr;

(ii) for any element of L given in terms of 21, . .., Zrs Y15 - - - » Yn, determine effec-
tively an expression for this element as a K-linear combination of 1,y, ...,y ..

Proof Let K be the effectively given field. For i = 1,...,n, define K; :=
K(1,...,y), putd; := [K; : K;_1], and denote by f; the monic minimal poly-
nomial of y; over K;_;. The coefficients of f; can be computed in terms of
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Zls---1Zr Vs .., Yio1 by means of Theorem[10.7.2] Then
{1, wa) = 0k <d; (= 1,...,m)

is a K-basis of L = K,,. Using Corollary we can compute, for any ele-
ment of L given in terms of zj, ...,z Y1, ..., Vs, an expression of this element
as a K-linear combination of wy,...,wy, with coefficients given in terms of
Llyeeeslpe

Let oy,...,04 be the K-isomorphisms of L into K. It is easy to see that
there are rational integers cy, ..., c, with |¢;| < d? for i = 1,...,n such that
2y cioj(wi) (j=1,...,d) are all distinct. Then y := )%, c;w; is a primitive
element of L over K.

We determine cy, . . ., ¢, and the minimal polynomial f of y over K (with co-
efficients in terms of z;, . . ., z,-) as follows: for each tuple of integers (ci, . .., ¢,)
with |¢j| < d? fori=1,...,n, we express 1,7y, y2, ... as K-linear combinations
of wy,...,w, and determine the smallest m such that 1,y, ..., y" are K-linearly
dependent. As soon as m = d, we are done.

Let w be a given element of L. By computing expressions for w, 1, y, ..., y*!
as K-linear combinations of w;,...,w; and solving a system of linear equa-
tions, we obtain an expression for w as a K-linear combination of 1,y, ...,y
This completes our proof. O

10.7.2 Finitely generated domains over Z

We need some analogues of the results mentioned above for finitely generated
integral domains Z[zy, ..., z,] instead of fields Q(zy,...,z,). We start with re-
calling some effective results of Aschenbrenner for modules and ideals over
polynomial rings over Z.

For a polynomial P with integer coefficients, we denote by H(P) its height
(maximum of the absolute values of its coefficients) and by Deg P its total
degree. Further, we define the polynomial ring R := Z[X}, ..., X,].

Theorem 10.7.9 Let M be an m X n-matrix with entries from R, and b a
vector from R™, such that the entries of M and b have total degrees at most d
and heights at most H.

(i) The R-module

{xeR": Mx =0}
is generated by vectors, of which the coordinates are polynomials whose total

degrees are bounded above by an effectively computable number C, depend-
ing only on m,n,d, r and whose heights are bounded above by an effectively
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computable number C, depending only on m,n,d,r and H.
(ii) Suppose that the system
Mx =Db

is solvable in x € R". Then this system has a solution X, € R" whose coordi-
nates have total degrees bounded above by Cs and heights bounded above by
Cy4, where both Cs, Cy are effectively computable numbers depending only on
m,n,d,r and H.

Proof 1In [Aschenbrenner (2004)] the above theorem was proved with the
constants Cy = (2md)®""", C; = exp(@m(d + 1) (1 + log H)) (cf. his
Proposition 5.2) and C3 = QCmd)®7" (1 + log H) (cf. his Theorem 6.1), where
c1, ¢, c3 are effectively computable absolute constants. In (ii), thanks to our
upper bound for the total degrees, the problem to find a solution to Mx = b
reduces to solving a finite system of inhomogeneous linear equations over Z.
From, e.g., Lemma@] or a result from [Borosh, Flahive, Rubin and Treybig
(1989)], it follows that if such a system is solvable in integers, then it has an
integer solution with for the absolute values of the coordinates an effective
upper bound in terms of the coefficients of the system. This yields a value for
Cy. [m}

Corollary 10.7.10 (Ideal membership over Z) Let I = (Py,...,Py) be an
ideal of R and Q € I. Suppose that Py, ..., Ps and Q have total degrees at most
d and heights at most H. Then there exist Py, ..., Py € R of total degrees and
heights bounded above by effectively computable numbers depending only on
r, d and H, such that Q = },;_| Q;P;.

Proof  Apply part (ii) of Theorem[T0.7.9|with m = 1. m|

Theorem 10.7.11 Let Py,...,P; € Z[X, ..., X,] have total degrees at most
d and heights at most H. Let 1 be the ideal of Q[Xi,...,X,] generated by
Pi,...,P;.Then TﬂZ[Xl ,...»Xy] is an ideal generated by polynomials of total
degree at most Cs and height at most Cs, where Cs is an effectively computable
number depending only on r and d, and Cg an effectively computable number
depending only on r,d and H.

Proof The upper bound for the total degrees follows from [Aschenbrenner
(2004), Thm. 4.7]. Computing an upper bound for the heights of the genera-
tors comes down to computing an upper bound for the absolute values of the
coordinates of a basis for a Z-module of the shape V N ZY where N is some
positive integer and V a linear subspace of Q. It is a standard procedure to
compute such a bound from a given basis of V lying in Z". O



246 Effective results over finitely generated domains

Let A be an integral domain with quotient field K of characteristic O that is
finitely generated over Z as a Z-algebra, say A = Z[zy,...,z/], and let

I:={PeZ[Xy,....,.X,]: P(zy,...,z-) =0}

be the associated polynomial ideal. Again by Hilbert’s Basis Theorem, the
ideal I has a finite set of generators. Any finite system of generators Py, ..., P
for I is called an ideal representation for A. In other words, Py, ..., P form
an ideal representation for A if A is isomorphic to Z[ X1, ..., X,]/(Py,..., Ps).
As before, we say that an integral domain A is effectively given/can be deter-
mined effectively if an ideal representation for A is given/can be determined
effectively.

We agree that an element y of A = Z[z,...,z,] is given/can be deter-
mined effectively, if a polynomial P € Z[X|, ..., X,]is given/can be determined
such that y = P(zy,...,z-). By means of Corollary one can decide
whether two expressions P(zy,...,z,), O(z,...,z,) with P,Q € Z[Xi,...,X,]
are equal.

Ifyi,...,y, are effectively given elements of A or K, we say that another el-
ement y of A or K is effectively given/computable as a polynomial in yy, ..., ¥,
if one is given/can compute Q € Z[Y, ..., Y,] such thaty = Q(y1,...,y,).

Finally, we say that a finitely generated A-module M C K is effectively
given/can be determined effectively, if a set of A-module generators of M is
given/can be determined effectively, i.e., each element of this set of gener-
ators can be expressed as a quotient P(zy,...,z,)/0Q(z1,...,2-) with P,Q €
Z[X1,..., X, ).

We first give a method to check whether given Py,...,P; € Z[X},...,X,]
do form an ideal representation of an integral domain that is finitely generated
over Z.

Lemma 10.7.12 Given polynomials P1,...,Ps € Z[X,...,X,]), it can be
decided effectively whether Z[X1,...,X,]/(P1,...,Ps) is an integral domain
containing 7Z.

Proof Write I = (Py,...,Py), and assume A = Z[X{, ..., X,]/I without loss
of generality. Let:=1- QlXy,..., X, 1.

The ring A is an integral domain containing Z if and only if 7 is a prime ideal
with I N Z = (0), and the latter is equivalent to the assertion that I is a prime
ideal of Q[Xj, ..., X,] with INZ[X,,...,X,] = I and with 1 ¢ I. We can check
using Theorem whether 7 is a prime ideal of Q[Xj, ..., X,] not contain-
ing 1. Further, using Theorem[I0.7.1T1] we can determine a finite set of genera-
tors for N Z[Xi,...,X,]. Finally, by means of Corollarywe can check
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whether these generators belong to / and thus, whether INZX,....X] =

1. O

Theorem 10.7.13  For any effectively given integral domain A = Z[z1,...,2,] D
Z and any given monic irreducible polynomial f € A[X] with coefficients given
as polynomials in z,, . . ., z,, we can:

(i) determine effectively a finite set of generators for the ideal
{PeZ[X,...X,,Y]: P(z1,...,2,y) =0}

where y is a root of f;

(ii) for any element of Aly] given as polynomial in z,, . . ., z,, y, determine effec-
tively an expression of this element as A-linear combination of 1,7y, . .., y%e/ =1,
Proof Similar to Corollary m]

Theorem 10.7.14  For any effectively given integral domain A = Z[z, . . ., zr]
with A D Z, any m X n-matrix M with entries in the quotient field K of A, and
any column vector b € K", all with entries given in terms of 71, . . ., 2, we can:

(i) determine effectively a finite set of generators, with coordinates given as
polynomials in zy, ..., z,, for the A-module {x € A" : Mx = 0};

(ii) decide whether Mx = b is solvable in x € A" and if so, determine effectively
a solution with coordinates given as polynomials in zy, . .., Z.

Proof Suppose that A is represented by Py,...,P; € Z[X,...,X,]. This
means that A = Z[X,,...,X,]/I where I = (Py,...,Py), and z; corresponds
to the residue class of X; mod 1.

After multiplication with a suitable non-zero element of A, we may assume
that M and b have their entries in A, and are given as polynomials with integer
coefficients in z,...,z,. Write R := Z[Xi,...,X,]. The columns of M may
be represented as the reductions mod I of vectors ajy,...,a, € R" and b may
be represented as the reduction mod I of some vector ¢ € R”. Letey,...,e,
denote the standard basis vectors of R™, where e; has a 1 on the i-th place, and
zeros elsewhere.

We first prove (ii). There exists x € A" with Mx = b if and only if there are
Yi,...,yn €Randy; € R(1 <i<s, 1< j<m),such that

iﬂak*‘ii)’ﬁpifﬁj =c (10.7.2)
=1 =1 j=1

and moreover, the coordinates of x are the reductions mod / of the first n coor-
dinates of

y= (Yl"--a)’m y1],--~’)’sm)T-



248 Effective results over finitely generated domains

Using Theorem [T0.7.9] (ii), one can check whether (I0.7.2)) has a solution y €
R™™ and if so, compute a solution. By reducing modulo / we then obtain a
solution x € A" of Mx = b with coordinates given as polynomials in zy, ..., Z,.

The proof of (i) is similar. Completely similarly as above, we can rewrite
the system Mx = 0 in x € A" into a system of type (I0.7.2)), but with ¢ = 0.
Using Theorem (i), we can determine a finite set of generators for the
R-module of solutions of (I0.7:2)), and by reducing modulo I we then obtain
a finite set of generators for the A-module of solutions of Mx = 0, again with
coordinates given as polynomials in z1, ..., z,. O

Corollary 10.7.15 For any effectively given integral domain A = Z[z, . . ., 2]
with A D Z, and any two effectively given finitely generated A-modules M, M, C
K, we can effectively determine a finite set of A-module generators for MyNM,;.

Proof Letwy,...,wy, Wyi1,...,w, be the given sets of A-module generators
of My, M, respectively. Then the elements of M| N M, are characterized by

X{wp + -+ X Wy = Xyp 1 Wysy + -+ xow, With xq, ..., x,,...,x, €A.

Using Theorem [T0.7.14] (i) we can determine a finite set of generators for the
A-module of solutions (xi, ..., x,) € A” of this equation, and from this, a set of
A-module generators for M; N M. O

Theorem 10.7.16 For any effectively given field K = Q(z1,...,z-) and any
Yi,...,yrandy € K given in terms of z, . .., z, we can:

(i) determine effectively a finite set of generators for the ideal
I: {PEZ[Yb-"sYt] : P(yh-“’yt) :O}a

(ii) decide whether y € Z[y1,...,y:] and if so, determine effectively a polyno-
mial Q € Z[Y1,..., Y] suchthaty = Q(y1,...,y:).

Proof The algorithm of Theorem [T0.7.4] computes a finite set of generators
for the ideal

I1:={PeQ[Yy,...,Y,]: P(byy,...,y) =0}

Then using Theorem one can determine a finite set of generators for
the intersection I N Z[Yy,...,Y ] =1

By Theorem it can be decided whether y € Q(yy,...,y;) and if so,
elements a,b of Z[y;,...,y;] can be computed, both represented as polyno-
mials with integer coefficients in yy,...,y;, such that y = a/b. By Theorem
it can be decided whether a/b € Z[yy,...,y;] and if so, a polynomial
Q € Z[Yy,..., Y] can be computed such that a/b = Q(yy,...,y:). This proves
Theorem [10.7.16 O
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Let A = Z[zj,...,2] D Z be an effectively given integral domain and K its
quotient field. Recall that by Theorem the integral closure of A (in K) is
finitely generated as an A-module.

Theorem 10.7.17 For any effectively given integral domain A = Z|zy, . . ., 2]
with A D Z, we can:

(i) effectively decide whether A is integrally closed;

(ii) if not so, determine effectively in terms of zi, .. . , 2, a finite set of A-module
generators for the integral closure of A in its quotient field.

Proof This is a combination of results from [de Jong (1998)], [Matsumura
(1986)] and [Matsumoto (2000)]. We briefly outline the idea.

LetA =Z[z,...,z] D Zbe an integral domain, and denote by K its quotient
field and by A its integral closure in K. Let J be a non-zero ideal of A that
is contained in the intersection of the singular prime ideals of A, these are the
prime ideals p of A for which the localization A, is not regular (see [Eisenbud
(1994), §10.3]). Let

VJ:={acA: IneZywithd" € J)
be the radical of J. Define the idealizer of \J by
Ay = {xeK:x\/jQ \/7}.

Then A, is a subring of Ax containing A. In [de Jong (1998)] it is shown that
A; 2 A if and only if A is not integrally closed. In [Matsumura (1986), Thm.
30.4] it is explained how to find a set of generators for a suitable J and in [Mat-
sumoto (2000)] how to compute a set of generators for VJ. Let {wi,..., Wy}
be the computed set of generators for VJ. Then A; = st wi‘l J and so a set
of A-module generators for A; can be computed using Corollary
Using Theorem (ii) we can check whether these generators belong
to A, and thus, whether A} = A and A is integrally closed. In case that A} 2 A
we can compute an ideal representation for A; and repeat the above proce-
dure. This leads to a sequence of subrings A = Ag G A} & Ay & -+ of Ag,
which must eventually terminate since A is a Noetherian domain and since by
Theorem [5.1.2] Ak is a finitely generated A-module. The last ring in this se-
quence must be Ak itself. The above procedure computes for each i > 1 a set
of A;_1-module generators for A;. Assuming that Ax = A;,, we obtain a set of
A-module generators for Ag by taking all products H?’z | Wi, Where wj is in the
computed set of A;_;-module generators for A;. O

Corollary 10.7.18 For any effectively given integral domain A = Z[zy, . . ., z:]
with A D Z and any effectively given finite extension L of the quotient field of
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A, we can compute a finite set of A-module generators for the integral closure
of Ain L.

Proof Denote by K the quotient field of A and by A, the integral closure of
Ain L. We have L = K(y), where y is a zero of an effectively given irreducible
monic polynomial f € K[X]. Let d := deg f. One can effectively determine a
non-zero a € A such that af € A[X]. Then L = K(w), where w := ay and w
is a zero of f'(X) := a? f(X/a), which is an irreducible monic polynomial in
A[X]. So w is integral over A, and thus, Ay is the integral closure of A[w] =
Z[z1,...,2r,w]. Using CorollaryMwe can compute an ideal representation
for L, and then by Theorem [I0.7.16| an ideal representation for A[w]. Now by
Theorem|[10.7.17| we can compute a set of A[w]-module generators for A;, say
{wi,...,0n). Thenww! 1 i=1,...,m, j=0,...,d— 1} is a set of A-module
generators for A;. O

10.8 Notes

o As was mentioned above, in Theorems|[I0.1.[]and[T0.1.3] the condition that the under-
lying domain A be integrally closed can be relaxed. More precisely, in Theorem [T0.1.1]
it can be replaced by the weaker condition

(LAt nap/A* s finite, (10.8.1)

and in Theorem[T0.1.3|by
(DN K)*JA* is finite. (10.8.2)

Here Ax denotes the integral closure of A (in K), n is the degree of the polynomials
F in (IO.I7I), O is an A-order of a finite étale K-algebra Q, and A*, A} and (O N K)*
are the additive groups of A, Ax and O N K, respectively. As is pointed out in [Evertse
and Gydry (2016)], for effectively given A, resp. A, Q, O, it can be effectively decided
whether (I0.81)), resp. (10.8:2) is satisfied. Further, the condition (T0.82) is already
necessary for the finiteness assertion of Theorem[T0.1.3} It is an open problem whether
the condition (T0.81)) can be weakened for the finiteness in Theorem[T0.1.1}

e The main results of this chapter are proved by applying Theorem f.2.1]on unit equa-
tions. Another approach would be to follow the strategy of proof in [Bérczes, Evertse
and Gydry (2014)]. In that paper the authors obtained effective finiteness results for
Thue equations and hyper- and superelliptic equations over finitely generated domains
over Z by combining effective results for such equations over number fields (obtained
by Baker’s method) and function fields (obtained by the Stothers-Mason abc-theorem
for function fields [Stothers (1981)], [Mason (1983, 1984)]) with the effective special-
ization method described in [Evertse and Gyory (2013)] or [Evertse and Gyory (2015),
chap. 8]. Indeed, by combining the corresponding theorems of Chapter @ on polyno-
mials and integral elements with given discriminant with their function field analogues
from [Gy&ry (2008b)] and [Gadl (1988)] and using the effective specialization argument
mentioned above, one could establish essentially the same effective results as presented
in Section[I0.1] In fact, following this approach, but using a specialization method that
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is not as generally applicable, GySry [Gydry (1984)] already obtained results similar to
those in Section[I0.1]for a restricted class of integral domains.

o Also in [Gy&ry (1984)], analogues of some results of the present chapter are estab-
lished in the so-called relative case when the ground ring A is a domain which is finitely
generated over a field of characteristic 0. Effective bounds are given for the so-called
Degrees of the solutions of the equations in question which, however, do not imply the
finiteness of the number of solutions.
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Further applications

In this chapter we present two applications of the results from Chapters [6|and
respectively. The first one characterizes the number fields having a canonical
number system and the bases of all canonical number systems. In the second
application we consider Og-orders of finite étale algebras over an algebraic
number field. Our main result is, that if O is such an Og-order, and O is effec-
tively given, then one can compute the minimal number r of generators of O
as an Og-algebra, and also a set @, ..., @, such that © = Og[ay,...,a,].

11.1 Number systems and power integral bases

Number systems and their generalizations have been intensively studied for
a long time. As is well-known, any non-zero integer can be uniquely written
in the form + 3 a;a’, where a > 2 is a fixed integer and the ; are integers
with 0 < a; < a, a; # 0. Griinwald [Griinwald (1885)] introduced the radix
representation with respect to negative bases in the following way: Let a < -2
be an integer. Then every non-zero integer can be uniquely represented in the
form

k
Z a;d’ with integers a; such that 0 < a; < |al, ax # 0.
i=0

This concept allows a far reaching generalization which was started in [Knuth
(1960)]. In this section we present some generalizations and point out the close
connection with power integral bases. For further results and applications, we
refer to [Knuth (1998)], [Pethd (2004)], [Brunotte, Huszti and Pethd (2006)]
and the references given there.

252



11.1 Number systems and power integral bases 253

11.1.1 Canonical number systems in algebraic number fields

Let K be an algebraic number field of degree d and denote by Oy its ring of
integers.

Definition Let o € O with |[Ng/g(a)| > 2. Then {a, A (@)} with A (@) =
{0, 1,...,INkjo(a@)| — 1} is called a canonical number system, in short CNS, in
Oy if every non-zero y € Ok has a unique representation of the form

y=ap+aja+-- +apad® witha; € A (a)fori=0,--- ,k,ar #0. (11.1.1)
| |

In what follows a will be called the base and .4 () the set of digits of the
number system.
This is a generalization of the radix representation considered in Z.

Remark 11.1.1 We note that in (TT.1.T)) the uniqueness follows already from
the representability of every non-zero y € Ok. Indeed, suppose that for some
y € Ok, (ITT) and y = aj) + dja + -+ + aja’ hold with a; € N () for
Jj=0,...,LIf k> I we may take aj,; = --- = a; = 0. Every residue class
of Ok modulo a can be represented by an integer from .4 (@), and this integer
is uniquely determined since .4 (@) and Og/(@) have the same cardinality.
Hence ay = a;,. Repeating this argument with (y — ap)/a, we obtain a; = aj,
and subsequently a, = aé,. L ap = a,’(.

All the canonical number systems have been determined in Z in [Penney (1965)]
and in the Gaussian integers by [Katai and Szabd (1975)]. Later this was ex-
tended to arbitrary quadratic number fields in [Katai and Kovacs (1980, 1981)]
and independently in [Gilbert (1981)].

Koviécs [Kovics (1981)] gave the following necessary and sufficient condi-
tion for an arbitrary number field to have a canonical number system.

Theorem 11.1.2 Let K be an algebraic number field with ring of integers
Ok. Then in Ok there exists a canonical number system if and only if Ok has
a power integral basis.

This provides a characterization of number fields having a canonical number
system.

Let Q be an effectively given algebraic closure of Q, see Section We
recall that an element @ of Q is effectively given/computable if a representation
@B70) for « is effectively given/computable. Further, a number field K is said
to be effectively given if ay,...,a, € @ are effectively given such that K =
Q(ay,...,a,). If K is effectively given, Corollary gives an algorithm to
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decide whether Ok has a power integral basis. Together with Theorem [TT.1.2]
this implies at once the following.

Theorem 11.1.3 If K is effectively given, then it is effectively decidable
whether there exists a canonical number system in Ok.

Corollary [6.2.5] provides even an algorithm to determine all power integral
bases in Og. Using this, in [Kovacs and Pethé (1991)] a characterization was
given for the bases of all canonical number systems of Og. By Theorem[I1.1.2]
it suffices to deal with the case when Ok has a canonical number system.

Theorem 11.1.4  Suppose that K is effectively given and that Ok has a canon-
ical number system. There exist ay,...,a; € Ok, ny,...,n; € Z and finite sub-
sets N, ..., N, of Z, which are all effectively computable, such that {a, A (@)}
is a canonical number system in O if and only if @ = a; — h for some integers
i, hwith 1 <i<tand either h > n; or h € ;.

This implies that if there is at least one canonical number system in Ok then
there are infinitely many ones. Further, up to translation by rational integers
there are only finitely many canonical number systems in Ok. Using Theorem
[0.1.3] we prove that the number of such canonical number systems can be
estimated from above by a bound depending only on the degree d of K. More
precisely, we have the following.

Theorem 11.1.5 Up to translation by rational integers there are at most
25841 oloments a € Ok such that {a, N (@)} is a canonical number system

in 0](.

We note that this theorem is new, not yet published.

11.1.2 Proofs

Keeping the notation of the previous subsection, let again K be an algebraic
number field of degree d with ring of integers Og. We recall that {1, a, ..., %'}
is a power integral basis of Ok if and only if Og = Z[«].

To prove Theorem [IT.T.2] we need the following two lemmas.

Lemma 11.1.6 If {a, .V (@)} is a canonical number system in Ok then Og =
Z[a].

Proof Let {a, 4 (@)} be a canonical number system in Ok and let f(X) =
X4+ pg_1 X% +- ..+ po be the minimal polynomial of @ over Z. Then every y €
Ok has a unique representation in the form (TT.T.1) with ag, ..., ar € A ().



11.1 Number systems and power integral bases 255

Putting B(X) = axX* + a;_1X*"! + --- + ay, there is a uniquely determined
polynomial By(X) of degree at most d — 1 with integral coeflicients such that

B(X) = By(X) (mod f(X)).
This implies that y = By(a@) which proves our lemma. O

Lemma 11.1.7 Assume that Ox = Z[«a] for some a € Ok and that the mini-
mal polynomial f(X) = X¢ + ps_1 X" + - + py of @ over Z has the property
1 < pg1 £ -+ £ po with pg = 2. Then {a, A ()} is a canonical number
system in Ok.

Proof By assumption, every y € Ok can be written in the form y = uy +
Ui + - - - + ug_1®~! with suitable integers u, . .., ug—1. Let g(X) = w1 X +
-+ -+u; X +ug. There exists a polynomial #(X) with suitable non-negative integer
coefficients such that g(X)+#(X) f(X) = vo+v; X+ - -+v, X" with non-negative

integers vy, ..., vy. Theny = g(@) = vp + via + - - - + v@™.
Consider an arbitrary representation y = vy + via@ + --- + v,@™, where
Vo, - - .,V are non-negative integers. We may assume here that m > d + 1.

Let T(y,v) := vog + v{ + -+ + v,. For y # 0, this is a positive integer. Since
Ppo = 2, we have vy = ry + Lpg with some ry € 4 (@) and non-negative integer
L. Then, putting p; = 1, we get

y=v+L-(a-1DP(a)
d
ro + Z(vi —Lp;i + Lpi)a' + (var1 + D)o™' + -+ v,a"

i=1

% * * m
=vytvia+-+vo

with non-negative integers vy, ...,v,, such that vj = ro. Let y; = v + vy +
<o+ vEa™ ! Then 0 < T(y1,v*) = T(y,v) — vy < T(y,v)andy = o + B1a.
By repeating this procedure we get y; = r| + Y2, y2 = 12 + y3a,. .., where

r; € A (a) foreachi > 0, T(y,v) > T(y1,v) > --- and T(y;,v) = T(¥iz1,V)
only if r; = 0. Since {T'(y,, @)} is a monotone non-increasing sequence of non-
negative integers, for a suitable integer M we have T (yi,v) = T(yx+1,V) for
k > M. Consequently, r, = 0 and y; = vy, if K > M. So o divides yy
in Ok and hence Ng/g(@)" divides Nk/o(yu) in Z for every integer i > 1.
But by assumption |[Nk,q(a@)| = po > 2, thus it follows that yy, = 0 and so
y=ro+ra+--+ry @™ with rg,...,ry_1 € A4 (). Further, by Remark
[IT.1.1] this representation is unique. This completes the proof. O

Proof of Theorem[I1.1.2] 1f {a, 4 (@)} is a canonical number system in Og
then, by Lemma|l1.1.6} O = Z[«a] holds, i.e. {l,a, .. .,O/H} is a power inte-
gral basis of Og withd = [K : Q].
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Conversely, suppose that @ generates a power integral basis of Ok, and let
FX) =X+ py 1 X' + -+ + pg € Z[X] be the minimal polynomial of @ over
Z. Then for every large integer N we have

) = FX+N) =X+ by XU 4+ by € Z[X]

such that 1 < by < by fors=1,...,d—1and by > 2. But, for§ = a — N,
fv(B) = 0and {l,ﬁ, . ,,Bd‘l} is also a power integral basis of Og. Hence, by
Lemmal(l1.1.7, {8, .4'(8)} is a canonical number system in Og. O

In the proof of Theorem we need again several lemmas. As above,
K denotes an algebraic number field of degree d with ring of integers Og. We
denote by oy,..., 0y the Q-isomorphisms of K into C, and put Y := o ;(B)
for g € K, K9 := o ;(K), O := o ;(Ox).

Lemma 11.1.8 Let {8, 4 (B)} be a canonical number system in Og. Then
B> 1forj=1,....d.

Proof First suppose that |[8%)| = 1 for some j. Then (/3(1'))71 is equal to the

complex conjugate of 8. Hence (,B(f))_l, and so 57! is an algebraic integer.
But then § is a unit in Ok, whence |[Ng/q(B8)| = 1 which is impossible because
{B, -4 (B)} is a canonical number system.

Next suppose that [3)| < 1 for some j. Every y € Ok has a representation
of the form

y=ay+af+--+aB witha;e ¥/ (B)fori=0,..., k.
Then

|7(j)| < L
T 1-1Boy

where A := [Ng/q(8)| — 1 > 1. But this is impossible because O(Kj) has elements

in absolute value larger than A/(1 — |3]). This completes the proof. o

Lemma 11.1.9 Let 8 € Ok be of degree d over Q such that |89 > 1 for
j=1,...,d. Put A :=|Ngo(B)| — 1. Then for every y € Z|B] and every integer
k > 1 there exist ay, . ..,ar-1 € N (B) andy' € Z[B] such that

k-1

y=> a8 +vyp (11.12)
i=0
and
Gy Y A .
YN g * e d = b (11.13)
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Proof Let X + by_1 X" + - + by be the minimal polynomial of 8 over Z.
Then |bo| = |Ng,o(B)I. Let y € Z[B]. The assertion (TT.1.2) is trivial for k = 1.
Assume that it holds for some k > 1, i.e

k=1
y= > af + b (11.1.4)
i=0
wherea; € A (B)fori =0,...,k—1and y, € Z[B]. Then there are ¢y, ...,c4-1 €
Z such that
Yk =C()+C1ﬂ+"-+cd_1,3d_1.
Leta € A (B) with a = ¢y (mod |by|) and h = (co — a)/by. Then we have
Vi =i = hibo+ b1+ -+ ba 17+ BY)
=a+(ci—hb))B+---+ (ca1 —hba1)B"" = hp’
=a+ By

with some y,.1 € Z[B]. Inserting this into (TT.1.4), we get (I1.1.4) with k

replaced by k + 1. This proves (TT.1.2) for any y € Z[B]. Finally, (IT.1.3)
easily follows from (TT.1.2) by taking the conjugates of (TT.1.2) and deducing

; k=1
Gy o Y 1 D e i
< BOF T BOF D lallB ) for j=1,....d.
i=0
This immediately implies (TT.1.3). O

Lemma 11.1.10 Let 8 € Ok and A := |Ng;o(B)| — 1. Then {B, NV (B)} is a
canonical number system in Ok if and only if

(i) BV > 1 for j=1,....d,
(it) ZIB] = O,
(iii) every y € Ok with

1 <

A .
L8(}.)|_1for]= l,....d (11.1.5)

has a representation of the form
y=ag+aif+ -+ Py witha; e V(B fori=0,..., k.
Proof The necessity of (i) follows from Lemma [IT.1.8] and the necessity of
(i1) and (iii) is obvious.
We prove now the sufficiency of (i), (ii) and (iii). Let y € Ok. Then by (ii)

we have y € Z[B]. By (i) there exists for any € > 0 an integer k = k(¢) for
which

|}/(j)| < E|,3(j)|/< forj=1,....,d.
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By Lemma[TT.1.9|there are ay, . . ., a_1 in .4 (B) such that

-1

ap’ +yt (11.1.6)

\<
Il
~

I

Il
[=)

and
[y A A
BOF T BOI—1 €T igo-1

|7]((j)| < forj=1,...,d.

For € = 1, this inequality has only finitely many solutions in ;. Consequently,
we can choose € so small that, for a corresponding k,

| < .d

1B - 1/ L...
holds. By (iii) and (TT.1.6) we get the desired representation of y. Lemma

[[T.T.10)is proved. m]

For the proof of Theorem [TT.T.4] we need a further characterization. Denote
by r, the number of pairs of non-real conjugates of K.

Lemma 11.1.11 Keep the notation of Lemma([IT.1.10\and put

d
d-1
2

53] b))

J=1

(A + 1)
|DgoBI?

C, := max
1<j<d

log(A+ 1)
Then {B, NV (B)} is a canonical number system in Ok if and only if (i), (ii) from
Lemma[IT.1.10\hold and if moreover

(iv)
k=1 oi
i=0 i3
——¢0
F o1 ¢ Ok
holds for each integer k with
0<k<CiC (11.1.7)

and for each ay, . .. ,ar-1 € N (B) with a; # 0 for at least one i € {0, ..., k—1}.
It is easy to check that both factors C; and C; are greater than 1.

Proof In the proof of Lemma|[IT.1.10|we have seen that (i) and (ii) are neces-
sary conditions for {83, .4#'(8)} to be a canonical number system in Og. Assume
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now that {8, .4'(B)} is a canonical number system in Ok and that there exists
an integer k > 0 with (IT.I.7) and a; € A"(B) fori = 1,...,k — 1, such that

k-1 i
._ aiﬁ
0 = L S Z .
£y 1 (8]
Then
k-1 )
—y=Za,~,B’—7,8k. (11.1.8)
i=0

But —y can be represented in the form
—y=by+biB+---+byB", withb;e ¥/ (B)fori=1,...,h.

Inserting this into the right-hand side of (TT.1.8), we get a second finite rep-
resentation of —y in {8, .4 (8)} which is not allowed. Hence assumption (iv) is
indeed necessary.

To prove the sufficiency of (iv), it is enough to show that, subject to the
conditions (i) and (ii), each y € Ok with

)| < A'+ 1
BII -1
has a representation in {3, 4 (8)}.
Let KO, ..., K" be the images of the real embeddings, and K1+, K(n+1),
.. ,KU1+2) K(i+r) the images of the complex conjugate pairs of complex em-
beddings of K, where r; + 2r, = d. Then (T1.1.9) implies that
A
|ﬁ(j)| -1
[Re y"1 ), [Im y"1 7| < A+l for j=1 o)
, < BT yers Dl
Write y = cg + 18 + -+ + cq_18 " with¢; € Zfori = 0,...,d — 1. Using
Cramer’s rule and Hadamard’s inequality, one can see that the number of so-
lutions of (TL.T:10) in ¢y, ¢, ..., c4-1, and so the number of y € Ok satisfying
(TT.T.9) is bounded above by C;.
Let y € O satistying (TT.1.9). Choose & so that k = C,. Then (TI.1.7) holds
and

forj=1,....d (11.1.9)

Y| < forj=1,...,r,

(11.1.10)

[y < A+1 < 1
BOK = |BIRBD - 1) ~ [BD] - 1
By Lemma|11.1.9|there are ay, .. .,a;-1 € A (B) and y; € Ok such that

k=1

y=) af +ypf
i=0

forj=1,...,d.
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and vy, satisfies (TI.I.9). Repeating the application of Lemma [TT.T.9] to 7y,
v, ... instead of y we get a sequence vy, yi, v2,... of elements of Og with

(TT:T.9). This procedure either terminates with y; = 0 for some i, and then
the lemma is proved, or will be periodic. If it is periodic, then we may assume
that it is purely periodic, i.e.

y=ao+aiB+--+ap 1" +yp" (11.1.11)

holds with @; € A4 (B) fori = 0,...,h—1and h < C;C,. At least one of g; is
non-zero because otherwise 8 would be a root of unity. Now (TT.I.T1)) implies
that

—y=(ap+a B+ - +a /B -1) €0k

which contradicts condition (iv). This completes the proof of Lemma[TT.1.11}
o

In the next two lemmas we assume that the number field K is effectively
given.

Lemma 11.1.12  Assume that Ox = Zla] for some a € Og. If « is effec-
tively given in K then there is an effectively computable Ny € Z such that
{a — N, N (a — N)} is a canonical number system in Ok for all N > Ny.

Proof Since by assumption « is effectively given, its minimal polynomial
over Z, denoted by f(X) = X? + a4 X" +--- + ay, is effectively computable.
For an integer N > 0, let f(X + N) = X¢ + by_j(N)X?™" + -+ + by(N). The
b;(N) are polynomials in N and there is an effectively computable integer Ny
such that

1 < by_y(N) < -+ < bo(N) and bo(N) > 2 for N > Np.

Applying now Lemmalf(l1.1.7/to f(X + N), it follows that {& — N, 4 (a — N)}
is a canonical number system if N > Nj. O

Lemma 11.1.13  Assume that Ox = Zl[a] for some a € Og. If « is effec-
tively given in K then there exists an effectively computable M € Z such that
{a + M, N (a + M)} is a canonical number system in Ok for all M > M.

Proof Let f(X) be as in the proof of Lemma[TT.1.12} Let M > 0 be an integer

and f(X — M) = X4 + Cy_y(M)X"! + --- + Co(M). Then Co(M) = f(-M),

hence there exists an effectively computable My, € Z such that |Co(M)| is

strictly decreasing (strictly increasing if d is even) for M > M,. This means
that |Co(M)| > 2 and |Co(M)| € N (a + M + 1) if M > M. Further, we have

|Co(M)] _ |G

(+M+1)-1 a+M

EOK
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and so, by Lemma [I1.1.11} {a + M + 1, 4 (e + M + 1)} is not a canonical
number system. O

Proof of Theorem[I1.1.4] Suppose that K is effectively given and that there
is a canonical number system {a, ./ "(@)} in Ok. Then, by Lemma [T1.1.6]
{La,... ,ad’l} is an integral basis of Og. Further, it follows from Corollary
@that there are effectively computable elements a7y, ..., a; in Ok such that
a = a; + h for some i with 1 <i < ¢ and some rational integer /.

Let i be fixed with 1 < i < 7. By Lemma[TT.1.13|one can effectively deter-
mine an integer M; such that {a; + M, ¥ (a; + M)} is not a canonical num-
ber system for every integer M > M;. On the other hand, it follows from
Lemma [TT.1.12] that there is an effectively computable integer N; such that
{a; + N, 4 (a; + N)} is a canonical number system for all integers N < N;. Fi-
nally, by Lemma[TT.T.T1]it is possible to decide for every integer m with N; <
m < M; whether {a; + m, 4 (a; + m)} is a canonical number system. Denoting
by 4; the set of those m for which N; < m < M; and {«@; + m, A (a; + m)} is a
canonical number system and taking n; = —N;, 4/ and n; satisfy the assertion
of Theorem [TT.T.4] which completes the proof.

O

Proof of Theorem If {a, 4 (@)} is a canonical number system in Ok,
11.1.6/{

then by Lemma l,a,... ,ad‘l} is a power integral basis of Og. But
Theorem [9.1.3]implies that up to translation by rational integers the number of
such a is at most 25°+! This proves our theorem. o

11.1.3 Notes

e Let K be an algebraic number field, and O its ring of integers. Theorem[TT.1.4|makes
it possible, at least in principle, to determine all canonical number systems in Og. Com-
bining their method of proof with Corollary[6.2.5] Kovécs and Pethd [Kovacs and Peth
(1991)] gave an algorithm for deciding whether {8, .4'(8)} is a canonical number sys-
tem. Brunotte [Brunotte (2001)] considerably improved their procedure. This provided
an efficient algorithm for finding all such number systems, provided that one has an effi-
cient algorithm for determining all power integral bases in Ok. As was seen in Chapter
[7] such an algorithm is known if the degree of K is at most 6 and the discriminant is
not large in absolute value. Combining the results of [Gadl and Schulte (1989)] and the
enumeration technique of [Fincke and Pohst (1983)] with their Theorem[TT.1.4} Kovics
and Peth$ [Kovacs and Pethd (1991)] computed all but one classes of bases of canoni-
cal number systems in the rings of integers of totally real cubic fields with discriminant
< 564. For complete determination of canonical number systems in some other cubic
and some quartic number fields, see [Kormendi (1986)], [Brunotte (2001)], [Akiyama,
Brunotte and Pethé (2003)], [PethS (2004)], [Brunotte, Huszti and Peth6 (2006)] and
the references given there.

e Kovics and Pethd [Kovécs and Peth6 (1991)] proved their Theorem [TT.1.4]in a more
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general form, for orders of Ok instead of Ok. Further, they generalized the concept of
canonical number systems to arbitrary integral domains.

Let A be an integral domain, @ an element of A and 4" = {n,,...,n,,} a finite subset
of Z. They called {a, ./} a number system in A if any y € A can be uniquely represented
as

y=ay+a@+--+aa’ witha; € A fori=0,...,kand g, £ 0if k > 0.

If the characteristic of A is a prime p, then we may identify any n € Z with nl € A,
where 0 < nl < p and 1 is the identity element of A. Hence, in this case we may assume
without loss of generality that 4~ C {0,...,p — 1}.

We denote by F, the finite field with p elements, where p is a prime. The following
theorems were proved in [Kovacs and Pethd (1991)].

Theorem 11.1.14  In A there exists a number system if and only if

(i) A = Z[a] for some a algebraic over Q, if charA = 0,
(ii) A = F,[x], where x is transcendental over F,, if charA = p for some prime p.

This theorem generalizes a result of [Kovacs (1989)], where integral domains with
some special number systems were characterized.

If charA = p > 0, then A = F,[x] and, in this case, all number systems can be
described.

Theorem 11.1.15 (o, A"} is a number system in F,[x] if and only if @ = ay + a, x,
where ay, a) € Fp, a1 #0and A ={0,1,...,p—1}.

e Let f(X) € Z[X] be a monic polynomial of degree d and put py = f(0). If for every
A(X) € Z[X] there exist 0 < a; < |pol, j = 0,...,k, such that

k

AX) = )" a;X (mod f(X)),

J=0

then f(X) is called a CNS polynomial. This notion which was introduced in [Pethd
(1991)] is a natural generalization of the CNS in number fields by taking for f(X) the
minimal polynomial of the base of a CNS. The CNS concept was further generalized
in [Akiyama, Borbély, Brunotte, Pethd and Thuswalder (2005)] to shift radix systems
(SRS) as follows: For r € R let 7, : Z¢ — Z¢ be the mapping defined by 7.(a) =
(a,...,aq,—|r-a]) fora = (aj,...,a,) € Z% where r - a denotes the scalar product of
r and a. The mapping 7, is called SRS with finiteness property if for every a € Z¢ there
exists an integer k > 0 such that 78(a) = 0. In [Akiyama et al. (2005)] it was proved
among others that £(X) = X¢ + p;_; X% + ... + py € Z[X] is a CNS polynomial if and
1 Pd-1 D1

only if 7, is a SRS with finiteness property for r = (%, oo )

SRS is a common generalization of many numeration concepts, see [Kirschenhofer
and Thuswaldner (2014)]. Moreover, as a quite simple discrete dynamical system, it
makes it possible to study properties of such systems as well as the tilings associated
with them, see [Barat, Berthé, Liardet and Thuswaldner (2006)].
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11.2 The number of generators of an Og-order

For commutative rings A C B, we denote by r(B,A) the least number of el-
ements of B that generate B as an A-algebra, i.e., the minimal number r for
which there exist @, ..., a, such that B = Alay,...,@,]. As was already men-
tioned in Subsection[8.4.2] Pleasants [Pleasants (1974)] gave, for number fields
K c L, an explicit formula which enables one to compute a positive integer
m(Oy, Ok) such that

m(0p, Og) £ (O, Ok) < max {m(Oy, Ok),2} .

Together with Corollary [8.4.13] this provides an algorithm for determining the
least number of elements of Oy, that generate O, as an Og-algebra.

In this section we generalize part of Pleasants’ results to the following set-
ting. Let K be an algebraic number field, S a finite set of places of K containing
all infinite places, Q a finite étale K-algebra, and O an Og-order of Q. Suppose
that K, S, Q and O are all effectively given in the sense of Section In par-
ticular, this means that O is given by a finite set of Os-module generators. We
agree here that an element o of O is given/can be computed effectively, if it is
given/can be computed as an Og-linear combination of the given Og-module
generators of O.

For a place v € Mg \ S, we define the local ring, maximal ideal and residue
class field

Ay ={xeK: |xl, <1}, pp:={xeK: x|, <1}, k,:=A,/p,.

Further, we define the localization of O at v, O, := A,D. We prove the follow-
ing result.

Theorem 11.2.1 One can effectively compute

m(90, Og) := gtl4a)\(s r(O,,A,)).
veMg

Further, one can effectively compute ay, . . ., ap, where h := max{2, m(O, Os)},
such that O = Oglay,...,a;).

Apart from the effectivity, this is a special case of Theorem 5.7 of [Krav-
chenko, Mazur and Petrenko (2012)]. The authors attribute the basic idea of
their proof to H.W. Lenstra. The authors did not make an explicit statement
on the effective computability of a1, ..., @; but their proof is easily seen to be
constructive. Below we give the proof of Kravchenko et al., specialized to our
situation.

Recall that by Corollary one can decide whether there is @ such that
O = Ogla] and if so, compute such @. Assume O is not monogenic over Os.
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Then since clearly r(D, Og) > r(D,,A,) for all v € Mg \ S, the quantity % in
Theorem |11.2.1] gives the right value for (O, Os). This leads at once to the
following.

Theorem 11.2.2  One can effectively compute r(O, Os). Further, if r(O, Os) =
r, one can effectively compute ay, . .., a, such that O = Os|ay,...,a,].

It already follows from Pleasants’ result [Pleasants (1974)] mentioned above
in combination with Corollary that if L is a finite extension of K then
r(Or, Ok) can be computed effectively. Pleasants did not explicitly make the
observation that one can effectively compute a4, ...,a, with r = (O, Ok)
such that Oy = Okley,...,a,], but his proof can be made constructive.

The proof of Theorem [T1.2.1] requires some lemmas. We frequently use
the algorithmic results mentioned in Section without explicitly mention-
ing them.

For v € Mg \ S, we define the quotient order D_V = 0,/p,0,. This is a
finite dimensional k,-algebra. For a € O,, we denote by @ the corresponding
element @ mod p, O, in D_V

Lemma 11.2.3 Let ay,...,a, € O, be such that O, = k,[aj,...,a,). Then
Dv = kv[al PR a's]~

Proof Since A, is a principal ideal domain, O, is free as an A,-module. Let
{wi,...,w,} be an A,-basis of D,. Our assumption on O, implies that there are
polynomials P; € A,[X},...,X,] such that

w; — Pi(ay,...,a;) € p,0, fori=1,...,n.
Let 0; := Pi(ay,...,a4) fori =1,...,n. Let © be a generator of p,. Then there

are a;; € A, such that

n
6’i=w,~+ﬂZaijwj fori = 1,...,n.
J=1

This shows that 6, . . . , 6, are expressible as A,-linear combinations of wy,. . .,w,
with coefficient matrix in GL(n, A,). Hence {6,...,6,} is also an A,-basis of
D,. This implies the lemma. O

Lemma 11.2.4 Letv € Mg \ S be effectively given. Then one can effectively
compute 1(O,,A,). Moreover, if r(O,,A,) = r, one can effectively compute
ay,...,a with O, = A)[ay,...,qa].

Proof By the previous lemma, it suffices to determine the smallest » such that

D, is generated by r elements as a k,-algebra, and to determine such a system
of r generators.
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The assumption that v is effectively given, means that a set of Og-module
generators is given for the prime ideal p of Ok corresponding to v. This allows
to compute a full system of representatives & for k, = Og/p. Further, for any
two given elements of Ok one can decide whether their difference is in p, i.e.,
whether they represent they same class in k,. We use the elements from Z to
represent the elements from k, and to perform the arithmetic operations in k.

Let {w1,...,w} be the given set of Og-module generators of O. Then E
is generated as a k,-vector space by wy,...,w,. Using linear algebra, one
can effectively select from this set a k,-basis for O,, say {@y,...,w,}. Then
the elements of O, can be represented uniquely as k,-linear combinations of

Notice that every element @ of 0, is a zero of a polynomial from k,[X] of

degree at most n. Hence if a7, . . . , @, are given elements of g, then the algebra
ky[ai, ..., @] is generated as a k,-vector space by the monomials []}, a_ik’
with k; € Z,0 < k; <nfori =1,...,r. So to check whether k,[a1,...,a,] =

D,, it suffices to verify if among the monomials mentioned above there are n

linearly independent ones. This is done by straightforward linear algebra.
Now to compute the minimal number r of generators needed to generate

D, as a k,-algebra, and to compute a set of r generators, it clearly suffices to

check, for all » < n and all ay,...,a, € O,, whether O, = k,[aq,...,a,].
This requires only a finite computation, since O, is finite. This proves Lemma
arz4 a]

Lemma 11.2.5 For any effectively given finite set of places T > S of K and
elements a, € O, (v € T\ §), one can effectively determine a € O with
a—a,ep,O, forveT\S.

Proof Let {wy,...,ws} be the given set of Og-module generators of O. For
v € T\ S one can compute x;, € A, (i = 1,...,s) such that @, = X | xjw;.
Using an algorithmic version of the Chinese Remainder Theorem (see Section
3.7), one can compute x; € Og with x; = x;, mod p,forve T\S,i=1,...,s.
Then a := Y] | x;w; satisfies the requirements of the lemma. O

Lemma 11.2.6 Let a € O with K[a] = Q. Then there is a finite set of places
T > S of K such that O, = A,[a] forv € Mg \ T. Given a, this set can be
determined effectively.

Proof Let[Q : K] = n and let {wy,...,w;} be the set of Og-module gen-
erators by which O is given. Then we can compute x;; € K such that w; =
Z;:OI x;ja/. By investigating the prime ideal factorizations of the x;;, we can
determine a finite set of places 7' > S such that x;; € A, forv € Mg \ T and all
i, j. Then clearly, O, = A,[a] forve Mg\ T. O
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Proof of Theorem[[1.2.1] We can effectively determine @ € Q with Q = K[e],
and after multiplying this with a non-zero element of Og, which we can com-
pute, we can arrange that @ € O. By Lemma[T1.2.6] we can effectively compute
a finite set of places T O § such that O, = A,[«a] for v € Mg \ T. Now clearly,
r(9,,A,) = 1forv e Mg\ T and by Lemma[T1.2.4] we can compute r(D,, A,)
forv e T \ S. This allows us to compute m(D, Oy).

Let h := max{2,m(9, Os)}. Choose w € Mg \ T. By Lemma [[1.2.4] we can
compute, foreachv € T\S, atuple ay,, ..., a, suchthat O, = A, [ay,, ..., @]
for v € T. Using Lemma[T1.2.3| we can compute a; € O such that

a) —ap, € 9,0, forveT\S, o —ac€p,DO,.

Then by Lemma [TT1.2.3| we have O, = A,[a1, @y, ..., ] forv € T\ S and
O, = Aylai]. The latter enforces that Q = K[a@;]. Choosing a; = « for
i=2,....,hve Mc\T, we getin fact O, = A,[a1,@2,...,ap] for all
v € Mg \ S. Itis at this point that we have to use h > 2.

Since K[a] = Q and a; € O, we can compute, in view of Lemmam a
finite set of places 7’ O S, such that O, = A,[a] for v € Mg \ T’. By Lemma
11.2.5] we can compute a5, . .., @; € O such that @; —a;, € p,O, forve T7\S,
i=2,...,h. Then Lemma[I1.2.3]yields O, = A,[a, @2,...,a,] forve T7\S.
This is clearly also true for v e Mg \ 77, so forallve Mg\ S.

The final step of the proof is to apply Proposition 2.9.1] leading to O =
Oglay,...,an]. [m}

11.2.1 Notes

We call an Og-order O of Q exceptional over Os if m(O, Os) = 1 but r(O, Os) = 2. The
condition m(D, Og) = 1 can be interpreted otherwise as follows. Recall that if « € O
and Q = K[«a], then the index ideal of @ with respect to O is given by

So(@) :=[D: Ogla] o

(see Z93) and (5.3.6)). We call a prime ideal of Os a common index divisor of O
over Oy if it divides Jo(@) for every @ € O with K[e] = Q. Notice that if for some
veMg\S,a e O, wehave O, = A,[a], then after multiplying & with a suitable
element of A} we can arrange that @ € O. Hence r(9,,A,) = 1 if and only if there exists
@ € O with O, = A,[a] and by (2:94), the latter holds if and only if the prime ideal
of Oy corresponding to v is not a common index divisor of O. That is, m(D, Os) = 1 if
and only if © has no common index divisors over Og.

Hall [Hall (1937)] constructed infinitely many cubic number fields L such that O,
is exceptional over Z, that is, Oy, has no common index divisors over Z but O, is not
monogenic. Pleasants [Pleasants (1974)] extended this to number fields of arbitrarily
large degree. For instance, in his paper he shows that for every n > 2 such thatn+1isa
prime, there are infinitely many integers D such that the ring of integers of L := Q(¥/D)
is exceptional over Z.
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A brief overview of the basic finiteness theorems

We give a brief overview of the basic finiteness theorems, in their simplest
qualitative and ineffective form, for binary forms of given discriminant or given
invariant order. These theorems will be proved in a more precise, effective and
quantitative form in the subsequent chapters. We start with some definitions.
Let F = agX" + a;X""'Y + -+ - + a,Y" be a binary form of degree n > 1 with
coeflicients in a field K. We can factor F over a finite extension of K as

FX,Y) = [ |BX - ai),
i=1

say. Then the discriminant of F is given by

ﬂ (@B —ap)’ ifn>2,
D(F) :=1{ 1<i<j<n 121
1 ifn=1.

The discriminant D(F) can be expressed otherwise by means of the determi-
nantal formula (T.4.3). So D(F) is a homogeneous polynomial of degree 2n—2
in Z[ao, . . ., a,].

For U = (%) with entries in K we define the binary form Fy by

Fu(X,Y) := F(aX + bY,cX + dY).
Then from (T2[T)) one deduces at once
D(AFy) = 22" 2(det UY"""VD(F) M22)

for any A € K and 2 X 2-matrix U with entries in K.

Now let A be a subring of K. Two binary forms Fy, F, € K[X, Y] are called
GL(2, A)-equivalent, if there exist a unit € € A* and a matrix U € GL(2,A)
such that

Fr =e(F)y.

269
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In this case we clearly have
D(F,) = nD(F,) for somen € A" (123)

Let K be a field of characteristic 0 and F' € K[X, Y] a binary form of de-
gree n > 3 with non-zero discriminant D(F’). We define a finite étale K-algebra
Q(F) and a zero (ar,Br) € Q(F) x Q(F) associated with F' as follows. Write
F = F---F;where Fy,...,F, € K[X, Y] are pairwise non-proportional irre-
ducible binary forms in K[X,Y]. Fori =1,...,q,letL; = K, a; = 1,5; = 0if
F; =cY withc € K*, and L; = K(6,), a; = 6;,8; = 1 if F;(1,0) # 0 where 6; is
a zero of F;(X, 1). Then put

QUF) =L X+ XL, a:=(ay,...,a&), B:=B1,....5).

We call Q(F) the finite étale K-algebra associated with F. It is easy to see that
[Q(F): K] =degF.

Now let A be an integrally closed integral domain with quotient field K. and
let F € A[X, Y] be a binary form of degree n > 3. Let Q(F), a, 8 be as above.
It is shown in Chapter@] that there are unique wy, . .., w, € Q(F) such that

aF(X,Y) = (BX — aV) (i X" + X" 2V + -+ + w, Y1)

and that the A-module with A-basis {1, wy,...,w,_1}is an A-order of Q(F), the
invariant A-order of F. It is further shown in Chapter [16] that

DQ(F)/K(lawl,...,a)n_]) = D(F)

and moreover, that GL(2, A)-equivalent binary forms in A[X, Y] of non-zero
discriminant have isomorphic invariant A-orders. In case that F(1,0) = 1, the
invariant A-order of F is isomorphic to A[X]/(F(X, 1)).

Now let K be an algebraic number field, S a finite set of places of K con-
taining the infinite places, § a non-zero element of Og and n an integer > 3.
Consider the discriminant equation

D(F) € 605 in binary forms F € Os[X, Y] of degree n. (24

It is clear from (T2[3) that the set of binary forms with (T2[4) is a union of
GL(2, Os)-equivalence classes. We have the following result.

Theorem[12|1 The binary forms F € Os[X, Y] with (12[4) lie in only finitely

many GL(2, Os)-equivalence classes.

Proof This was first proved in [Birch and Merriman (1972)] and, in a more
precise effective form in [Evertse and Gy6ry (1991a)]. O
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More precisely, Evertse and Gy6ry proved that every binary form F' € Og[X, Y]
with (T2[4) is GL(2, Os )-equivalent to a binary form F* whose height is bounded
above by an explicit quantity depending only on K, S, n and the S -norm Ng (9)

(see (3.4.1)).

One immediately obtains the following corollary.

Corollary 1212 Let © be an Og-order of a finite étale K-algebra Q with
[Q : K] > 2. Then there are only finitely many GL(2, Os)-equivalence classes
of binary forms F € Os[X, Y] with invariant Os-order isomorphic to O.

Let A be an integrally closed integral domain of characteristic O that is
finitely generated as a Z-algebra. Denote by K its quotient field. In Section
@]we show that if there is a non-zero b € A such that A/bA is infinite (e.g.,
A = Z[t], b = ¢t) then for every n > 2 there is a non-zero 6 € A such that the
binary forms F' € A[X, Y] with D(F) € 0A* lie in infinitely many GL(2, A)-
equivalence classes. That is, Theorem 1 can not be extended to arbitrary
finitely generated domains over Z. On the other hand, in Section[I7.9|we prove
the following.

Theorem[12}3 Ler © be an A-order of a finite étale K-algebra Q for which
[Q : K] > 3. Then there are only finitely many GL(2, A)-equivalence classes of
binary forms F € A[X, Y] with invariant A-order isomorphic to O.

In the subsequent chapters we prove various refinements and generalizations
of Theorem [I2]1 and Corollary [I2]2. In Chapter [I13] we develop a reduction
theory for binary forms, going back to Hermite. By combining this with the ef-
fective results for S -unit equations recalled in Section[d.1} we obtain in Chap-
ter |14} a sharpening of the effective result from [Evertse and Gydry (1991a)]
on Theorem [I2}1. In Chapter [I5] we deduce a so-called semi-effective result,
which implies that every binary form F with (T2[4) is GL(2, Os )-equivalent to
a binary form whose height is bounded above by a quantity with a very good,
and effectively computable dependence on N (9), but with a non-effective de-
pendence on S, n and the splitting field of F. In Chapter[T7|we consider, among
other things the binary forms F € Og[X, Y] with invariant Og-order isomor-
phic to a given Og-order O, and give a uniform explicit upper bound for the
number of GL(2, Os)-equivalence classes of those, which depends only on n
and Og hence is independent of O. Here the main tool is Corollary {.3.4] We
also deduce a result which implies an explicit upper bound for the number of
GL(2, Os)-equivalence classes of binary forms F € Os[X, Y] of degree n > 2
with a given associated finite étale K-algebra that satisfy (I2[4). In Chapter
[I8] we give two applications: one to root separation of polynomials and one to
reduction of hyperelliptic curves.
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Reduction theory of binary forms

We recall some history on reduction theories of binary forms. Lagrange [La-
grange (1773)] was the first to develop a reduction theory for binary quadratic
forms with integer coefficients. His theory was made more precise by Gauss in
his Disquisitiones Arithmeticae [Gauss (1801)]. The theories of Lagrange and
Gauss imply that there are only finitely many GL(2, Z)-equivalence classes
of binary quadratic forms in Z[X, Y] of given discriminant. In fact, their argu-
ments provide an effective method to determine a full system of representatives
for these classes. Hermite [Hermite (1851)] studied binary forms with integer
coefficients of degree larger than 2. He developed an effective reduction theory
for such forms which implies, among other things, that there are only finitely
many GL(2, Z)-equivalence classes of cubic forms in Z[X, Y] of given discrim-
inant. For binary forms in Z[X, Y] of degree larger than 3, Hermite defined
a suitable invariant W(F’) for a binary form F' and proved that there are only
finitely many GL(2, Z)-equivalence classes of binary forms with a given value
of this invariant. Hermite’s theory was made more precise in [Julia (1917)].
For another account of Hermite’s and Julia’s reduction method, see [Cremona
(1999)]. Humbert [Humbert (1940, 1949)] developed a reduction theory for
binary quadratic forms with coefficients in the ring of integers Ok of a number
field K. Finally, Birch and Merriman [Birch and Merriman (1972)] generalized
Hermite’s reduction theory to binary forms of arbitrary degree over Ok.

We briefly discuss the contents of this chapter. In Section we consider
binary forms with integer coefficients and recall the reduction theory of [Her-
mite (1851)] and [Julia (1917)] for such forms. A consequence of this theory
is that every binary form F € Z[X, Y] of degree n > 4 is GL(2, Z)-equivalent to
a binary form F* whose height is effectively bounded above in terms of the in-
variant W(F) mentioned above. In Chapter[I4]we give an effective upper bound
for W(F) in terms of n and |D(F)|, using the effective results on unit equations
from Section Thus, we show that every binary form F of degree n > 4

272
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with non-zero discriminant is equivalent to a binary form F* whose height is
effectively bounded above in terms of n and |D(F’)|. This leads to a method to
effectively determine in principle all binary forms F € Z[X, Y] of given degree
n and discriminant D, up to GL(2, Z)-equivalence.

In Section we have listed some auxiliary results from the geometry
of numbers over algebraic number fields. In Section we have collected
some estimates for polynomials which are used both in this chapter and the
subsequent chapters. Finally, in Section [I3.4] we extend the reduction theory
of Hermite and Julia to binary forms whose coeflicients lie in the ring Og of
S -integers of a number field. Here we apply the results from Sections [13.2]
and Also in Section [I3.3] we deduce that every quadratic or cubic form
F € Og[X, Y] with discriminant D(F) # 0 is GL(2, Os)-equivalent to a binary
form whose height is effectively bounded in terms of the S-norm Ns(D(F)). In
Chapter [T4] we extend this to binary forms of arbitrary degree, by combining
the reduction theory over the S -integers with Theorem.1.3]

13.1 Reduction of binary forms over Z

The main tool in our reduction theory is the following well-known result for
quadratic forms.

Lemma 13.1.1 Let F € R[X, Y] be a quadratic form of discriminant D(F) <
0. Then F is GL(2, Z)-equivalent to a quadratic form

F* = AX* + BXY + CY?
with |B| < A < C. We have AC < |D(F)|/3.
A quadratic form F* as in Lemma[T3.1.1]is said to be reduced.

Proof Denote by A the minimum of all values |F(x,y)| with (x,y) € Z? and
(x,y) # (0,0). Since D(F) < 0 this minimum exists and is > 0. Choose (a, c) €
7?2 such that |F(a,c)| = A. Clearly, gcd(a,c) = 1. Let (b',d’) € Z? such that
ad’ —b’c = 1, and define F'(X,Y) := 2F(aX+b'Y,cX+d'Y) where +F(a,c) =
A.Then F’ = AX?> + B’XY + C'Y?. Next, choose k € Z such that |B’ —2kA| < A,
put B := B’ — 2kA and define F*(X,Y) := F'(X — kY, Y). Then F* is GL(2, Z)-
equivalent to F, and F* = AX? + BXY + CY2. Clearly, |B| < A. Further, we
have C > 0 since B?> — 4AC = D(F*) = D(F) < 0. Also A < C holds, since
|F*(x,y)| and |F(x, y)| assume the same values on 72, whence A is the minimum
of |[F*(x,y)l on Z* \ {(0,0)}.

Finally, we have 4AC = |D(F)| + B? < |D(F)| + AC, hence AC < |D(F)|/3.
This proves our lemma. O
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A binary form F € Z[X, Y] is said to be (ir)reducible if it is (ir)reducible
over Q.

Proposition 13.1.2 Let F € Z[X, Y] be a quadratic form of discriminant
D(F) # 0. Then F is GL(2, Z)-equivalent to a quadratic form F* such that

(i) H(F*) < [D(F)I/3 if D(F) < 0;

(ii) HF*) < D(F)/4 if D(F) > 0 and F is irreducible;

(iii) H(F*) < D(F)'? if D(F) > 0 and F is reducible.

Proof (i) Use Lemma[I3.1.1] together with the observation that A is a positive
integer, hence > 1.

(i1) Our assumptions imply that |F(x,y)| assumes a minimum A > 1 on
7%\ {(0,0)}. The same argument as in the proof of Lemma gives that
F is GL(2,Z)-equivalent to a quadratic form F* = AX? + BXY + CY? with
|B| < A < |C|. We have B> — 4AC = D(F*) = D(F) > 0, hence AC < 0. It
follows that |AC| < D(F)/4. Hence H(F*) = |C| < D(F)/4.

(iii) F is GL(2,Z)-equivalent to F’ = BXY + C'Y? with B,C’ € Z and
B # 0. Choose an integer k such that |C’ — kB| < |B|/2 and define F*(X,Y) =
F'(X —kY,Y). Then F* is GL(2, Z)-equivalent to F, and F* = BXY + CY? with
|C| = |C’ — kB| < |B|/2. Hence H(F*) = |B| = D(F*)'/? = D(F)'/2. ]

In what follows, for a polynomial P with complex coefficients we denote by
P the polynomial obtained by complex conjugating the coefficients of P.

Let F = aoX"+ a1 X" 'Y +---+a,Y" € Z[X,Y] be a binary form of non-zero
discriminant. We fix a factorization

F=1--1, (13.1.1)
where [, ...,[, are linear forms in X, Y such that /;,..., [, have real coeffi-
cients, /41, ..., 1, have complex coefficients, and [, s4; = [,4; fori=1,...,5 =

(n—r)/2.Let B = (By,..., B,) be a tuple of positive reals such that
Biissi =B,y fori=1,...,s, (13.1.2)

and consider the quadratic form

D= Opp = 23;21,» 1. (13.1.3)
i=1
It is not difficult to see that @ is positive definite. The form ® depends on
the choice of [,...,1,. Notice that if U € GL(2,Z) and if we choose the fac-
torization Fy = []°, l; v, then

Op, = Y B liyhy = (®rp)y. (13.1.4)

i=1
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Define
Aij = det(l,-,lj) (1 < l,j < n),
12
AP 13.1.5
M:=B B, R:=(Z '2’|2] : (1315
1<i<j<n i)

Theorem 13.1.3 Let n > 3. Then F is GL(2, Z)-equivalent to a binary form
F* such that

4
H(F*) < (—=) M*R" 13.1.6
(F) (n \/5) (13.1.6)
if F has no linear factor in Q[X, Y], and

2 \n 2 n(n=1)/(n-2)
H(F~ — ) |—=

if F does have a linear factor in Q[X, Y].

(MR~ 1D (13.1.7)

Proof In view of (I3:1-4) and Lemma [I3.1.1] we may assume without loss
of generality that @ is reduced, i.e.,

® = AX? + BXY + CY? with Bl <A <C, AC <|D(®)|/3. (13.1.8)

Further, since M2R" is invariant under replacing By, ..., B, by tBy,...,tB, for
any real t > 0, we may assume that

M=B;---B, = 1. (13.1.9)

We show that (13.1.6), (I3.1.7) hold with F* = F, M = 1.
Write

mi=B'li=aX+BY (i=1,...,n).
Then by (I3.1.1), (T3-1.9) we have

F=m-my,= l_[(aiX +B:Y). (13.1.10)
i=1
An important role will be played by the quantities ), la;* and pI |8;* and
so we want to estimate H(F) in terms of these quantities. By a straightforward
estimate, using the inequality of the arithmetic and geometric mean, and the
Cauchy-Schwarz inequality, we get

HF) < [ el + 18D < (n7' D daul +18D)" (3111
i=1 i=1

<20 200/,12 +BPR)".
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Define the matrices

a B
W::(a'l .. an), W*:: : :
@ P
Then

O =) mim = ) (@X + BY@X +BY) = (X NW- W’ ( " )
i=1 i=1

By our choices of /y,...,1,, Bi,...,B, in (I3.1.1), (I3:1.2), the linear forms
my,...,m, have real coefficients, while m,,.,,; = m,,; fori = 1,...,s. Asa
consequence, W - W* is a real symmetric positive definite 2 X 2-matrix. By the
Cauchy-Binet formula,

D(®) = ~4detW - W* =4 > |det(m,m)P  (13.1.12)

1<i<j<n

I<i<j<n TP
Note that ® = AX?> + BXY + CY? with A = ¥ |ail>, C = Y, |Bi*. So by

(3.13), (3.L.12),
(Z Iailz] : (Z |ﬁi|2J < gRZ, Z i < Z 1B (13.1.13)
i=1 i=1 i=1 i=1

We now prove our Theorem by combining (13.1.11)), (T3.1.13). Note that by
(T3:1.10), the coefficient of X" in F is a; - - - @,. First assume that this coeffi-
cient is non-zero. This is certainly the case if F' does not have a linear factor in
QI[X, Y]. Then by the inequality of the arithmetic and geometric mean,

1 n

2 2

1< oy ayl /"s—§ lail?,
ni:l

and together with (T3-1.13) this yields

n n 4
I < 2 < —R%.
Z] o < Z]] B < 5
Combined with (I3-T.TT)) this implies

H(F) < (%Rz)"/ 2

which is (I3.1.6) with F* = F, M = 1.
Next, assume that the coefficient @ - - - @, of X" in F is 0, say a; = 0. Then
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the coefficient of X"~'Y in F is # 0, since F has non-zero discriminant. This
coefficient is B1a; - - - @,. So

2
L <|Braz- -l

n 1 n n—1
< [; |,3i|2] : (m : ; |C¥i|2] .

Together with (I3.1.13) this implies
Dl < ) BP
i=1 i=1
1 n n
f(n_l (k) (2 6)

4 5 (n=1)/(n-2)
< R )
3n-1)

and combined with (T3.T.TT)) this gives

](n—l)/(n—Z)

“1)/(n— 2
4 , (n=1)/(n=2)\"/
—R

3n-1)

which is (I3:.1.7) with F* = F, M = 1. This completes our proof of Theorem
13.1.3] i

Corollary 13.1.4 Let F € Z[X, Y] be a binary cubic form of non-zero dis-
criminant D(F). Then F is GL(2, Z)-equivalent to a cubic form F* such that

H(F) < [2-n“ ~2(

64

H(F*) < > \D(F)|''? if F is irreducible, (13.1.14)
64

H(F*) < —— - |D(F)| if F is reducible. (13.1.15)
343

Proof Write F as a product of linear forms /;/;/3 such that either [y, 5, /3
have real coeflicients, or /; has real coefficients and /3 = E Put again A;; :=
|det(/;,[;)| and take B; = A;kl for any permutation i, j, k of 1,2,3. With this
choice, we have M = |D(F)|"'?, R = (3|D(F)|)"/>. Now Corollary
follows directly from Theorem O

13.2 Geometry of numbers over the S -integers

Let K be an algebraic number field, v a place of K, and g a positive integer. A g-
dimensional symmetric v-adic convex body is a set ¢, C K5 with the following
properties:
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- €, is compact in the topology of K¢ and has 0 as an interior point;

- forx € 6,, a € K, with |a|, < 1 we have ax € 6,;

- if vis infinite then for x,y € %,, A € Rwith 0 < A < 1 we have (1-A)x+A1y €
s

- if v is finite, then for X,y € %, we have X + y € G,.

For infinite places v and reals A > 0, we define 1%, = {1x : X € G, }.

Now let S be a finite set of places of K, containing all infinite places. We
write elements of the Cartesian product [],cs K5 as (X,),cs, Where x, € K¢.
We view Of as a subset of [],cs Ki by identifying x € O with the tuple (X),es
with the same component for each v € §.

A g-dimensional S -convex body is a Cartesian product

€ = 1_[% c an,
ves ves

where for v € §, %, is a g-dimensional symmetric v-adic convex body. For

A >0 set
1% = |agy x| | .
e vtoo
Fori = 1,...,g, we define the i-th successive minimum A; of ¥ to be the

minimum of all 1 € Ry such that 1% N Of;’ contains at least i K-linearly
independent points. From the definition of v-adic convex body and from the
fact that 0§ is discrete in [],cg K, it follows that these minima exist and

0<d £ <2 <00,

Thus we have g linearly independent points X, ..., X, of O§ with x; € ;% but
in general these do not form a basis of Of.

Suppose [K : Q] = d, let r; be the number of real places and r, the number
of complex places of K, and put r := r| + r, — 1. Denote as usual by Dg, Rx, hx
the discriminant, regulator and class number of K. Let py, ..., p, be the prime
ideals corresponding to the finite places of S. For K # Q define

Qs = Nx(py---py)ift >0, Qs :=1 otherwise,

7| 8+8/2d) 6rd*\ _
C = 24g{d2(2/ﬂ)2} -exp{%r(@) RK}‘ (ShK h/d

We have the following result:

Theorem 13.2.1 Let € be a g-dimensional S -convex body, and let Ay, ..., A,
be its successive minima.
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(i) Suppose that K = Q. Then Of; has a basis X1, . .., X, such that
x; € max(1, %i)/li‘ﬁfor i=1,...,g.
(ii) Suppose that K # Q. Then O*; has a basis X1, . ..,Xg such that
X; €CidimC fori=1,...,8-1, X,€Ci4,%.

Proof (i) In case that 0§ = Z8, this is essentially a result of Mahler, see
[Cassels (1959), chap. V]. For arbitrary S, we observe that the set of x € 0§
with x € %, forv € § \ {0} is equal to a g-dimensional lattice .# c Q8. Hence
A1, ..., A, are the successive minima of the symmetric convex body %o C R#
with respect to .. By a linear transformation we can reduce this to the case
of the successive minima of a symmetric convex body with respect to Z& and
apply Mabhler’s result.

(i) This is a special case of [Evertse (1992), Cor. 2]. m]

McFeat [McFeat (1971)] and unaware of his work much later Bombieri and
Vaaler [Bombieri and Vaaler (1983)] proved a general Minkowski-type theo-
rem for the successive minima of convex bodies in adelic spaces. We need only
a special case of their result.

Forv € §, let {my,, ..., mg} be a linearly independent set of linear forms
from K,[Xj, ..., X,] and define

G, = {X € K : max |m;(x)|, < 1}.
1<i<g
Note that %, is a symmetric v-adic convex body.
Theorem 13.2.2 Let Ay, ..., A, be the successive minima of [],es .. Then

r gld
A dg < (@1l ) | I dettmyys . mg)IL.

ves

Proof This is a special case of [McFeat (1971), p. 19, Thm. 5], or [Bombieri
and Vaaler (1983), Thm. 3]. O

We deduce the following consequence. For v € Mg we define
K, = {lxl, : x € K}
This is Ry if v is infinite, and {Ng(p)” : m € Z} if v = p is finite.
Corollary 13.2.3 Let C, (v € M) be positive reals such that

C, € |K3|, forv € M,
C, = 1 for all but finitely many v, (13.2.1)
[]¢ = @mr k.

veMg
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Then there is x € K* with |x|, < C, for v € Mk.

Proof LetS 2 My be afinite set of places of K such that C,, = 1 forv € Mg\
S.Forv € §, choose a, € K with |a,], = C; I and define the one-dimensional
v-adic symmetric convex body %, = {x € K, : |a,x|, < 1}. By Theorem[[3.2.2]
with g = 1, [],es %, has single minimum A; < 1, hence it contains a non-zero
x € Og. This easily translates into |x|, < C, for v € M. |

We deduce a result for other types of convex bodies. We need the following
notation. For a polynomial P with coeflicients in a commutative ring A and a
ring homomorphism o on A we denote by o (P) the polynomial obtained by
applying o to the coefficients of P. Further, for a set . of polynomials with
coeflicients in A, we define 0(¥) := {c(P) : P € Z}.

Let v € Mg. Recall that | - |, has a unique extension to K,. A set of linear
forms . from K,[Xj, ... , Xl is called K,-symmetric if 0(.Z) = £ for every
o € Gal(K,/K,).

Let n be an integer > g. Forv € §, let

-iﬁ/ ={liy,....ln} C E[Xla ce ’Xg]
be a K,-symmetric set of linear forms of maximal rank g, and define

C, = {x e K8 : max |[;,(x)], < 1}.
1<i<n

This is clearly a v-adic symmetric convex body. Further, put

R, =R/(%,):= max |det(l;,,..., Ll forves

1<i yoig<n
where the maximum is taken over all g-tuples iy, ..., i, from {1,...,n}, and
- L0\ g/2d  tgn/2 Hgn/2d
Ca = (V2 )| Dy [/ n's"2 82

Theorem 13.2.4 Let Ay, ..., A, be the successive minima of [],es .. Then

1/d
A A, SCZ[HRV] .

ves
We need some lemmas. For a finite place v of K put Nv := Ng(p) = |Ok/pl,
d, := [K, : Q,] where p is the prime ideal of Ok corresponding to v and p is
the prime below p.

Lemma 13.2.5 Letv € S. There exists a set M, = {my,,...,my} of linear
Sforms in K,[X, ..., X,] of rank g such that

max <i<, [ly(X)|, < Cy1 max<i<, My (X)), forx € Kj,  (13.2.2)
R,(A,) < CaR\(ZL), (13.2.3)
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where

Rv(%v) = : max |det(mi1w e ’migv)|Vs

<ifyensig<n

and
Chi=g", Co=(V2-g)8 if v is real,
C = g—2, Cp = 82g

Ci=1, Cp=0%Nv®?*  ifvis finite.

if vis complex,

Proof We drop the index v and write [;, m; instead of [;,,, m;,.

First assume that v is complex. Then the linear forms /; have their coefficients
in K,, and we may take m; := g -, fori=1,...,r.

Next, assume that v is real. Since %, is K,-symmetric, we may assume that

% = {lls-'-slrl’lr1+lalr1+ls'-~,lr1+r2,lr1+r2}’

where 7 +2r, = n. Now takem; = g-[;fori=1,...,r;,and
=B L. oo =L (Lo =1
My 12i-1 = \ﬁ( rn+2i-1 1 r|+2t), My 42i = ) (r1+21—1 r|+21)

fori = 1,...,r. Then clearly, my,...,m, have their coefficients in K, = R,
and their rank is g. Notice that ||, is just the ordinary absolute value on K, = C.
Now forx e K =R, i=1,...,1,

Iy, +2i(X)

5877 (I a2 P + Iy 2i(0))

- 2 2
< g7  max(|my, 12i-1(X)|7, My, 12i(X)[7).

1Ly, 21 (X)?

Each linear form m; can be expressed as al; + Bl with |a| + 8] < V2. g. Hence
for any g indices iy, ..., i, from {1,...,r}, we have

det(ml.],“.,mig) = Z aJ det(ljl,...,ljg)9

J=01ensds)

where the sum is over tuples j = (ji,..., jo) in {1,...,n} and the a; are com-
plex numbers with 3 [a;| < (V2 - g)%. These two inequalities imply (13.2.2),
(I3.2.3) if v is real.

Now let v be a finite place. We can partition {/;,...,1,} into K,-conjugacy
classes such that /;,[; belong to the same class if [; = o (/;) for some o €
Gal(fv/ K,). Letly,..., I, be a full system of representatives for these classes,
and let L;, be the extension of K, generated by the coefficients of /;. Finally, let
Q be the finite étale K,-algebra Ly, X- - -XLy,. Writing [; = 25:1 a;;X; we define
=35, a;X;, where a; = (a1,..., ) € Q. We have [Q : K,] = n. Denote



282 Reduction theory of binary forms

by o1,...,0, the K,-homomorphisms of Q to K,. Then after a reordering,
L(x)=o(l(x)) fori=1,...,n,x € K5.

LetA, = {x € K, : |x|, < 1} be the local ring of v, and let A, q be its integral
closure in Q. Since A, is a principal ideal domain, A, g is a free A,-module of
rank n. Choose an A,-basis {wy,...,w,} of A, . Then there is a set of linear

forms 4, = {my,...,m,} C K,[X],...,X,] such that [ = Z’}Zl w;m;. Hence
n
li = Zo’,(wj)mj (l = 1,...,}’1).
=

Clearly, my,...,m, have rank g. Since the elements oj(w;) are integral over
A,, we have |oi(w;)|, < 1 for all , j and so, by the ultrametric inequality,

max |[;(x)|, < max |m;(x)|, forx e K%.
1<i<n 1<i<n

This proves (13:2.2)), so it remains to prove (13.2.3).

Let (w") be the inverse of the matrix (o;(w;)). Then

m; = Zw"flj (i=1,...,n). (13.2.4)
=1
We estimate from above |w”/|, for i, j = 1,...,n. Since the numbers o;(w ;) are

integral over A,, the numbers Aw are also integral over A,, where
A = det(oi(w))).
Hence
lwl, < |A[;Y fori, j=1,....n.
By (13.2:4) and the ultrametric inequality,
R, (A,) < AR, (L). (13.2.5)

Let p be the prime ideal of Ok corresponding to v, p the prime number below
p, and denote be e, f the ramification index and residue class degree of p over
p-Thend, = [K, : Q)] = ef. Fori =1,...,q, letn; := [L;, : K,]. Further,
Denote by A;, the integral closure of A, in L;,. Then by Proposition[2.10.2]and
Corollary (iii) we have

q
A, = IDAWQ/AVW2 = l—l |DA,-‘,/A‘,.|\1,/2 = Ny™"/2,

i=1
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Here we used Nv = p/. Hence

Al > (Ny) e 1oEn N2 — (g pyyynl2

Together with (13.2.3) this implies (13.2.3). i

Lemma 13.2.6 Letv € S. Then there are linearly independent linear forms

my,...,Mmg, € K\[X1, ..., X,] such that
max<i<y (X)), < maXj<i<g [m;(x)|, forx e K§, (13.2.6)
|det(myy, ..., mg)l, < CoR(ZL). (13.2.7)

Proof 1In this proof, we write again [;, m; instead of [;,,, m;,. Let .#, be the set
of linear forms from the previous lemma. Without loss of generality, we have

R, (M) = |det(my, ..., mg)l,. (13.2.8)

Then (13.2.3) implies (T3:2.7), so it remains to prove (13.2.6).

The linear forms my, ..., m, are linearly independent. By Cramer’s rule, we
have m; = Zizl(aij/a)mj fori =g+ 1,...,n, where @ = det(my, ..., m,) and
«;; is the same determinant but with m; replaced by m;. Now (I3.2.8) implies
that |a;;/al, < 1 for all 7, j. Consequently, for x € Ké i=g+1,...,n,

Imi(x)l, < g*

max |m;(x)l,,

1<j<g

where as usual, we have put s(v) = 1 if v is a real place, s(v) = 2 if vis a
complex place, and s(v) = 0 if v is a finite place. Together with (I3.2.2)) this

implies (13:2.6). i

Proof of Theorem Let Ay, ..., A, be the successive minima of [] 5 €,
as defined in Theorem [13.2.4} For v € S, let my,, ..., my, be the linear forms
from Lemma[13.2.6|and put

€, :={x € K§ : max |[m;(x)], < 1}.
1<i<g

Then by (13:2.6) we have [],cs €, € [1,es €., hence 4y, ..., A, are at most
equal to the successive minima of [,es %, . Now Theorem[13.2.2]and (13.2.7)
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imply
/d 1/d
A1+ A < (@/ry D2 ] Idetm, . mg)
ves
/d 1/d
< (@/yiok"?) (] [ Cury)
vesS
< (V2. IDklP | [ (w2 T | RYM
ves veS
vfoo
<Cy-| | RV
This proves Theorem [13.2.4 O

13.3 Estimates for polynomials

Let K be an algebraic number field. As usual, we denote the unique extension
of | -], (v € Mg) to K, also by |-|,. For P € E[Xl,...,Xg] we define |P|,
as max(|ail,,...,la,|,) where ay, ..., a, are the non-zero coeflicients of P. We
frequently use our notation s(v) = 1 if v is areal place, s(v) = 2 if v is complex,
and s(v) = 0 if v is finite.

Let S be a finite set of places of K containing the infinite places. We define
the S-content (P)s of P € K[Xj, ..., X,] to be the fractional ideal of Og gener-
ated by the coefficients of P, and then the S -norm of P by Ng(P) := Ng((P)s).
Clearly, Ns(0) = 0, and by (3.4.3) we have for non-zero P,

-1
Ns(P) = ( ]_[ IPL) . (13.3.1)
VEM[(\S
It is clear that
Ns(P) = 1 for P € Os[Xi, ..., X,]\ {0} (13.3.2)

Further, if P € Os[Xi,...,X,]\ {0}, then Ng(P) = 1 if and only if the coeffi-
cients of P generate the unit ideal of Ogs.

We list some other properties. Recall that the S-norm of a € K* equals
Ns(a) = [1,es lal,. First, by the product formula,

Ns(aP) = Ns(a)Ns(P) fora € K*, P € K[Xy,...,X,]. (13.3.3)
Second, by Gauss’ Lemma, see Proposition[2.6.1} we have
Ns(PQ) = Ns(P)Ns(Q) for P,Q € K[Xj,..., X,]. (13.3.4)
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Let L be a finite extension of K of degree n, and let o, ...,0, be the K-
isomorphisms of L into an algebraic closure of K. For P € L[X,...,X,] we
put

Nyx(P) = [ | oucp).
i=1

Lemma 13.3.1 Letv € Mg be a finite place. Then for P € L[Xq,...,X,] we
have INx(P)l, = [l |Ply, where the product is taken over all places of L
above v.

Proof Denote by h the class number of Or and by G the normal closure of
L/K. For a polynomial Q with coeflicients in G, denote by (Q) the fractional
ideal of O¢ generated by the coefficients of Q. Then there is @ € L* such that
(P)* = (@). Hence |P|*", = |aly for each place V of L above v. Further, by
Corollary [2.6.2] (Gauss’ Lemma for Dedekind domains),

Nk (P = [ [ = [ Jwit@) = Nux(@)),
i=1 i=1

hence INL/K(P)I’j = |Np/k(@)l,. Now Lemma|13.3.1{follows by applying Propo-
sition[3.3.1] O

Lemma 13.3.2 Let P € L[Xy,...,X,]\ {0}, F := Npx(P). Then there is
A € L" such that

(i) the coefficients of AP are integral over Og;

(i) Ns(aF) < |Dr|'?, where a := Ny (Q).

Proof Let T be the set of places of L lying above the places of S. By Lemma
[13.3.T]and Corollary [I3.2.3]there exists A € L* such that

_1\s(W)/n
Aly < (DI - Ns(F)™)

|Aly < |PJ,! forV e M, \T.

forVerT,

Then clearly, (i) is satisfied. Further, by Proposition (i) and (13:32),
(13.3.3),

Ns(aF) = Ns(F) | | INx(Ol = Ns(B) | ]1alv < 1Do1"2, o
ves VeT
An immediate consequence of Lemma [13.3.2]is that roughly speaking, we
can multiply a polynomial P € K[Xj,...,X,] with a € K* in such a way that
the coefficients of aP are in Oy and are “almost coprime.”
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Corollary 13.3.3 Let P € K[X|,...,X.]\ {0}. Then there is a € K* such that
for P’ := aP we have

P’ € Os[X1,.... Xgl, Ns(P') <Dl
Proof Apply Lemma[13.3.2)with L = K. |
We deduce another consequence.

Corollary 13.3.4 LetQ = Ly X---X L, where Ly, ..., L, are finite extensions
of K. Further, let

=

F=a| | Nyk(P)

I
—_

where a € K*, P; € Li{Xy,...,X,| fori = 1,...,q. Then we can express F
otherwise as

F = a' NL,-/K(P;)7 (1335)

—

1]
—_

where P, € Li[Xy,...,X.] is a scalar multiple of P;, with coefficients integral
over Og fori=1,...,q, and where

a € K*, Dol '*Ng(F) < Ng(a') < Ns(F).

Proof Fori = 1,...,q, let F; := N /x(P;), choose 4; € L} according to
Lemma and put ¢; := Np/k(4;). Then the coefficients of P, := A;P;
are integral over Oy, and Ns(a;F;) < |Dy,|'/?. Clearly, we have (13.3.5) with
a =ala - ~aq)‘1. The lower bound for Ns(a’) follows by taking the product
overi = 1,...,q and applying (13.3.4), while the upper bound follows from
ail'; € Og[Xy,..., Xglfori=1,...,g. m]

Suppose K has degree d. Denote by r the rank of Oy.. Put Qg := Ng(p; -+ - p;)
if py,..., p, are the prime ideals corresponding to the finite places in S; if S
has no finite places we put Qs := 1. We define the (inhomogeneous) height
and logarithmic height of P € K[X,...,X,] by

1/d
H(P) := ]_[ max(L,|P},)) ", h(P) :=log H(P).
veMg
Lemma 13.3.5 Let P € Os[Xi, ..., X,]. Then there exists € € O5 such that
coRx 1/d
H(eP) < e® g (T T1pL) ™,

veS

where co =0ifr=0,co = 1/difr =1, co = 29er!r Vr — 1logd if r > 2.
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Proof Put s := |S|, A := ), log|P|,. By Proposition [3.6.2] there exists
€ € 0% such that

" |toglel, + logIPl, - A/s| < deoRy + i log Os.

ves

Asa consequence,

1
WeP) = Z max (0, log |¢l, + log |P],)
vesS
1
< > |10g lely + log |Pl, — A/s| +A/d

veS

< C()RK + (hK/d) lOg QS +A/d

which implies our lemma. m}

13.4 Reduction of binary forms over the S -integers

Let K be an algebraic number field of degree d. Let as usual Dg, hg, Rx de-
note the discriminant, class number and regulator of K, and let r := rank O%.
Further, let S be a finite set of places of K, containing all the infinite places,
let py, ..., p, be the prime ideals corresponding to the finite places in S, and
define as usual Qg := 1if t = 0 and Qg := Ng(p; - - - p,) otherwise.

Let F € Og[X,Y] be a binary form of degree n > 2 and non-zero dis-

criminant. Let G be the splitting field of F' over K. The binary form F has a
factorization into linear forms such that

F=al -1, withae K*,1,...,1, € G[X, Y], (13.4.1)
where the system /,...,/, is K-symmetric, that is, for each o € Gal(G/K)
there is a permutation (o°(1),...,0(n)) of (1,...,n) such that

o(ly) =lys fori=1,...,n, o€ Gal(G/K). (13.4.2)

We fix once and for all a factorization (13.4.1)) with (13.4.2)) of F.
Denote by T the set of places of G lying above those in S. Let Biy (V € T,
i =1,...,n) be positive real numbers satisfying

Bo‘(i),V = Bi,VOo’ forVeT, oceGal(G/K),i=1,...,n. (13.4.3)
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Put

Moo (l_[ ﬁ Biv)l/[G:Q]’

VeT i=1

det(l;, [; 1/[G:Q]
R::(l_[ max | (l j)lV) Q’
VeT I<i<j<n BiVBjV

10d4°
log* d

C3(n) := D" - exp( )MnRK} QUi

where as before, we put log* x := max(1, log x).

Theorem 13.4.1 Let F € Os[X, Y] be a binary form of degree n and non-zero
discriminant, and choose a factorization of F as in (13.4.0), (13.4.2).

(i) Assume that n > 2 and that F has no linear factor in K[X,Y]. Then F is
GL(2, Os)-equivalent to a binary form F* such that

H(F*) < C3(n)Ns(a)*/" M*R".

(ii) Assume that n > 3 and that now F does have a linear factor in K[X,Y].
Then F is GL(2, Os)-equivalent to a binary form F* with

(n=1)/(n-2)
H(F?) < (C3(m)Ns (@)* MR") :

For v € §, denote by 2/ (v) the set of places of G lying above v. Then
Uyes @ (v) = T. After suitable identifications, we may assume that K ¢ G C
GyforVeT,KcK,cGyforvesS,V e ., where Gy is the completion
of GatV.Forv € S, we define

%, ={x¢€ Kf, LX)y < By fori=1,...,n, VedW}

this is a symmetric v-adic convex body in K2. Our crucial tool is the following
lemma.

Lemma 13.4.2 Assume that n > 2. Let A1, Ay be the successive minima of
[Tes G,- Then

A1 < Ca(mR where Ca(n) = 8Dg|"n™ Q0>

Proof The first step in our proof is to rewrite R and %, in a way which makes
it possible to apply the theory of Section [I3.2] For this, we need some prepa-
rations.

Letv € S, fix V) € &/ (v), and write G, for Gy,. Then G, is a Galois extension
of K, as itis the splitting field of some polynomial in K[X]. Put g, := [G, : K, ].
We can extend | - |, uniquely to E and thus to G,. On the other hand, | - |y, can
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be extended uniquely to G,. By Proposition @), | - v, coincides with | - [}"
on K. So in fact we have

Ixly, = [xf3" for x € G,. (13.4.4)

Let & := {0 € Gal(G/K) : Vy = Vy o 0}, i.e., the decomposition group of
Vo. We can extend each o € & uniquely to an element of Gal(G,/K,) since
lo(x)ly, = |xly, for x € G. Conversely, any element of Gal(G,/K,) leaves | - |y,
on G, invariant and so it restricts to an element of &. Thus, the restriction to G
yields an isomorphism Gal(G,/K,) — & (see [Neukirch (1999), chap. 3, Thm.
2.6]).

ForV € &/ (v), put &(V|v) := {0 € Gal(G/K) : V = Vyoo}. Since the places
in 7 (v) are conjugate over K, the sets &(V|v) are precisely the cosets of & in
Gal(G/K). From (13:4.4) it follows that

Ixly = lo(X)ly, = o) forx e G, Ve dWv), oe&WV). (13.4.5)

Put
r . pl/g
B;, = Bi,Vo .

Then from (13.4.3) it follows that

B, = B;/_g,v(i) , forVedw),oeéVv),i=1,...n (13.4.6)

Indices i, j such that j = (i) for some o € & are called conjugate over K,.

This definition is justified by the fact that every o~ € & is the restriction to G of
an element of Gal(G,/K,). We have

B, = B, if i, j are conjugate over K. (13.4.7)

Indeed, if j = o(i) for some o € & then B, = B;.!/‘f’;” = B(lr/(f) v, = B

We first rewrite R. Let v € S. By (13.4.3), (13:42) we have for V € o7 (v),
oe &V,
|det(l;, Iply = lo(det(li, N = | detUoqy, o)) -

Together with |&(V|v)| = g,, (13:4.6) this implies

Idet(l;, [)lv | det(lo(i), L))l
[, Sl [ [ 19l
v \Si<isn - BivBjv Vv e (V) SIS BB

. . / /
<i<j<n Bo—(i),vBO'(j),v

1
oeGal(G/K)

[det(;, )]y \[G:K1
(g Lo
I<i<j<n B’,Bl

W jv
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Hence

_ | det(l;, [y \1/d
R‘(l_[li?i?én—Bf,B' ) (13.4.8)

" jv

Next, we rewrite %,. By (13.4.3), (13.4.6), (13.4.2) we have for x € K>, that

LX)ly < By fori=1,....,n, Ve o)
&= o)X, < B, fori=1,....,n, Ve dW), o€ EV)

fori=1,...,n, o € Gal(G/K)

= |ix)|, < B, fori=1,...,n,

= oo Xy < B,

v

that is, for v € S we have
G, ={xeKk?: |,(x)|, <B) fori=1,...,n}. (13.4.9)

We make the sets %, (v € §) somewhat smaller. Let v be a finite place in §
and put Nv := Ng(p) = |Ok/p|, where p is the prime ideal of Ok corresponding
to v. Then in view of (13:4.7) and the fact that the value set of | - |, on K} is a
cyclic group generated by Nv, there are a;, € K}, (i = 1,...,n) such that

Nv'B, <lapl, < B}, (i=1,...,n), (13.4.10)
a;y, = aj, if i, j are conjugate over K,. (13.4.11)
If v is an infinite place we put Nv := 1, and choose a;, = B, if v is real,

aiy = (B, )" if v is complex. Then (13.4.10), (I3:4.T1)) hold true also for the
infinite places. Now let

my =a'l; veS,i=1,...,n).

Then the system {m;,,...,my,,} is K,-symmetric. Indeed, let i € {1,...,n},
o € Gal(G,/K,) and ¢ its restriction to G. Then by (13:42), (I3.4.11), we

have o(m;,) = a;' I/ = mg (i), Moreover, it is clear from (13:49), (13:4.10)
that forv € S,

€, 2%€ ={xeKk?: lmyX)|, < 1fori=1,...,n}.
Let A7, A, be the successive minima of [],cg €. Then clearly, 4; < A for

i = 1,2. Notice that for g = 2, the constant C; in Theorem [[3.2.4]is at most
Cs(m)Q5*. So by that Theorem, and in view of Qs = [],es Nv, (I34.10),
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(13:4.3), we have

/Y — 1/d
iy < 42 < ComQ ([ | max Idet(miy, mj)ly)
vesS

1<i<j<n

1/d
i |det(Z;, 1)),
< C4(n)Q52/d (H 1£Ii13j§n —])
veS T T

|aivajv|v
| det(t;, 1, )
< | max —22 = cumR.
I<i<j<n B B’
S SIS W jv
This proves Lemma[13.4.2] m|

Proof of Theorem Letn > 2. Put

6rd> \r
— 4 (hx—1)/d
Cs := 100d exp{r(log—*d)RK}. (D1,

This is an upper bound for the constant C; from Theorem [[3.2.1|with g = 2. It

follows that O§ has a basis a; = (a;1,d21), ay = (a2, ax) with

ai, a3 € Cs/lz 1_[ %v-

ves

ForA > 0,x € A[[,e5 6, N 0% we have |;(X)ly < *V'B;y fori =1,...,n,
V e T, where as usual, we put s(V) = 1 if Vis real, s(V) = 2 if V is complex,
and s(V) = 0 if V is finite. Hence

max(|l(a)ly. lli@)ly) < (Cs4:)"" By (13.4.12)
fori=1,...,n,VeT.PutU := (5! a2). Then U € GL(2, Os), and
FU =amjp---my with m; = l,~(a1)X + li(az)Y fori = 1, oo, n

by (I3:4.1). From this and (13:4.12) it follows that for V € T,

IFyly < laly2™" 1_[ max(|//;(aply, [;(az)ly)
i=1

<lalyBiy -+ - Byy(2Cs,)" Y.
By Proposition [3.3.1 we have
Full =T [1Fulv, 1al% " =] ]lalv. (13.4.13)

Vv Viv
Moreover, Y. yer s(V) = [G : Q] = d[G : K]. Hence
[T = ([ J1E) "™ < Ns@(mcsny).

vesS Vel
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By Lemma([3.3.5]there is & € O such that F* := eFy satisfies
H(F?) < Rk QlI2Cs)" - Ny (a) 1 MAS. (13.4.14)

Notice that F* is GL(2, Og)-equivalent to F. Thus, it remains to estimate A,.
For the moment, we keep our assumption n > 2. Let ¢q, ¢, be linearly inde-
pendent vectors from 0§ such that ¢; € A; [],e5 6, fori = 1,2, that is,

lli(ep)ly < B,-vaj“ forj=1,2,i=1,...,n,VeT. (13.4.15)

First assume that F(cy) # 0. This is certainly the case if F' has no linear factor
in K[X, Y]. Then F(cy) is a non-zero S -integer. So by the product formula, and

(13.4.13),
t< ] [IFeoly =] Jlalv- ] ] ]_[ llenly

VeT VeT VeT i=1
S NS (Cl)[GK]M[GQ]ﬂ’II[GQ]

Together with Lemma [13.4.2]this implies
A3 < Ns(@)'""M(2122)" < Ns(a)'“Cy(n)" MR".

By inserting this into (13.4.14) we get
H(F") < e Q1(2Cs)" Ca(n)' N5 (@) MPR"
< C3(n)Ns (@) M*R"
which is precisely the bound from part (i) of Theorem [I3.4.1}

Now assume that n > 3 and F(cy) = 0. Assume for instance that /;(cy) = 0.
Then

a = l(cp) ]_[ li(e)) #0
i=2

since [y, ..., I, are pairwise linearly independent. Further, by Gauss’ Lemma

2.6.1}

laly < lalvllily -y = |Fly <1 for Ve Mg\ T.
So by the product formula, ( [3.4.15), and (T3.4.13),

1< [ Jlaly <[ [laly M@ a2;-yie
VeT VeT

= Ny (a)[GIK]M[GZQ](/lz/y]l—l )[GIQ]‘

Combined with Lemma|[I3.4.2] this gives
72 < Ng(@)"M(2,2,)"™" < Ns(@)'/“M - (C4(m)R)™™"
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and insertion of this into (13.4.14) leads to

* coRx Nk n n n (n—1)/(n-2)
H(F*) < e Q¢/*(2Cs)" - Ns(@)""*(Ca(n)"Ns (a)*'* M*R")

(n=1)/(n-2)
< (C3(m)Ns (@) M*R") :
This proves part (ii) of Theorem [[3.4.1] ]

Corollary 13.4.3 Let F € Og[X, Y] be a binary quadratic form of non-zero
discriminant D(F). Then F is GL(2, Os)-equivalent to a binary form F* such
that

H(F*) < C3(2)Ns (D(F))'“.

Proof First assume that F is irreducible over K. Then F = aljl, where
a € K*, 11,1 are linear forms in G[X, Y], and D(F) = a*det({;,,)*. Apply
Theorem[13.4.1]with Byy = Byy = 1 for V € T. Thus, M = 1 and

R= (1—[|det(11,lz)|v)l/[G:Q] = 1_[ |a—2D(F)|‘1//2[G:Q]

VeT VeT
= Ns(a>D(F))"/*,

. 1/IG:K]
where we have used that Ny (b) = Nr(6)'5K1 = ([Tyer Ibly) for b € K.

Now Corollary[13.4.3|follows by applying part (i) of Theorem[13.4.1]
Now assume that F is reducible over K. Thus, G = K, T = §. We modify

some of the arguments in the proof of Theorem [I3.4.1] Choose a factorization
F = 1, with [, [, linear forms in K[X, Y] (so with a = 1); then conditions

(13:42), (13:4.3) are void. Take

By, := Ns ()™, By, := Ns(b)'™ (v €$).

Then by (T3:33)

M = (Ns(I)Ns (L))" = Ns(F)'4, R = Ns(D(F))'*/Ns(F)??. (13.4.16)

Choose ¢1, ¢ as in (I3.4.13). At least one of /;(¢1), l(¢1), say the second, is
non-zero. Then by the product formula,

1= [ e <[ Tl [ b

veMg ves veMg\S

<Ns(af [ Il =41,
veMg\S
and together with Lemma [13.4.2] this implies 1, < C4(2)R. By inserting this
and (13.4.16) into (13:4.14), we see that F is GL(2, Og)-equivalent to a binary
quadratic form F* with

H(F") < ¢k Q/1(2C5)* M - C4(2)°R* < C3(2)Ns (D(F)).
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This completes the proof of Corollary[13.4.3] o

Corollary 13.4.4 Let F € Os[X, Y] be a binary cubic form of non-zero dis-
criminant D(F). Then F is GL(2, Os)-equivalent to a binary form F* such that

H(F*) < C3(3)Ng(D(F))"? if F is irreducible over K,

H(F*) < C33)*Ng (D(F)'/? if F is reducible over K.
Proof Choose a factorization F = alihl; of F with (13:4.1), (13:4.2). Put
Ajj := det(l;, [;). Apply Theorem|[I3.4.T| with

By = |Ayly! fori=1,2,3,VeT,

where {j,k} = {1,2,3}\{i}. Thenfor V e T, o € Gal(G/K), i = 1,2,3 we have

Boiyv = Aohomly' =10l = 1AxlL, = Biver,
that is, (13.4.3) is satisfied. Further, we have

M= 1_[ |A12A23A13|‘_/1/[G:Q], R = 1_[ |A12A23A13|%//[G:Q],

VeT VeT

and

Ng (a)2/dM2R3 — l_[ |a4(A12A23A13)2|%//2[G:Q]
VeT
= [ [Ip@2e9 = Ny 2.
Vel

By inserting this into the bounds from Theorem [I3.4.1] our Corollary follows
at once. i



14

Effective results for binary forms of given
discriminant

Recall that two binary forms F, F* having their coefficients in a ring A are
called GL(2, A)-equivalent if F* = ¢Fy for some U € GL(2,A) and € € A*.

Birch and Merriman [Birch and Merriman (1972)] proved that there are only
finitely many GL(2,Z)-equivalence classes of binary forms in Z[X, Y] with
given degree and given non-zero discriminant. Further, they extended this re-
sult to binary forms having their coefficients in the ring Og of S -integers of an
algebraic number field K where S is any finite set of places of K containing all
infinite ones. The proofs of Birch and Merriman are ineffective in the sense that
they do not allow to compute in principle a full system of representatives for
the equivalence classes under consideration. In [Evertse and Gy6ry (1991a)],
the authors proved the following theorem which implies among other things
effective versions of the results of Birch and Merriman: every binary form
F € Os[X, Y] of degree n > 2 with non-zero discriminant D(F') is GL(2, Oy )-
equivalent to a binary form F* such that H(F*) < C, where C is an effectively
computable number depending only on n, K, S and Ns(D(F)). Apart from
some effectively computable absolute constants occurring in C, the bound C
was given in an explicit form.

In this chapter we give an alternative proof of the result of Evertse and
Gydry, with a much better and completely explicit expression for C. In the
proof we combine the reduction theory of binary forms over Og with some
effective results from Chapter[d on S -unit equations.

In Section we present our results and some of their applications in
the classical situation, for binary forms with rational integer coefficients. The
general results over rings of S-integers of a number field are formulated in
Section[I4.2] In Section[T4.7] we show that these imply in a weaker form some
of the results on monic polynomials from Chapter |8} In Section we give
some applications, among other things to the minimal values of binary forms
at S-integral points and to algebraic numbers of given discriminant. Further

295
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applications will be established in Chapter[I8] The proofs can be found in Sec-
tions [14.4] [14.5] and [14.6] In Section we show that the effective finiteness
assertions for binary forms of given discriminant and for unit equations in two
unknowns are in a certain sense equivalent. Finally, in Section[I4.9]extensions
of some results concerning binary forms are presented to decomposable forms.

14.1 Results over Z

Lagrange [Lagrange (1773)] proved that there are only finitely many GL(2, Z)-
equivalence classes of binary quadratic forms in Z[X, Y] of given non-zero dis-
criminant. Hermite [Hermite (1851)] proved the same for binary cubic forms in
Z[X, Y]. The proofs of Lagrange and Hermite were effective. Versions of these
theorems with explicit upper bounds for the heights of binary forms represent-
ing the equivalence classes are given in Chapter [I3] The finiteness results of
Lagrange and Hermite were extended to binary forms of degree n > 4 in [Birch
and Merriman (1972)] in an ineffective form, and later in [Evertse and Gyo6ry
(1991a)] in an effective and explicit form. We present here an improved and
completely explicit version of Evertse and Gy6ry’s theorem.

The height H(F) of a binary form F € Z[X, Y] is the maximum of the abso-
lute values of its coefficients.

Theorem 14.1.1 Let F € Z[X, Y] be a binary form of degree n > 2 with
discriminant D(F) # 0. Then F is GL(2,Z)-equivalent to a binary form F* €
Z[X, Y] for which

H(F") < exp (@™ |D(F)P"3). (14.1.1)

This is a special case of Theorem [14.2.2]from Section which is estab-
lished over S -integers of a number field. For n > 4, the proof requires the use
of Theorem on S -unit equations which was proved by means of the the-
ory of logarithmic forms. This is the reason that the upper bound in (T4.1.1) is
much larger than those in Chapter[I3|for n = 2 and 3. For convenience of later
applications, Theorem[I4.1.1]is stated with a single bound valid both for n > 4
and for n < 3. We note that a better bound than (I4.1.T)) could be obtained by
deducing it directly from the specialized version of Theorem[4.1.3|for ordinary
units.

The following theorem is from [Gy&ry (1974)]. It was proved in terms of
polynomials.

Theorem 14.1.2  Every binary form F in Z[X, Y] with non-zero discriminant
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D(F) has degree
n <3+ 2log|D(F)|/log3 (14.1.2)

with equality if and only if F is GL(2,Z)-equivalent to
XY(X +Y) or XY(X + Y)(X* + XY + Y?).

We prove this in Section

Theorem implies that in Theorem the upper bound can be re-
placed by an explicit bound which depends only on D(F). This gives that there
are only finitely many GL(2, Z)-equivalence classes of binary forms of degree
> 2 with given non-zero discriminant, and that a full set of representatives of
these classes can be effectively determined.

For a binary form F € Z[X, Y] of degree n > 2 with discriminant D # 0, let

MU(F) :=min{|F(x,y)| : x,y€Z, F(x,y) #0}.

For n = 2, Gauss [Gauss (1801)] proved that u(F) < (-D/3)'/?if D < 0,
and it was shown in [Korkine and Zolotareff (1873)] and [Markoff (1879)] that
u(F) < (D/5)V? if D > 0. [Mordell (1945)] obtained for n = 3 the results
u(F) < (=D/23)*if D < 0, and u(F) < (D/49)"/* if D > 0. These bounds
are best possible.

The following consequence of Theorem[T4.1.1] gives a result of this type for
every n > 4, but with a much larger bound in terms of D.

Corollary 14.1.3 Let F € Z[X, Y] be a binary form of degree n > 4 with
discriminant D # 0. Then

u(F) < exp {(4n)">"|DP"3}.

This Corollary is deduced as follows. Let F* be the binary form from The-
orem [T4.1.1] There is an integer a with |a| < n such that F*(1,a) # 0. Then
u(F) = p(F7) < [F*(1,a)l < (n + 1) H(F).

Theorem [T4.1.1] can be applied to algebraic numbers as well. To every al-
gebraic number 6 of degree > 2 we associate the irreducible binary form
Fo(X,Y) € Z[X, Y] such that Fy(0,1) = 0, Fyg(1,0) > 0 and the coeflicients
of Fy are relatively prime. Let H(6) denote as usual the absolute height of 6,
and define the discriminant D(0) of 0 as the discriminant D(Fy) of Fy. Two
algebraic numbers 6, 6, are called GL(2, Z)-equivalent if

_ afy + b

a b
6, = ith GL(2,2Z).
> o+ d wi some(c d)e 2,2)

It is easy to verify that 6, is GL(2,Z)-equivalent to 6; if and only if Fj, is
GL(2, Z)-equivalent to Fy,. Further, in this case D(6,) = D(6;).
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Theorem|14.1.1} together with the inequality H(#) < (n+ 1)"/2"H(Fg)'/" (cf.
(3.5.3)) implies at once:

Corollary 14.1.4 Every algebraic number 6 of degree n > 2 and discriminant
D is GL(2,Z)-equivalent to an algebraic number 6" such that

H(g*) < exp {(42n3)26112|D|5n—3} .

We recall that for algebraic integers, a better result is provided by Corollary
with a stronger concept of equivalence.

14.2 Results over the S -integers of a number field

Let K be an algebraic number field of degree d and S a finite set of places of
K containing all infinite places, of cardinality s. Thus, s = r| + r, + ¢, where
ry is the number of real places, r, the number of complex places of S, and ¢
the number of finite places of S. In case that 7 > 0, let py, ..., p, be the prime
ideals corresponding to the finite places in S. Put

Pe = max; Ng(p;) if t > 0,
ST 1ifr=0
and
t
]—[ log Nx(p;) if £ > 0,

i=1

1ifr=0

WS =

where as usual Ng(a) denotes the absolute norm of a fractional ideal a of K.

Let F € Og[X, Y] be a binary form of degree n with non-zero discrimi-
nant. Then F' = Fy---F,, where Fy,...,F, are pairwise non-proportional
irreducible binary forms in K[X,Y]. Fori = 1,...,q,let L; = K if F;is a
scalar multiple of ¥, and L; = K(«;) if F; is not a scalar multiple of ¥, where
Fi((l’i, 1) = 0. Then

QF) =L x---X1L, (14.2.1)

is a finite étale K-algebra of degree n. We call Q(F) the étale K-algebra asso-
ciated with F. Recall that the discriminant of Q(F) is Docr) = [17, Dy, where
Dy, is the discriminant of L;. The algebra Q(F) is up to isomorphism uniquely
determined by F. Choose U € GL(2, K) such that Fy(1,0) # 0. Then

Q(F) = K[X]/(Fy(X, 1)). (14.2.2)

For convenience of reference, we state our result for binary forms of any
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degree > 2. For quadratic and cubic forms, Corollaries [I3.4.3]and [T3.4.4] give
much better results. Recall that the height of a binary form F = YL, a;X""'Y' €
K[X, Y] is given by

1/[K:Q]
H(F) := { [ ] max(t,laol,..., |an|v>] :

veMy
Let
ng:=nn—1)(n-2)n-3)iftn>4, ny:=0ifn=2,3.
Theorem 14.2.1 Let 6 € Os \ {0}, and let F be a binary form in Os[X, Y] of

degree n > 2 with discriminant D(F) € 605. Then F is GL(2, Os)-equivalent
to a binary form F* such that

1
H(F*) < exp {c110;4+1|DQ(F)|4"-3 (|DQ<F)|" ey log Ng (5))}, (14.2.3)

where C; = (12n%5)®"S. Further, if t > 0, then there is a binary form F* €
Os[X, Y] which is GL(2, Os)-equivalent to F, such that

H(F") < exp{Cy P§* Wit log” N (6)] (14.2.4)
where Cy is an effectively computable number which depends only on d, n and
DQ(F).

The proof of Theorem is based on a combination of Theorem
concerning reduction of binary forms, and Theorem concerning S -unit
equations.

Let Dg denote the discriminant of K, and put

05 = Ng(p1---py)ift >0,
5 lift=0.

The following theorem will be deduced from Theorem [14.2.1

Theorem 14.2.2 Let 6 € Og \ {0}, and let F € Os[X, Y] be a binary form of
degree n > 2 with discriminant D(F) € 60%. Then F is GL(2, Os)-equivalent
to a binary form F* such that

H(F) < exp (5P (Q4IDkNs @) (14.2.5)

where Cs = 2057 41(1253 5)251’s,

Theorem |14.2.2] and the first statement of Theorem [14.2.1| were proved in
[Evertse and Gyo6ry (1991a)] with weaker bounds, but with a slightly stronger
notion of equivalence, involving matrices from SL(2, Oy ) instead of GL(2, Os).
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However, from the first parts of Theorem [I4.2.1]and Theorem [14.2.2] one can
deduce similar results with this stronger equivalence, with bounds of the same
form as in (T4.2.3)) and (14.2.3) with different absolute constants instead of Cj,
Cs.

By means of Theorem one can effectively compute a representative
from each GL(2, Oy )-equivalence class, provided that K, S and ¢ are effectively
given in the sense described in Section Recall that for this we have to as-
sume that an algebraic closure QofQis effectively given, and that all algebraic
numbers and number fields considered below belong to this Q. A binary form
F € K[X, Y] is effectively given/computable if the degree and coefficients of F
are effectively given/computable.

Corollary 14.2.3 Letn > 2 be an integer, and 6 € Os\{0}. Then there are only
finitely many GL(2, Os)-equivalence classes of binary forms F in Os[X, Y] of
degree n with D(F) € 605. Further, there exists an algorithm which for any
n > 2 and any effectively given K, S and & computes a full set of representatives
of these classes.

For every C > 1 itis possible to determine a finite subset of K such that each
a in K with absolute height H(a) < C belongs to that subset; see Subsection
However, Corollary [14.2.3]does not follow at once from Theorem[14.2.2)]
since among the forms F* with small height mentioned in Theorem [14.2.2]
there might be GL(2, Oy )-equivalent ones. In Section[I4.4] we prove Corollary
[[4.2.3] by showing that there exists an algorithm that can decide whether two
binary forms in Og[X, Y] are GL(2, Os)-equivalent.

Remark 14.2.4  Corollary [14.2.3]does not remain valid in general if n is not
fixed. Indeed, it follows from the remark made after Corollary that if §
contains all finite places lying above a given rational prime p, then for k =
1,2,...and & € Og the binary forms X7 —&Y?" have their discriminants in 0s.

14.3 Applications

The fractional ideal of Og generated by a1, ..., @ is denoted by (a1, ..., ®)s-
For F € K[X1, ..., X,;] we denote by (F)s the fractional ideal of Og generated
by the coeflicients of F. It is called the S -content of F.

For a binary form F € K[X, Y] of degree n > 2 with non-zero discriminant
we define the primitive S -discriminant of F by the ideal of Oy,

(D(F))s
P2

b (F) := (14.3.1)
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In the case Os = Z this means that we divide F by the greatest common
divisor of its coefficients to make it primitive, and then take the discriminant.
The primitive S -discriminant is generated by the numbers

@™ 2D(F) = D(aF) with a € (F)'.

Since each binary form «F has its coefficients in Og, the discriminants D(aF’)
belong to Og, hence the primitive discriminant is indeed an ideal of Og. As
will be seen in Section [14.5] if F, F’ € K[X, Y] are binary forms such that
F’ = AFy for some A1 € K* and U € GL(2, Oy), then F and F’ have the same
primitive S -discriminant. We shall consistently replace the subscript S by K
when S is just the set of infinite places in K.

The next applications of Theorems [14.2.1] and [T4.2.2] are considerable im-
provements of the corresponding results of [Evertse and Gy6ry (1991a)].

The first application concerns the following problem. Suppose that F is a
binary form in K[X, Y]. Then its primitive S -discriminant can be factorized as

5 (F) =)' -+ gk Os, (14.3.2)

where qy, ..., q, are distinct prime ideals of O not corresponding to places in
S'. Recall that the S -norm of dg (F) is

Ns (05 (F)) = Ni(ay' -+ %)
(i.e., the absolute norm of the ideal on the right-hand side). We call
Cs(F) := Nx(ar -+ qu)

the S-conductor of F. Can we give an upper bound for Ns(dg(F)) in terms
of K, S and Cg(F)? In general, such a bound need not exist, but it does
exist when F has minimal primitive S-discriminant. This means that with
T =S U{a1,-.-., 0}, we have

Ns(ds(F)) < Ng(ds(F"))

for every binary form F” € K[X, Y] such that F’ = AFy for some A € K* and
U € GL(2, Or).
With the factorization (14.3.2)), write

P(ds(F)) := max (Ng(a1), . .., Nx(a0))-

Denote by log; the i times iteration of log”. Corollary [14.3.1|is a consequence
of Theorems [[4.2.Tland [[4.2.2]

Corollary 14.3.1 Let F € K[X, Y] be a binary form of degree n > 2 with
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minimal primitive S -discriminant. Define N := Ng(ds(F)), P := P(ds(F)).
Then

N < exp{Cs(F)“}, (14.3.3)
and, if w > 0,

C6 . * *
{ Cs(log N)“s if w < log* P/ log; P, (143.4)

C;(log; N)(log; N)/(logy N) otherwise,

provided that log N > 1, where Cy is an effectively computable number de-
pending only on K, S and n and Cs, Cg, C7 are effectively computable positive
numbers which depend at most on K, S, n and Dqr.

This corollary provides some information about the arithmetical properties
of minimal § -discriminants.
Corollary [14.3.1|motivates the following conjecture.

Conjecture 14.3.2 With the same notation and assumptions of Corollary
[[43 1lwe have

P > Cg(log N)©,

where Cg, Cy denote effectively computable numbers depending only on K, S, n
and DQ(F).

The next application deals with the problem to find a “small” non-zero value
of a binary form. Denote by H( . ) the absolute height. The following corollary
is a consequence of Theorem[14.2.2]

Corollary 14.3.3 Let F € Og[X, Y] be a binary form of degree n > 2 with
discriminant D(F) # 0, and put

us(F) :==min{H(F(x,y)): x,y € Og, F(x,y) # 0}.
Then
ps (F) < exp{CroPy ™ (Q4IDkI"Ns (D(F)))™ )
where Cyo = 20541213 5)267s.

We note that a similar result follows from Theorem [[4.2.1] with a much
better upper bound in terms of D(F). However, such a bound would depend
also on the discriminant Dqr) of the étale algebra Q(F) associated with F.

The following consequence of Theorem|[I4.2.2]concerns equivalence of ele-
ments of an étale K-algebra. Theorem[14.2.T] has a similar consequence.

Let Q be a finite étale K-algebra of degree n > 2 over K, isomorphic to

Ly X --- X Ly, say, where Ly,..., L, are finite field extensions of K. We view
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K as a K-subalgebra of Q. Two elements 8, 6, of Q are called GL(2, Oy)-
equivalent if there are a, b, ¢, d € Og with ad — bc € O} such that cf +d € Q
and

_ ab; +b
27 co; +d’
If 6 is a primitive element of Q over K and x — x@ (i = 1,...,n) denote the

K-homomorphisms from Q to K we can associate to 6 the binary form

(X —6?Y)
1

Fy(X,Y) =

n

1

which has its coefficients in K. Here Fy(X, 1) is the monic minimal polynomial
of @ over K and Q = Q(F) = Q(F(X, 1)) = K[X]/(F(X,1)). We define the
S -discriminant of 6 by

(D(Fo))s

DS (9) = (Fe)gn—z .

(14.3.5)

This is just the primitive S-discriminant of Fy, hence it is an ideal of Oy.
Further, it is easy to check that 8y, 6, are GL(2, Os)-equivalent if and only if
there are 4 € K* and U € GL(2, Oyg) such that Fy, = A(Fy,)y. Thus GL(2, Os)-
equivalent elements of Q over K have the same S -discriminant.

We define as before

ng=nn—-1)(n-2)n-3)ifn>4, andngy =0 if n < 3.
Further, the absolute height of an element a € Q is defined as
H(a@) := max(H(ay), ..., H(ay)),

where (a1,...,a,) € Ly X--- X L, is the image of « under a K-algebra isomor-
phism ¢ : Q = L; X --- X L, and H(;) denotes the absolute height of «;, for
i=1,...,q.

Corollary 14.3.4 Let d be a non-zero ideal of Og, and let 6 € Q be such that
Q = K[0] and ds(0) = d. Then 0 is GL(2, Oy )-equivalent to a 60" € Q for which

5n-3
H@) < exp{CuPe™ (Q4IDkP N5 @) (14.3.6)

where Cyy = 2n5741(12n3 5)267°s,

Observe that the upper bound in depends only on the degree, but
not on the discriminant of Q. Hence, specializing Corollary [T4.3.4]to the case
when Q is a finite field extension of K, we need not restrict ourselves to a fixed
field extension of K. So, together with Corollary our above corollary
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implies that there are only finitely many GL(2, Os)-equivalent classes of alge-
braic numbers of degree n > 2 with given §-discriminant d over K, and a set
of representatives for these classes can be determined effectively.

We note that for those elements of a finite extension of K which are integral
over Og, Theorem [8.4.T] gives a similar result, but with a stronger concept of
equivalence.

14.4 Proofs of the results from Section [14.2)

As in the proof of Theorem [8.2.1] one of our main tools is the effective theory
from Subsection [4.1.2] for equations in two unknowns from a finitely gener-
ated multiplicative group, more precisely, Theorem and Theorem
Another important tool is the reduction theory from Section[I3.4] in particular
Theorem m Further, we need effective estimates for § -units, (in particu-
lar Propositions [3.6.3] and [3.6.1)), as well as for discriminants, class numbers,
regulators and S -regulators.

We keep the notation used in Theorem @ further, we denote by G the
splitting field of F over K, and by T the set of places of G lying above the
places from S. For b € G, we define

Nr(b) = | 1blv.

VeT
Then
Nr(b) = Ng(b)'SK for b € K.

Let F = apX" + - - - + a,Y". Then the S -norm of F equals

Ns(F):=( [ maxtaohe....laih)

veMg\S

(see (I33:1)). Let Q(F) = L; X - - - X L, be the finite étale K-algebra associated
with F. Then F can be factored as

q
F=al | Ny (14.4.1)
i=1

where a € K* and /; is a linear form in L;[X, Y] fori = 1,...,q. By Corollary
we can choose a,1; ... [, in such a way, that

|Dor)| "2 Ns (F) < Ns(a) < Ns(F)

and the coefficients of /1, ..., [, are integral over Og. Taking the conjugates of
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I1,...,1; over K, we get a factorization
F=al- -1,

where

a € K*, |Do)|™*Ns(F) < Ns(a) < Ns(F),
ll,...,ln € OT[X, Y]

and for each o € Gal(G/K) there is a unique permutation o (1),
1,..., n such that

o(ly) = lys foro € Gal(G/K), i=1,...,n.

We put
Aiji=detli,l) (1<i,j<n), Fo:=l---l,=a'F.
Then
DFy= [] A%
I<i<j<n

Notice that by (I4.4.3)) and since F has its coefficients in Oy,

Ns(D(Fp)) = Ns(a)"*2Ns (D(F))
< Do) "™ Ns (F)™2"2 Ng (D(F))
< Do) N (D(F)).

Recall that the absolute height of b € G is defined by
H(b) = ﬂ max(1, |b|y)/1G%

VeMg

Further, ny = n(n — 1)(n = 2)(n — 3) if n > 4.
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(14.4.2)

(14.4.3)

...,o(n) of

(14.4.4)

(14.4.5)

(14.4.6)

We now prove a lemma which is crucial for the proof of Theorem[T4.2.1] Its
proof depends on Theorem [.1.3]and Theorem [4.1.7) concerning S -unit equa-
tions. Its proof is at many points similar to that of Lemma [8:3.1] from Section

[B3] but instead of the identity (8:3.2) we use
AijAgn + AjAip + Ay Ay =0,

for any four distinct indices i, j, k, h.

(14.4.7)

Lemma 14.4.1 Assume that n > 4. For each quadruple of distinct indices i,

Jok, he{l,2,...,n} we have

H(A;jAun [ AikAjp) < Cha,

(14.4.8)
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where
74+ 1 4n—3 n 1
Ci2 = exp{ Ci3 P |Dacryl [Dar)l" + 2 log N5 (6)

and
Cis = (207 s24)”2‘v.
Further, ift > 0,
H(AijAw/ DA ) < exp {Cl Pet Wt log” Ny (6)) (14.4.9)

where Cy4 is an effectively computable positive number depending only on d,
n and DQ(F).

Proof For 1 <i < j < n,let L;; denote the extension of K generated by the
coefficients of /; and /;. Denote by d;;, D;;, h;; and R;; the degree, discriminant,
class number and regulator of L;;, by T;; the set of places of L;; lying above
those in §, by Oy, the ring of T;;-integers in L;j, i.e., the integral closure of Og
in L;;, and by Nr,; the T;;-norm in L;;. Clearly, d;; < nod where np := n(n — 1).

Fix distinct indices i, j € {1,...,n}. The number A;; belongs to Or,, since the
coeflicients of /;, [; belong to this ring. Proposition@ gives a decomposition
Ajj = Bijgij, with g;; € 0’;” and with 8;; € Or,, with an effective upper bound
for the height of §;;. We first compute this upper bound.

The number A?j divides D(Fy) in Or,,. Using the identity Nz, (D(Fp)) =
Ng (D(Fy))%/?, we deduce from (T4.4.5)) and (T4.4.6), that

Nr,(Ai))' % < N7, (D(F))' > = Ng(D(Fp))"/*

1 1/2d
< (IDar "' NsDF)) . (14.4.10)

Similarly to (8:3.7) we have

hij, Rij. hijRi; < 2n)" | D" (log” [Dagr )™

= Cys, (14.4.11)

where by (8:3.7) and (8:3:8),
Cis < (W) | Dagr". (14.4.12)

Lastly, we have an inequality for absolute norms,
[Lij:K] it

Qi = H Np, B < ([_[NK(p)) < P, (14.4.13)

PeT;; peS

Applying now Proposition[3.6.3]to A;; (with L;j, T;; instead of K, §) and insert-
ing the estimates (T4.4.10), (T4.4.11), (14.4.13), (14:4.12), we infer completely
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similarly to (8:3.T0), that there are g;; € Oy, , €;; € O;ﬁ such that
Aij = Bij€ijs (14.4.14)
where

1
]’l(ﬁ,‘j) < d_ log NT‘.j(A,‘j) + 29e(n2d)"2d(t + 1)(10g* Ps)Cy5
ij

1 )
< 57 log Ns(D(F)) + (*d?" (1 + 1)(log" Ps)|Doyr|"
=: C16.

Now let i, j, k, h be any four distinct indices from {1, ..., n} and consider the
extension L;j, of K generated by the coefficients of I;, [;, I, l;. The degree of
Lijin 1s at most nad, where ny = n(n — 1)(n — 2)(n — 3). Denote by T, the set
of places of L;j lying above those in S, and by O;-,-k/, the group of Tjx;-units
in L;j,. The cardinality of T;j is at most nys, where s = |S|. Denote by I" the
multiplicative subgroup of L;f‘jkh generated by O*U_, 07, Or,» O*Tjh. Obviously,
I'c O’}M.

By inserting (14.4.14) into (T4.4.7) we obtain

(ﬁijﬁkh) £k (,3 jk,Bih) EjkEin
BiBjn BitBjn
where g; e,/ k€ ji, €jk€in/ €ix€ ji, are unknowns from I' and O;ijkh, respectively,
while the coeflicients B;;Bi./Bifjn> BjiBin/BixBjn have logarithmic heights not
exceeding 4C .

We first prove (T4:4:8). We apply Theorem f.1.3]to the equation (14.4.13).
To do so, we first choose a system of generators {£1,...,&,} for I'/Tis and
give a bound for

=1, (14.4.15)

Eik€ jh Eik€ jh

O :=h(&)) - h(Em).

We first apply Proposition IZ;I to the group O*W, where p,q are any two
indices from i, j, k, h. The cardinality ?,, of T, is at most nys. Similarly as
in the proof of Lemma [8.3.1] we obtain that there is a fundamental system
{m, R lem,—l} of Tp,-units in L, such that

tpg—1

[ ] 7 < n9)™Ry,,. (14.4.16)
=1

where Ry, denotes the T,,-regulator. Using the upper bound (3.4.8) for the

S -regulator, applied with T; instead of S, and (I4.4.TT)), we get as in (8.3.13)
that

nat

(14.4.17)

rq

Ry <Cis (n2 log" PS)
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We can now choose as set of generators for I' the union of the fundamental
systems of units for Or,,, Or,,, Or, and Or,,, respectively, considered above.

Then from (14.4.16) and (T4.4.17) we deduce

Y
0 < (Cls ((ns)z"”) (n2 log* Ps) 2’)
< (zn)4n2d(ns)8nzsn8n2t|DQ(F)|4(n—1) «
x(log" |DQ(F)|)4(nzd—1)(log* Py )4n2l
e (14.4.18)

We apply Theorem [4.1.3]to the equation (I4:4.13) with H, m, d, s replaced
by 4C ¢, 4(nys — 1), nad and nys, respectively. Then we obtain

Eij€kh
h( ) <Cig (14.4.19)
Eik€ jh

where

un

2 12n,5=7 PS
Cig := l716(2n4s) log(2n4s)(l6en4d) 2 — X C17C16 X
log™ Pg

x max (log (s> (16en4d)'>* P?), log C17)
whence by (14.4.15),
h(A; A/ AiAjp) < 4C16 + Cr3 < 2C13.

To estimate this quantity, we insert the expressions for Cjg,Cy7, use d < 2s,
t+ 1 < s for terms d, t occurring in the basis and %d +t < s for terms d, t in
the exponent. Further, using (log X)% < (B/2€)8X¢ for X, B, € > 0, we estimate
from above the occurring powers of log” |[Dg(r)| and log" P by

(log* PS )4nzt+l S (2n2S)4nzt+1PS ,

(log" D))" < (4nas)* 3| Doyr),

and lastly, insert D(F) € 60jg. Then after some simplifications we obtain

(14.43).

Next we prove (I4:4.9) by applying Theorem Let again i, j, k, h be
any four distinct indices from {1, ...,n} and L;j;, the extension of K generated
by the coefficients of [;, 1}, i, ;. Clearly, L;j, has degree < n4d, and we can
estimate the absolute value of the discriminant of L; jx;, from above first in terms
of n,|Dy,l,...,|Dy,| by means of (3.1.10) and then in terms of n, |Dgr)| using
(B:T:12). Together with (B-1.8)), this gives effective upper bounds in terms of
n,d, Dor) for the class number and regulator of L; . Further, above each finite
place in S there are at most n4 places of T, (Which is the set of places of L; j,
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above those in §) and the prime ideals corresponding to these places have
norm at most Pg'. Using (3-£3), this leads to an upper bound cn*" Wg* for
the T z;-regulator, where c is effectively computable and depends only on n, d
and Dqr). For the heights of §;;, etc. we use again the estimate (14.4.15). The
number of finite places ¢ in S can be estimated from above by d times the
number of prime numbers < Pg. Using the prime ideal theorem, we can thus
bound the factor (z + 1)(log" Ps) in Cj4 above by ¢’ Ps, where ¢’ is effectively
computable and depends only on d. We follow the above argument, but we now
view &;jem /€€, ete. in equation (T4.4.13) as elements of 0z, and apply
Theorem to this equation. Inserting the upper bounds mentioned above,
one can easily verify that (T44.9) follows. i

Proof of Theorem It is more convenient here to use the absolute height
instead of the absolute logarithmic height.

In view of Corollaries [13.4.3] [T3.4.5] we may restrict ourselves to the case
n > 4. We apply Theorem [T3.4.T| with

n

By:= [| M/, veT i=1,...,n
k=1,k#i

We first verify (I3.4.3). From assumption (14.4.4) it follows that for o= €
Gal(G/K),i=1,...,n, invoking (3:33),

n n
Byiyv = 1_[ |A0'(i),a'(k)|%//(n_2) = l_[ o (Aik)u//(n_b
k=1, ki k=1, ki
n
=[] 18l = Biyeo
k=1, k#i

which is (I3:4.3). Next, we have

e (nﬁBiV]l/[G:Q]

VeT i=1

=1_[ 1_[ |qu|%//(n—2)[G:Q]

VeT 1<p<qsn

= [TIDE 219 = NyD@E) . (14420)
VerT
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Further, for any V € T and any two distinct indices i, j € {1, ...,n} we have

|A | n n -1/(n-2)
ijlv

= Ay - | | A | | A
BiVBjV I l]|V [ | lle | jh|V]

k=1, k#i h=1,hj
AijAkh ‘ 1/(n=1)(n-2)
A Ajy

—1/(n-1)(n-2
I<k#h<n

where the product is taken over all pairs of indices (k,h) with 1 < k,h < n,
k#h k+1ij h+#i,j Itfollowsthatfor VeT,

1
A <Akh (n=D(n-2)
1 Y
ID(Fo)ly, ili_k[h max (1’ ’AikAjh 'V)] ’

|Aijly
max
I<i<j<n BiVBjV

<

where the product is over all quadruples of indices i, j, k,h € {1,...,n} such
that i, j, k, h are distinct and i < j. By taking the product over V € T, and
applying Lemma(14.4.1{and (14.4.6),

1

(n=1)(n-2)

R< (Ns OEN T ] H(A,-,-Akh/A,-kAjh)]
i,jk,h

1 n
< C1oNs (D(Fg))™M4=D0=2) with €19 = exp {cfg-‘""-2> (4)},

where Ci, denotes the upper bound occurring in (I4:48). Let C3(n) denote
the number defined in Section It is easy to check that C3(n) < Ci».
Putting Cyy = (C3(n)C1'9)(n_l)/(n_ , Theorem |13.4.1| and (14.4.6) imply that
F is GL(2, Og)-equivalent to a binary form F* such that

H(F*) < (C3 (n)Ng (a)Z/szR,,)(n— 1)/(n-2)

n (n=1)/d(n-2)
< Cao (N5 (@)*Ns (D(Fg)) 7 7))

i (n—1)/d(n-2)
< Cao (Ns(@)*Ns(D(Fo))'/™™")

< CyNs (D(F))!40=2),

Finally, using D(F) € 605, we get

% 7, n— n 1
H(F") < exp {n3C13P54+1|DQ(F)|4 3 (lDQ(F)| + — log Ng (5))},

2d
whence (14:2.3) follows.
Suppose now that r > 0. Following the above proof and using (T4:4.9) as
well as C3(n) < exp {CQI(PS Ws )”4}, where C5; is an effectively computable
number depending only on d, n and Do) we get (14.2.4). i
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We now prove Theorem [I4.2.2] For n = 2 and 3, Theorem [14.2.2] follows
at once from Corollaries [13.4.3] and [13.4.4] with better bounds. For n > 4,
Theorem [14.2.2] will be deduced from Theorem For this purpose, we
need Lemmal[8.3.2] and two other lemmas.

Let again F € K[X, Y] be a binary form of degree n > 2 of discriminant
D(F) # 0. Recall that the primitive discriminant of F has been defined by

(D(F))s
(P32

b (F) = (14.4.21)

Lemma 14.4.2 We have
dg(F) C do/xOs, where Q = Q(F).

Proof The ideal dg(F) is equal to the ideal of Og generated by the numbers
a*2D(F) = D(aF) with & € (F);". For each of these numbers e, the binary
form aF has its coefficients in Og. Writing aF =: F’, we see that it suffices to
prove the following: let F’ € Og[X, Y] be a binary form of degree n and Q the
finite étale K-algebra associated with it. Then

D(F’) € dgxOs. (14.4.22)

To prove this, write F' = aoX" + a X"'Y + --- + a,Y". After a suitable
GL(2, Oy )-transformation which up to multiplication with an §-unit does not
affect D(F’), we may assume that ay # 0. Then Q = K[X]/(f) where f =
F’(X, 1). Let 0 be the element of Q corresponding to X (mod f) and define the
elements

w; = agl +a, 07" + ceeai10 i=1,...,n—1).
By Corollary [1.5.2) we have D(F’) = D(f) = Do/k(1, w1, ..., w,-1). We show
by induction on i that wy, ..., w,_| are integral over Oy . This suffices, since it
implies that
Dq/x(1, w1, ..., ws_1) € Doy 4705 = Dok Os.
First note that w; = apf is a zero of ag’l f(X/ap) which is monic and is in
Os[X]. Hence w; is integral over Og. Next, let 1 <i < n — 2 and observe that

n—i—1

n—i X An—i—=1-j o _
Wi+ Z (w; + a;) an-jw;,; = 0.
J=0

Hence w4 is integral over Og[w;] and so by induction, integral over Ogs. This
completes the induction step and the proof of our lemma. m

We need the following extension of Lemma [8:33] to binary forms F €
Os[X,Y]. Let K, S be as in Theorems [T4.2.1] and [I4.2.2] and define in the
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usual manner Qg := Ng(p;---Pp;), where py,...,p; denote the prime ideals
corresponding to the finite places in S, with Qg := 1ifr = 0. Let F € Os[X, Y]
be a binary form of degree n > 2 with non-zero discriminant D(F’), and let
Q(F) be the étale algebra associated with it, as given by (I4.2.1)), with discrim-
inant DQ(F).

Lemma 14.4.3 Under the above notation and assumptions, we have
Do)l < (n"1Dk|Qs)" Ns(D(F)). (14.4.23)

Proof Let F € Og[X,Y] be a binary form of degree n > 2 and non-zero
discriminant D(F). By Lemma[[4.4.2]

(D(F))s = (F)3" *ds(F) C ds(F) C dg/xOs

hence Ngs(dq/xOs) < Ns(D(F)). Together with Lemma [8.3.2] this implies

@323, o

Proof of Theorem[I4.2.2] By assumption D(F) € 605, hence Ns(D(F)) =
Ng(6). If now n = 2 or n = 3, Theorem [14.2.2] immediately follows from

Corollaries [13.4.3] and [T3:44] by using (3.1.8) and observing that d < 2s and
r<s.

For n > 4, Theorem[I4.2.T]and Lemma[T4.4.3] give Theorem[14.2.7] O

We shall deduce Corollary [T4.2.3] from Theorem [14.2.2] by means of the
following lemma. For the remainder of this section we assume that K and S
are effectively given in the sense described in Section [I4.2} see also Section
[.7} We recall that a binary form F € K[X, Y] is said to be effectively given if
its degree and its coefficients are effectively given. Further, the height H(A) of
a matrix A with algebraic entries is the maximum of the heights of the entries
of A.

Lemma 14.4.4 Let F, F* € Og[X, Y] be GL(2, Os )-equivalent binary forms
of degree n > 2 with non-zero discriminants. Then there are ¢ € Oy and
U € GL(2, Oy) such that

F*=8FU9 H(U)SCZZ,

where Cy, is an effectively computable number depending only on K, S, n and
the coefficients of F and F*.

Proof In the proof below, we use several of the algorithms referred to in
Section[3.7] without explicitly mentioning them. We can compute the splitting
field G of F over K by choosing m € Z with F(1,m) # 0, computing the
zeros of F(X,mX + 1), and adjoining them to K. This is then also the splitting
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field of F*. Denote the set of places of G lying above those in S by 7. We
can compute the prime ideals corresponding to the finite places in 7 in terms
of the prime ideals corresponding to the finite places in S. Below, Cy3 and
subsequent constants will be effectively computable numbers depending on K,
S, n, the coeflicients of F' and F*, G and 7. But as mentioned above, we can
express the dependence on G and T in terms of the other parameters.

We choose factorizations of F' and F* of the following shape:

F=a H(aix +BY), F'=b l:[(y[X +6Y) (14.4.24)
1= i=

with a,b € K7,
(@,8)=0,Dora; =1 fori=1,...,n,
(yi,0))=(0,1) ory; =1 fori=1,...,n.
Then

a[7ﬁiayi,6[ GG, }

H(a), H(b), H()), H(B:), H(y;), H(©;) < Cy3 (14.4.25)

fori =1,...,n.Since F, F* are GL(2, Os)-equivalent there exist Uy € GL(2, Oy),
no € O, A1,...,4, € G* such that after permuting (y1,01),...,(Yu,0n), We
have

(’)/,',6,‘) = /li(a'i,ﬂ,‘)U() fori = 1, ..., n, b= T]()a/l] . '/ln. (14426)

In the remainder of the proof, we make a distinction between the cases n = 2
and n > 3. We denote fractional ideals with respect to Or by (-)r.
First let n = 2. Then either G = Kor [G : K] = 2. If [G : K] = 2 let o be
the non-trivial K-automorphism of G. Then
(@2,2,72,62) = (0(a1), 0 (B1), o (y1), 0 (61))
and hence 1, = o(4,). Note that

_ (pr—@Br
“= (a1, BD)r(a2,82)r < Or.

Put
N :=|(Or/a)].
Then
N =1(0g/0¢ N )| < Cya. (14.4.27)
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We claim that if &1, &2 € OF are such that &; = o(g1) if [G : K] = 2, then there
is U € GL(2, Oy) such that

(vi,0;) = /l,-sgv(a,-,,B,-)U fori=1,2. (14.4.28)
To prove this, it suffices to show that there exists V € GL(2, Og) with
eN(ai,Bi) = (@i, BV fori=1,2. (14.4.29)

Indeed, (14:429) and (14.4:26) imply (I4.4.28) with U = V~'U,. We prove
(T4:429). There is a unique matrix V € GL(2, G) with (14:4.29). If [G : K] =
2, then s?’ (a;,8:) = (a;,B)o(V) for i = 1,2, where o(V) is obtained by ap-
plying o to the entries of V. Hence (V) = V and so V € GL(2, K). Next,
detV = (1) € 0} N K = Oy. Finally,

el — & ( P P12 )

(5 3k
0 & a1y —aff \ —ia2 aofy

By the Euler-Fermat-Lagrange theorem for number fields, slN = 1(mod a) for
i =1,2. It follows that
& - & (182 — @B)r (@2B)r

. Or,
12 — a5y api € (a1, (a2, B)r (12 — a2f)r < or

hence the left upper entry of V belongs to Or N K = Oy. In a similar way it
follows that the other entries of V lie in Og. Hence V € GL(2, Og).

So ([14:4:28) holds for some U € GL(2, Os). Notice that by (14.4.26) we
have F* = nFy, with n = no(e16:)™". We choose appropriate &, & and esti-
mate H(U). By Proposition@ there exist &, &, € O;. with

H(eM ) < COMp(a)™E9 for i = 1,2, (14.4.30)

where

My =max| [ max(, 1), [] max(l, 1.

VeM\T VEM\T
Note that for V. € My \ T we have max(|a;lv, |8ilv) = max(la;ly, |6;lv) where
(@}, B)) = (a;,B:)Uo, since Uy € GL(2, Or). Hence

ilv, 16; .
Wy = maxbivloidv) e e m T
max(la;ly, |Bilv)
Noting that one of «;, 3; and one of ;, §; are equal to 1, it follows that
Mr(4) < l_[ max (|C¥i|v, Bilv, lyilv, |5i|v) < Cy fori=1,2.

VeM\T
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Together with (T4.4.30), (T4.4.27), this implies
H(eN ;) < Cyy fori=1,2.
Hence by (14:428), (I4.4.23) we get H(U) < C». This proves Lemma[14.4.4]

forn =2.

Next assume that n > 3. From elementary projective geometry it follows
that the matrix U, given by (I4.4.26) is uniquely determined up to a scalar.
Write

Uy = AV (14.4.31)

where 1 € K* and V = (,)! 112 ) € GL(2, K) such that the first non-zero element
of vi1, V12,21, V22 is 1. Then V is uniquely determined and can be computed

from (14:4.26)), and so we have
H(V) < Cos. (14.4.32)
We know that A% det V € Oj. Hence
], = |det V|;'? forv e Mg\ S.
By Proposition@ there exists 171 € Oy with
H(mA) < CooMs ()M
where by the product formula,

MS(/I):max( [] maxciian, ] max(1,|/1|;1)]

veMg\S vEMi\S

:max( ]—[ max(1, | det V|!/2), ]—[ max(1,|detV|;1/2)]

veEMg\S vEMg\S
< H(det V) < C51.

Together with (14:4.32)) this implies H(17;1) < C30. Now let
U:=mUy=maV, n:=non"

Then U € GL(2,Os), F* = nFy, and H(U) < Cy; by (14:432). This proves

Lemma[14.4.4]for n > 3. O

Proof of Corollary[I4.2.3] The finiteness assertion of Corollary [14.2.3] fol-
lows at once from Theorem [14.2.2] using Theorem [3.5.2 and (3:5.4). To de-
termine effectively a set consisting of one binary form from each GL(2, Oy )-
equivalence class, we shall use some of the number-theoretic algorithms col-
lected in Section[3.7]
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Suppose that n > 2, K, S and 6 € K* are effectively given. Then we can
check whether 6 € Og \ {0}. Let F € Og[X, Y] be a binary form of degree n > 2
with D(F) € §0%. Then by Theorem F is GL(2, Og)-equivalent to a
binary form F* with H(F*) < C where C is the upper bound from (14.2.3).
By (3.5.4), the absolute heights of the coefficients of F* are bounded above
by H(F*), hence by C. Now we can effectively determine a finite set of bi-
nary forms of degree n which contains all binary forms F* € K[X, Y] of de-
gree n whose coefficients have absolute heights < C. Further, we can select
from this set those binary forms with coefficients in Og and discriminant in
005. Thus we get a finite set of binary forms F* € Os[X, Y] of degree n with
D(F*) € 60 which contains at least (but possibly more than) one form from
each GL(2, Os)-equivalence class. To obtain a finite set of binary forms with
precisely one binary form from each class it remains to check for any two bi-
nary forms in our set whether they are GL(2, Og)-equivalent and if so, remove
one of these forms from our set.

To decide whether any two given binary forms F, F’ are GL(2, Os)-equivalent
we proceed as follows. We can compute the constant C, from Lemma
and then determine effectively, using again some algorithms from Section[3.7}
a finite set of matrices in GL(2, Og) which contains all matrices U € GL(2, Oy)
with H(U) < Cy,. Then F, F’ are GL(2, Og)-equivalent if and only if for one
of these matrices U there is &£ € Og such that I’ = &Fy, which can be easily
checked. This completes our proof. O

14.5 Proofs of the results from Section

We keep the notation of Section [I4.3] In particular, K is an algebraic number
field, S a finite set of places of K which consists of all infinite places and
t > 0 finite places. Suppose these finite places correspond to the prime ideals
Plr...,p, of Og. Let § € Og \ {0}). Putd := [K : Q], s := |S|, and Ps =
Ws = Qg = lifr = 0 and Py := max<is Ng(0:), Qs = [1iz; Nx(p)),
Wy = n;zl lOg Ng(p;)if t > 0.

We make some preparations for the proof of Corollary [I4.3.1] For a binary
form F € K[X, Y] of degree n > 2 and discriminant D(F) # 0, we denote by
(F)s the fractional Og-ideal generated by the coefficients of a binary form F
and by
_ (D(F))s

() =

the S-discriminant of F. This is an ideal of Og. We first show our claim from
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Section that if F/ = AFy for some binary forms F, F’ € K[X,Y] of
degree n > 2, 1 € K*, U € GL(2, Os), then ds(F’) = b5 (F). Indeed, D(F’) =
A22(det U)"*~DD(F), whence (D(F'))s = ()3 2(D(F))s. Further, (F')s =
(Vs (Fy)s and (Fy)s = (F)s, which proves our claim.

To prove Corollary we need the following.

Lemma 14.5.1 Let F(X,Y) € K[X, Y] be a square-free binary form of degree
n > 2. Then

Ng(dg(F)) < n*r2H(F)@r=24, (14.5.1)

Proof LetF = apX" + X" 'Y +---+a,Y" and put |F]|, := maxo<;<, |a;|, for
v € Mg. By (34.3), (3.4.1), we have
Ns (05 (F)) = Ns(F)™"**Ns (D(F)) (14.5.2)

=[ [T [Ip#)l,.
vesS ves

Further, from the determinantal expression (1.4.5) and Hadamard’s inequality
for determinants we infer for the infinite places v,

|D(F)|v < (12 +oeet n2)ns(v)/2|F|‘2)n—2 < n3ndr/2|F|§n—2

where s(v) = 1 if vis real and s(v) = 2 if v is complex. Further, if v is finite we
deduce |D(F)|, < |F|?"~? from the ultrametric inequality. Combining these two
inequalities with Y}, s(v) = d and (I4.5.2)) we obtain
NS (bs (F)) S n3nd/2 1_[ |F|€n—2 S }’l3nd/2H(F)(2n_2)d.
veMg

]

Proof of Corollary[I4.3.1] Let F € K[X, Y] be a binary form of degree n > 2
with minimal S -discriminant. Recall that

b5 (F) = ' -+ a4y Os

for certain prime ideals qy,.. ., q, corresponding to places outside S. Further,
Cs(F) = Ng(qr---q,). Let S consist of the infinite places and of the finite
places corresponding to the prime ideals py, ..., p, of Ok, and let T consist of
S and the finite places corresponding to qp, ..., q,. Finally, put

Pr = maxNx(v), Wr = [ [dog' Ne(w). Or:=[ | Ne(w.
peT pel

By Corollary [13.3.3| F is proportional to a binary form F’ € Or[X,Y] with
Nr((F")r) < |Dg|"?, where Dy denotes the discriminant of K. We may assume
without loss of generality that F itself has already these properties, that is that
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F € O7[X, Y], Nr((F)r) < |Dg|'?, while dg(F) remains unchanged. Note that
b7 (F) = (1)7, hence

Nr(D(F)) = Nr((F)r)*" 2 < |DgI"™".

We first prove (14:3:3). C3; and the subsequent constants in this proof denote
effectively computable positive numbers depending only on K, S and n. By
Theorem[T4.2.1] F is GL(2, Or)-equivalent to a binary form F* € Or[X, Y] for
which

log*log" H(F*) < C31((w + 1) log"(w + 1) + log" Pr + log” Or). (14.5.3)

We can estimate all terms in the right-hand side from above in terms of Cy (F')
by means of the obvious estimate

log" Pr <log" Or < C3;log"(Cs(F))
and the elementary inequality
w < C33log" (Cs(F))/log" log"(Cs (F)).
In this manner we obtain
log*log" H(F™) < C34log*(Cs (F)). (14.5.4)
Together with Lemma this implies
log™ log" Ny (ds (F*)) < Css5log"(Cs (F)). (14.5.5)

We have Ng(ds(F)) < Ng(dbs(F™)), since F has minimal §-discriminant. By
combining this inequality with (T4.3.3)), we get (14323).

Next we prove (T4.3:4). Suppose that w > 0. Write P := max;<;<,, N@;; then
P < Pr < Cs¢P. Together with the trivial inequality Wy < (log Pr)™**, the
second part of Theorem[T4.2.1)implies that

log" log" H(F*) < C37(log P + wlog™ log™ P).

We distinguish between the cases that w < log* P/log" log* P and that w >
log* P/ log* log™ P. Notice that there are at least w prime ideals of Og of norm
< P hence at least w/d prime numbers below P. So by e.g., [Rosser and

Schoenfeld (1962), Cor. 1], w < dn(P) < 4dP/31log" P. This leads to

Ciglog™ P if w < log® P/log" log" P,

% 5 <
log™log" H(F) < { CsoPlog"log* P/log* P otherwise.

Now (14:34) follows in the same way as (14:323). mi
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Proof of Corollary[I4.3.3] Let F € Og[X, Y] be a binary form of degree n > 2
with discriminant D(F) # 0. By Theorem @ there are & € Of, a matrix
U € GL(2, Os) and a binary form F* € Og[X, Y] for which Fy = eF*, H(F*) <
Cso, where Cyj is the right-hand side of (I4.2.3)). By Proposition [3.6.3]and by
(3:18), there are &1, &, € O such that

€ =g1&5, H(g)) < Cy,

where H(g) denotes the absolute height of g;. Putting F’ = & F*, we have
FE;U = F',D(F’) # 0 and H(F') < CZO. There is a rational integer a with
0 < a < nfor which F’(1,a) # 0. Let

(x0,y0)" =&'U1,a).
Then x, yo € Os and
F(xo,y0) = Feory(1,a) = F'(1,a) #0.
Hence
u(F) < H(F(xo,y0)) = H(F'(1,a)) < C3,
which implies our Corollary. O

Proof of Corollary We deduce Corollary [T4.34]from Theorem[T14.2.2}
Some arguments will be used from the proof of Theorem [8:4.1]

Let 6 be such that Q = K[f] and dbg(f) = d,and let x —» x® (i = 1,...,n)
denote the K-homomorphisms from Q to K. Then defining the binary form
FX,Y)= (X -60Y)---(X - 9™Y), F(X, 1) is the monic minimal polynomial
of § over K and Q = K[X]/(F(X, 1)). Further, dg(8) = dg(F). By Corollary
[[3:33] there is a A € K* such that F’ := AF € Og[X,Y], d5(F’) = b and
Ns((F')s) < |Dg|"2. But dg (F") = (D(F"))s /(F")"~%, hence it follows that

Ns(D(F")) < Ns(®)|Dgl"™". (14.5.6)

We apply now Theorem [14.2.2] to the binary form F’. Using (14.3.6), it
follows that F” is GL(2, Oy )-equivalent to a binary form F”’ such that

H(F") < Cay = exp {CPe (Q4 D™ N5 (0))}.

Choose a € Z with0 < a <nand F”(1,a) = 0 and take F’”’ with F""(X,Y) :=
F”’(X,aX + Y). Then F"’ is GL(2, Og)-equivalent to F’, F’(1,0) # 0 and
H(F") < Cfu. The polynomial F’”(X, 1) has a zero, say 6%, which is GL(2, Oy )-
equivalent to 6. Put gy := F’”’(1,0) and

Fo(X,Y) =g, F"(X,Y).

Then 6% is a zero of Fy-(X, 1) which is the monic minimal polynomial of 6*
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over K. Further, H(Gy-) < C}, and, by Corollary 3.5.5 H(6*) < 2H(Fy))" <

2”le. This implies Corollary|14.3.4 O

14.6 Bounding the degree of binary forms of given
discriminant over Z

We prove Theorem Let F be a binary form of degree n > 2 and dis-
criminant D(F) # 0 with coeflicients in Z. First consider the case when F is
irreducible over Q. Then F(1,0) # 0. Let a denote a zero of F(X, 1) in C, and
denote by Dy the discriminant of the number field K = Q(«). Then, by Lemma
Dy divides D(F) in Z, whence

ID(F)| = |Dkl. (14.6.1)

n s a\2
Further, in view of Minkowski’s inequality |Dg| > (g) (;’—, and Stirling’s
inequality n!e"/n" < e +/n, we get as in the proof of Theorem that

log |Dk]| S log 3
n -2
Together with (14.6.1) this implies (T4.1.2). Further, in (14.6.2) equality holds
onlyifn =2, Dg = -3.
Consider now the case when F is reducible over Q, and let

(14.6.2)

FX,Y)=Fi(X,Y) - F(X,Y)

be the factorization of F into irreducible factors with coefficients in Z. In
general, the resultant R(F’, F”’) of two binary forms F’ = [],(«:X — B;Y),
F"’ = ]—[Tzl(ij —6;Y) is given by

R(F',F") := H ]ﬂ[(ﬁm - @;0;).
i=1 j=1

We have for R(F’, F”’) a determinantal expression like (I.4.I)), hence it is a
polynomial with integer coefficients in the coefficients of F’ and F”. It easily
follows that

D) =[|ptFy [ R F?, (14.63)
i=1 1<i<j<r

where we have set D(F;) := 1 if F; is linear. Below, we distinguish the cases
that none of the F; is linear, all F; are linear, and some, but not all F; are linear.
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First assume that deg F; > 2 fori = 1,...,r. Then by (14.6.2),

log 3
log|D(F))| > —2

Using (14.6.3), we infer that

degF; fori=1,...,r

logID(F)] = )" log ID(Fy)| + ) log R(F;, F)*
i=1

i>j
log3 < _log3
> —= ;deg Fi=—>n, (14.6.4)

which proves (T4.1.2) with a strict inequality.

For later purposes we observe here that in (I4.6.4) equality holds if and
only if D(F;) = =3, deg F; = 2 and R(F;, F';) = +1 for each distinct 7 and j.
Assuming this to be the case, let

FiX,Y)=aX* + b XY + Y2 = (X — a1 Y)(X — a2Y)

14.6.
Fy(X,Y) = axX? + byXY + Y% = ap(X = B1Y)(X = BoY), (14.6.5)

where aja, # 0 and
R(F\, Fy) = ajay(a) — i) (@ — B — Ba)(ay — By) = +1.

It follows that a, a3,81,8; € Q(V-3). Further, aja;(a; — B1)(az — B2) and
aiax(ay — Br)(ap — By) are at the same time rationals and algebraic integers.
Consequently, we get

arax(a) — Bz — B2) = =1, ajax(ay — B2)(az — B1) = 1. (14.6.6)

From D(F;) = -3 and (14.:6.3) we infer a;, = (=by £ V-3)/2a;, 12 =
(=by £ V=3)/2ay. Substituting these values into (14.6.6), we deduce that
(a1by — azb1)* + 3(az — 1) = +4aray,
(a1by — a2b1)2 + 3(ay + 611)2 = +daa;.
This yields aja; = 0 which is a contradiction. This shows that in (14.6.4)
equality holds only if r = 1, deg F; = 2 and D(F;) = -3.

Next assume that all F; are linear. We may assume that n > 3. Then we can
write

FX,Y) = (@1 X = b1Y) - (anX — b,Y) with a;, b; € Z (14.6.7)

and

D(F) = ]_[ D,

1<i<j<n
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where D,‘j = aibj - ajb,». Let
D)2 = pit--- pl

be the prime factorization of |D(F )'/2, and let t := k; + - - - + k,. Then we have

1 1
t< —— (ki1 -+ kylog py) =
< 10g2( 1log pi + -+ + kylog py) 3Tog2

log |D(F)|. (14.6.8)

We distinguish two cases. If D;; # +1 for each distinct i and j, then

e

2
n <1+ ——=1log|D(F)|.
log3

Together with (T4.6.8) this gives

Assume now that there are i and j such that D;; = +1. Let ./ be a maximal
set of the pairs [a;, b;], 1 < i < n, such that D;; = +1 for each pair [a;, b;] and
[aj, b;] from 7. Considering these pairs (mod 2), we infer that the cardinality
|| of of satisfies

|| < 3. (14.6.9)

If n > |2/|, then for each pair [a;, b;] outside o/ there is a pair [a;, b;] in o7
such that D;; # +1. This implies that n — |.%/| < ¢, whence

n<|d|+t.

Now (14.6.8) and (14.6.9) imply (14.1.2) with strict inequality. For n < |&/|
we have n = 3. Then (T4.1.2) immediately follows, and equality can hold only
if |D(F)| = 1. In this case we deduce a;aras # 0 and

aibj—ajb;=+1 foreachl1 <i< j<3.
This implies that as = a; + ay, b3 = by + by, whence a; + a, # 0 and
FX,Y) = (@X —bi1Y)axX - byY)[(a1 + a)X — (b1 + ba)Y)],

which implies that F' is GL(2, Z)-equivalent to XY (X + Y).
Finally, assume that some but not all F; are linear. Then

FX,Y)=F'(X,))F"(X,Y) (14.6.10)

where F’ is the product of the non-linear F; and F” the product of the linear
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F;. Then it follows that

2 2 2
——|D(F)|+3 = ——1log|D(F)| +|——=log|D(F')| + 3|+
log3| (F)] Jog 3 og |D(F")| (10g3 og |[D(F")|

+ log |R(F',F")| > deg F' + deg F”’ = n,

log 3
which proves (I4.1.2). Further, this shows that in (I4.1.2)) equality holds if and
only if deg F’ =2, D(F’) = =3, |R(F’,F"")| = 1 and deg F”" = 3, D(F"") = 1,
where F” is GL(2, Z)-equivalent to XY (X + Y). But then, by replacing F' by a
GL(2, Z)-equivalent form we may assume that F” = XY(X + Y). Write

F' = aX® + bXY + cY>.

Then from D(F’) = =3, |R(F’, F”")| = 1 we infer b*> —4ac = -3, aca—b+c¢) =
+1, implying (a, b,c) = =(1, 1, 1).

Thus, we have proved that (T4.1.2) holds, and that equality occurs if and
only if F is GL(2,Z)-equivalent to XY (X +Y) or XY(X + Y)(X*+ XY +Y?). O

14.7 A consequence for monic polynomials

From our effective theorems on binary forms we can deduce weaker versions
of some of the effective theorems on monic polynomials stated in Chapters [6]
and |8} We explain the idea, without going into detailed computations.

As before, K is an algebraic number field, S a finite set of places of K
containing all infinite places, and ¢ € Oy \ {0}.

Corollary 14.7.1 Let f € Og[X] be a monic polynomial of degree n > 2
and of discriminant D(f) € 005. Then there exists € € O, a € Og such that
=& f(eX + a) is a monic polynomial in Os[X] with

H(f") < Cy,

where Cyy is an effectively computable number depending only on n, S, Ng(6)
and Dg.

Proof We apply Theoremto the binary form F := Y"*! f(X/Y). From
the fact that f is monic, it follows that D(F) = D(f) € 605.

According to Theorem there exist &1 € Oy and U = (@)} an) €
GL(2, Oy) such that for the binary form F* := & Fy we have

H(F*) < Cs3 (14.7.1)
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where C43 and subsequent constants introduced below are effectively com-
putable and depend on n, S, Dg and Ng(6) only. Since F is divisible by Y we
have F* = [-F| where [ = a3 X +a»,Y and F| is a binary form with coefficients

in Og. By Corollary[3.5.4] we have
1/d
H" () = ( | | max(aal, lanl)) < Cas.
veMg

Since ajjay — apaz = detU € O, we have max(|lay |y, laxnl,) = 1 forv ¢ §.

Hence
1/d

H™ (1) = ( ﬂ max(lazi |y, Iazzlv))

ves

By Lemma there exists gy € O such that

1/d
H(gol) = ( 1_[ max(l, lgoazily, |80a22|v)) < Cys.
veMg
Now the identity F* = g, Fy remains valid if we replace U by g U and &; by
85”’181. Thus, without loss of generality, we may assume €y = 1 and
1/d
H(D = (] | max( lasih, lanl)) * < Cas. (14.7.2)

veMg

Since det U € O, the equation ajpx + aypy = 1 is solvable in x,y € Os. By
Lemmamthere exist a},,d), € Os such that a},ax — a},ax = 1 and

’ ’ ’ ’ l/d
H(ayy,ayy) = ( n max(1, |ajly, |‘112|v)) < Cye. (14.7.3)

veEMy
. an 7”12 .
Now let U’ := (_a21 a ) and define the binary form
F2 = F*U’ = glFUU’- (1474)
Since UU’ = (7 ) with
& = anay —ayap € 0, a:=ajan —ana), € Os,

we have

Fy(X,Y) =g F(e:X +al,Y) = g, V" f(&2X/Y) + a)
= (e16D)&," Y™ f(e2X]Y) + ).

Thus, the polynomial f*(X) := &" f(e2X + a) satisfies

Y™UX)Y) = (8163)  Fa(X, Y) = &5 Fa(X, 1)
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with 3 := g1&}. From (14.7.2)—(14.7.4) it follows that
H(F3) < Cyy.
Further, &3 is a coeflicient of F», hence H(e3) < H(F>). Consequently,

H(f") = H(&5' F2) < Ca. o

14.8 Relation between binary forms of given discriminant
and unit equations in two unknowns

We have seen that the problem of determining a full system of representatives
for the equivalence classes of binary forms of given discriminant can be re-
duced to solving unit equations in two unknowns. We shall show that there is
also a reduction in the other direction. To be more precise, let K be an algebraic
number field and S a finite set of places on K containing the infinite places.
Theorems and[14.2.2) were proved by means of Theorem concern-
ing unit equations. We now show that Theorem with n > 4 implies that
every solution of the S -unit equation

x+y=1inxye 05 (14.8.1)

satisfies max(H(x), H(y)) < Cy4s. Here C4g and Cyq9, Cso below are effectively
computable numbers depending only on K and S'.

We use some properties of cross ratios. Let F' be a binary quartic form in
KI[X, Y]. Then F factorizes as F = ]—[?:1 l;, where [;,...,l; are linear forms
with coeflicients in a finite extension of K. Then the cross ratio of F is defined
by
. det(ly, L) det(l3, I4)

" det(ly, ly) det(lr, 1)

We note that cr(F) is independent of the choice of /i, ..., l4. Further, for each
constant @ and each non-singular 2 X 2 matrix U one has cr(aFy) = cr(F).
Each linear form /; can be chosen either as Y or as X — ;Y where 6; is a zero of
F(X, 1). Thus, cr(F) becomes a rational function in the 6;, and using Lemma
and Corollary we can effectively estimate H(cr(F)) from above in
terms of H(F).

To each solution (x, y) of (T4.8.1)) we associate the binary form

cr(F)

FX,Y)=XY(X + Y)(xX —yY)
which has discriminant

D(F) = (xy(x + y))* € 0.
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By Theorem[@tbere are £ € Og, F* € Og[X, Y] and U € GL(2, Oy) such
that

F =&F},, H(F") < Cp.

Hence
H(cr(F)) = H(cr(F*)) < Csp.

But cr(F) = —x/y, so H(x/y) < Csy. Together with (T4.8.1) this proves our
claim that max(H(x), H(y)) < Cys.

14.9 Decomposable forms of given semi-discriminant

Some results presented above on binary forms were extended in [Evertse and
Gydry (1992a, 1992b)] and [Gydry (1994)] to decomposable forms. We briefly
summarize these extensions without proof.

Let K be an algebraic number field of degree d, S a finite set of places of
K containing all infinite places, s the cardinality of S, Ps the maximum of
the norms of the prime ideals corresponding to the finite places in S, and Og
the ring of S-integers in K. Let F € K[Xi,...,X,,] be a decomposable form
in m > 2 variables with splitting field G over K. This means that F' can be
factorized as

k K

F=Al -1, (14.9.1)
where [y, ...,/ are pairwise non-proportional linear forms in G[X{,..., Xy],
ki,...,k, are positive integers ans 4 € K*. Put rank(F) := rankg {/1,...,[},

and assume that rank(F) = m. Denote by I(F) the collection of G-linearly
independent subsets {/;,...,1; } of {{1,...,[;}, and by det(/;,,...,I; ) the coef-
ficient determinant of {/;,,...,I; }. Further, let T be the set of places of G lying
above the places in S, Or the ring of T-integers in G, (a) the Or-ideal gener-
ated by a, and (/;) the O7-ideal generated by the coefficient of [; fori = 1,...,¢.

It was proved in [Evertse and Gyory (1992a)] that there is an ideal dg (F)) of Og

such that
(det(l;,.....1;,)) }2
s (F)Or = {—’" )
S l(_F[) U= (i,)
where the product is taken over all sets {/;,...,[; } in I(F). We call ds(F)

the primitive S -semi-discriminant of F. Further, it was shown that dbg(F) is
independent of the choice of A, [y,...,I, and if F, F* € K[X\,...,X,] are
GL(m, Og)-equivalent in the sense that F* = &Fy for some & € O and
U € GL(m, Os) then dg(F*) = d5(F). The Og-ideal (F)s generated by the
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coefficients of F is called the S-content of F. It is easy to see that it is also
independent of the choice of A, [i,...,[; and is invariant under the action of
elements of GL(m, Og).

We note that if m = 2 and F is a squarefree binary form, then dg (F) is just
the primitive S -discriminant of F, defined by (I4.3.1).

We could have defined the ideal dg (F) so that I(F) consists of all (not nec-
essarily G-linearly independent) subsets {/; ,...,/; } of {l1,...,1}. However,
such a definition would have been too restrictive, for instance for discriminant
forms and index forms F, the ideal dg (F') would have been (0).

For K = Q, Os = Z and for norm forms over Z, a similar concept of semi-
discriminant was introduced earlier; see [Schmidt (1991)].

We give a geometric interpretation of the prime ideals dividing the semi-
discriminant. For the moment, let M be any field and let F be a non-zero de-
composable form in M[Xy,...,X,,]. Wecanwrite F = [, ---1,, where [y, ... [,
are linear forms with coefficients in the algebraic closure M of M. We denote
by N(F) the number of subsets {ij,...,is} of {1,...,n} such that {l;,...,[; } is
linearly independent over M. Clearly, N(F) does not depend on the choice of
li,...,1l,,and N(AF) = N(F) for every 1 € M*.

Now let F € Og[X,...,X,,] be a decomposable form of rank m. Then the
prime ideals in the factorization of dg(F') can be characterized as follows. Let
p by any prime ideal of Og. Choose 4, € K* such that A, F is p-primitive, i.e.,
the coefficients of A,F generate the unit ideal in the local ring A, = {x € K :
ord,(x) > 0}, and let A,F be the decomposable form obtained by taking the
residue classes mod p of the coefficients of A,F. Then

N(,F) < N(F),

N@F) < N(F) <= v 2 b5(F) (149-2)

(see [Evertse and Gy6ry (1992a), p.15, Lemma 1]).

For instance, let F € Ogs[X, Y] be a separable binary form, that is, F' =
ly---1,,where li,...,1, are pairwise non-proportional linear forms in X, ¥ with
coeflicients in K. Then N(F) = (;) + n, and p 2 dg(F) if and only if N(/lp_F) <
(’;) +n,ie., if/lp_F is not separable.

We are now ready to state our results. Denote by Dg and Dg the discrimi-
nants of K and G, respectively. Let b be a non-zero ideal of O and ¢ a non-zero

fractional ideal of Og. The following theorem is a special case of Corollary 4
of [Evertse and Gy6ry (1992a)].

Theorem 14.9.1 Let F € Og[X,...,X,,] be a decomposable form such that
rank(F) = m, deg(F) = n, F has splitting field G, ds(F) = d and (F)s =
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Then F is GL(m, Os)-equivalent to a decomposable form F* with
H(F") < Cs5;Ns(c)Ns ()% and H(F*) < Cs3Ns (0,

where Csy, Csp, Cs3 are effectively computable numbers such that Csy, Csp
depend only on d, |Dgl, s, Ps, m and n, and Cs3 only on d, |Dgl|, s, Ps, m, n
and Ng (D).

We present two consequences from [Evertse and Gy6ry (1992a)].

GL(m, Og)-equivalence classes of decomposable forms F € Os[Xi,..., Xl
of rank m with degree n, ds(F) = d and (F)s = c. Further, there exists an
algorithm that for any m > 2, n > 2 and effectively given K, S, d, ¢ computes a

Corollary 14.9.2 Let m > 2 and n > 2. Then there are only finitely many

full set of representatives of these classes.

By specializing Corollary[14.9.2]to binary forms we obtain Corollary[14.2.3]
Indeed, let F € Og[X, Y] be a binary form of degree n with discriminant D(F’) €
005, where 6 € Os \ {0}. Obviously, (6)s = (D(F))s = (F)g”‘zbs (F). There
are only finitely many pairs ¢, d of ideals of Os such that (6)s = ¢*"~2d, which
can all be effectively determined, and by Corollary [[4.9.2] for each of these
pairs ¢, d there are only finitely many GL(2, Oy )-equivalence classes of binary
forms F € Og[X, Y] of degree n such that (F)s = ¢, ds(F) = b, a full set
of representatives of which can be determined effectively. This clearly implies

Corollary([14.2.3]

As in the case m = 2, for F € K[X;,...,X,,] let
ps (F) := min {H(F(x)) : x € OF, F(x) # 0}

Corollary 14.9.3 Let F € Os[Xy,...,X] be a decomposable form as in
Theorem[I4.9.1] Then

s (F) < CsaNs(0)Ns (0 and ps(F) < Cs6Ns (o),

where Csy, Css, Csg are effectively computable numbers such that Csy. Css
depend only on d, |Dgl, s, Ps, m and n, and Csg only on d, |Dgl|, s, Ps, m, n
and Ng (D).

For m = 2, this implies a less explicit version of Corollary[14.3.3]

We now specialize Theorem [[4.9.1]to the classical case K = Q, Os = Z and
present in this case a sharp upper bound for the degree of the decomposable
forms under consideration.

Let F € Z[Xi,...,X,] be a primitive, squarefree decomposable form of
rank m. Then the primitive semi-discriminant is generated by a positive rational
integer that we denote by Dz(F). We call it the Z-semi-discriminant of F.
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The first part of the next theorem is a special case of Theorem [T4.9.1] while
the second part was proved in [GySry (1994)].

Theorem 14.9.4 Let F € Z[X\,...,X,u] be a primitive, squarefree decom-
posable form in m > 2 variables of degree n with Dz(F) > 0 and splitting field
G. Then there is a U € GL(m, Z) such that

H(Fy) < Cs7Dz(F)*,

where Cs7, Csg are effectively computable numbers which depend only on m, n
and the discriminant D¢ of G. Further, we have
+1
<™ ¢ L tog Da(P). (14.9.3)
2 log3

Here equality holds if and only if F is GL(m, Z)-equivalent to one of the forms

VoY || i=vp m23),

I<i<j<m
or
YiYa(Yy + Ya), ViVa(Y) + V)(YE+Y Yo+ Y3) (m=2).
For primitive, squarefree decomposable forms F € Z[X,...,X,], Theo-

rem [14.9.4]implies Corollary [T4.9.2] without fixing the degree of the forms F.
Further, for m = 2, Theorem [[4.9.4] gives Theorem [[4.1.2]

It should be observed that the upper bound in (I4.9.3) is independent of the
splitting field G. As was pointed out in Remark[T4.2.4] in the general case, i.e.,
for decomposable forms over rings of S -integers, such a bound for the degree
cannot be given.

14.10 Notes

The main results of this chapter and their earlier versions have many applications. Some
of them are presented in Sections [[4.7] [[4:3] and [[4.8] We now mention some further
applications.

14.10.1 Applications to classical Diophantine equations

e Let FF € Z[X, Y] be an irreducible binary form of degree n > 3 with discriminant
D, t a non-negative integer, py, ..., p, distinct primes of size at most P (> 2), and m a
positive integer coprime with py, ..., p,. There are several upper bounds for the number
of solutions x, y € Z of the Thue equation

F(x,y) =m, (14.10.1)
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the Thue inequality
0<I|F(x,y)l<m (14.10.2)
and the Thue-Mahler equation
F(x,y) = mp' - pj, (14.10.3)
where zi,...,z are also unknown non-negative integers. Using the general effective

results of [Evertse and Gy6ry (1991a)] on binary forms of given degree and given dis-
criminant, much better upper bounds can be obtained for the numbers of solutions, pro-
vided that n, D, m, t and P satisfy some additional conditions. Such upper bounds were
derived in [Stewart (1991)] for (I4.10.3) with ged(x,y) = 1 when m > C, in [Brindza
(1996)] for (T410.1) with ged(x,y) = 1 when m > C», and in [Thunder (1995)] for
(T410.2) when m > Cs, where C, C,, C; are effectively computable numbers such that
C; depends on n, |D|, P, t, and C;, C5 on n and |D|. Further, Evertse and Gy&ry [Evertse
and Gy6ry (1991b)] showed that if |D| > C,, then the number of coprime solutions
of (T410.2) is at most 6n if n > 400, and by [GySry (2001)], it is at most 28n + 6 if
|ID| > Cs and 3 < n < 400. For m = 1 and |D| > Cg, this has been recently improved
by [Akhtari (2012)] to 11n — 2. Here Cy4, Cs, Cy are effectively computable numbers
such that C4, Cs depend on n and m, and C¢ on n. Together with the result of [Evertse
and Gy&ry (1991a)] these imply that for given n > 3 and m > 1, there are only finitely
many SL(2, Z)-equivalence classes of irreducible binary forms F € Z[X, Y] of degree n
for which the number of coprime solutions of (14.10.2) exceeds 28n + 6, or 11n — 2 if
m=1.

e We note that the above mentioned results of [Evertse and Gy&ry (1991a)] on binary
forms were also applied in [Evertse and Gy6ry (1993)] to bounding the number of
solutions of some resultant inequalities, and by [Ribenboim (2006)] to binary forms
with given discriminant, having additional conditions on the coefficients.

e We remark that using the improved and completely explicit versions of Evertse and
Gyéry’s results from Section[T4.T)and[T42] the above quoted applications can be made
more precise.

14.10.2 Other applications

o The effective result from [Evertse and Gy6ry (1991a)] on binary forms of given dis-
criminant, more precisely an earlier version of Theorem [T4:2.2] of the present chapter
has been recently used to obtain among others the following effective results. In [von
Kinel (2011, 2014a)], an effective version of Shafarevich’ conjecture/Faltings’ theorem
is proved for hyperelliptic curves; for details, see Section [I8.2] In [Szpiro and Tucker
(2008)], a generalization of the Shafarevich’ finiteness theorem [Shafarevich (1963)]
for elliptic curves is established for self-maps of the projective line over number fields.
In [Petsche (2012)], an analogue of this theorem of Shafarevich is proved in families of
critically separable rational maps over number fields. For a further result connected with
polynomials with integral coeflicients and prescribed bad primes, see [Roberts (2015)].
o Finally, we note that Evertse and Gydry [Evertse and Gydry (1992a)] applied an
earlier version of Theorem [T4.9.1] on decomposable forms of given discriminant to
decomposable form equations. Their result was used in [Stout (2014)] to prove that for
a given number field K, finite set of places S of K and rational morphism @ : P" — P”
defined over K, there are only finitely many twists of ® defined over K which have
good reduction at all places outside S. This answered a question of Silverman in the
affirmative.
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14.10.3 Practical algorithms

o The effective proof of [Evertse and Gy&ry (1991a)] for the finiteness of the number of
equivalence classes of binary forms F € Z[X, Y] of given degree and with discriminant
divisible only by finitely many given primes was turned into a practical algorithm in
[Smart (1997)] to find a representative from each class. Following the proof of Evertse
and GyO0ry, Smart reduced the number of cases to be considered by taking the action of
Galois group on a resulting set of S -unit equations, and then he used his algorithm (see
[Evertse and Gy&ry (2015), chap. 5]) for solving S -unit equations. Smart calculated all
binary forms of degree less than or equal to 6 with 2-power discriminant, and applied
this to reduction modulo primes of certain hyperelliptic curves of genus 2; see also

Section in Chapter[T8]
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Semi-effective results for binary forms of given
discriminant

Let F € Z[X, Y] be a binary form of degree n > 2 with non-zero discrimi-
nant D(F). Proposition [13.1.2] and Corollary [[3.1.4]imply that F is GL(2, Z)-
equivalent to a binary form F* with height

H(F*) < |D(F)|ifn =2, H(F*) < 13ID(F)|ifn = 3.

For n > 4, the known estimates are much weaker. Theorem[T4.1.1] states that if
n =deg F > 4, then F is GL(2, Z)-equivalent to a binary form F* of height

H(F*) < expl{(4*n® 2> |D(F)["3).

On the other hand, Theorem [I4.2.T]implies that there is such a binary form F*
with

H(F") < C/|D(P) (L))
where C|, C; are effectively computable numbers which both depend on n and

the splitting field of F' (or more precisely, on n and the discriminant of the étale
algebra associated with F)). The following conjecture seems plausible.

Conjecture [I5|1 Every binary form F € Z[X, Y] of degree n > 4 with non-
zero discriminant D(F) is GL(2, Z)-equivalent to a binary form F* of height

H(F*) < C1(n)|D(F)|™

where C(n), C,(n) depend on n only.

In the present chapter, we prove a ’semi-effective’ result which comes more
or less half way towards this conjecture. More precisely, we deduce a result
of the type where the exponent C, depends only on # and is effectively
computable, whereas C; depends on both n and the splitting field of F' and
cannot be effectively computed from the method of proof. Further, we will

332
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prove a generalization to binary forms over the ring of S -integers of a number
field.
The theorems and proofs have been taken from [Evertse (1993)].

15.1 Results

In the theorems below, by C;‘.“eff(~) we mean positive numbers that depend only
on the parameters between the parentheses, and which cannot be computed
effectively from the method of proof.

We first state our result over Z.

Theorem 15.1.1 Let F € Z[X,Y] be a binary form of degree n > 4 and
of non-zero discriminant D(F) which has splitting field G over Q. Then F is
GL(2, Z)-equivalent to a binary form F* of height

H(F") < C3*"(n, GID(F)P!". (15.1.1)

Let 4 be a GL(2,Z)-equivalence class of binary forms. The binary forms
in € have equal discriminant, which we denote by D(%’). A consequence of
Theorem [I5.1.1]is, that for every € > 0, every integer n > 4 and every normal
number field G there are only finitely many GL(2, Z)-equivalence classes & of
binary forms of degree n and non-zero discriminant with splitting field G such
that

min{H(F) : F € €} > |D(€)|" .

But these equivalence classes cannot be determined effectively from our method
of proof.

By applying Hadamard’s inequality to (I.4.5)), we see that for the binary
form F* in Theorem [[3.1.1] we have

ID(F)| = |ID(F*)| < n**H(F*)*2.

Hence Theorem cannot hold with instead of 21/x an exponent smaller
than 1/(2n — 2). At the end of this section, we give an example which shows
that even an exponent smaller than 1/n is not possible. So the exponent 21/n
in our Theorem has the right order of magnitude in terms of n, but probably
the constant 21 is much too large.

We now state our result over the S -integers of a number field. Let K be an
algebraic number field of degree d and S a finite set of places of K, containing
the infinite places of K. Recall that two binary forms F, F* € Og[X, Y] are
GL(2, Os)-equivalent if there are U € GL(2, Os) and & € Og such that F* =
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eFy. The S-norm of a € K is defined by Ng(a) := [],cs lal,. The absolute
height of a binary form F = 37 a;X""'Y" € K[X, Y] is

1/d
H(F) = (| | max(1,laoh, ... la,})) .
veMg
Theorem 15.1.2 Let F € Og[X, Y] be a binary form of degree n > 4 and
of non-zero discriminant D(F) which has splitting field G over K. Then F is
GL(2, Os)-equivalent to a binary form F* of height

H(F*) < C™(n, G, $ )(Ns (D(F))/4)*'". (15.1.2)

It should be noted that for n = 2,3 much better, and completely effective,
results are provided by Corollaries[13.4.3|and [13.4.4]

The idea of the proof of Theorem [I5.1.2]is to apply Theorem [I3.4.1] with
an optimally chosen tuple (B;y : i = 1,...,n, V € T), where T is the set of
places of G lying above the places from S. To get the estimate (13.1.2) we
apply the three-term sum case xo + x; + x, = 0 of Theorem{.3.1] It is because
of the ineffectivity of this last theorem, that we can prove (13.1.2) only with an
ineffective constant Cy.

Obviously, Theorem[I5.1.1]is a consequence of Theorem[I5.1.2]

We now show that Theorems [I5.1.1} [T5.1.2become false if 21/n is replaced
by something smaller than 1/n. Fix an integer n > 2 and an absolute constant
¢ > 2. For every positive integer k we choose rational integers ry, ..., r, with

k <|ri—rjl <cnk fori,je(l,...,n} withi# j
(which are easily shown to exist) and consider the binary form
FiX,Y) =X +nrY) - (X+nrY).

Notice that all binary forms F; have splitting field Q. From the GL(2,Z)-
equivalence class of Fy, we choose a binary form F; of minimal height. Then
F; = +(F)y, with Uy = (% %) € GL(2,2), that is,

FX,¥) = = [ [ (@ + ricoX + (b + rid)Y).

i=1
We will compare H(F;) with |D(Fy)| as k — co. For the moment we fix k.
Notice that
KD < |D(Fp)| = ﬂ Iri = rl* < (enk)" ™D, (15.1.3)
1<i<j<n

Further, by Corollary 3.5.4 we have
H(F)>24"B;--- By, (15.1.4)
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where B; := max(|a; + rickl, |bx + ridi|) fori=1,...,n.
Let B;, be the smallest among By, ..., B,. Assume for the moment that dy #
0. Then for i # iy we have

B;

\%

3(Bi + Biy)) > 5(by. + ridy| + |bi + riydi])

1 1
> §|(}"i - riu)dkl > Ek

If d;, = 0 we have ¢; # 0 and we obtain the same lower bound %k for B; (i # ip).
By inserting these lower bounds into (I5.1.4) we obtain

H(F}) > 27"k,
By combining this with (15.1.3)) we obtain
H(F}) 2 CID(F)|'"",  lim |D(Fy)| = oo,

where C is positive and independent of k. This shows that indeed, Theorems
[I5.1.1} [T5.1.2]do not hold true if 21/n is replaced by an exponent smaller than
1/n.

15.2 The basic proposition

We reduce Theorem|I5.1.2]to a proposition. As before, K is an algebraic num-
ber field of degree d, S a finite set of places of K containing the infinite places,
and F € Og[X, Y] a binary form of degree n > 4 with non-zero discriminant
D(F) and with splitting field G over K. Denote by T the set of places of G lying
above the places from S. In the estimates below, we use Vinogradov symbols
<, >>; the constants implied by these symbols will depend only on n, G and
S. As before, if F = 31 a;X"'Y", we define |F|, := max(lagly, - . - , a,l,) for
v € Mg and

Ns(Fy:= [ IFI".
veMg\S
By Corollary[13.3.4} we have a factorization (T4:4.1) of F where Ng(a) ><
Ns(F) and the coeflicients of the linear forms /;, ..., [, are integral over Og.
Taking the conjugates of [y, ..., I, over K, we get a factorization
F=al- -1, (15.2.1)

where

a€ K", Ns(a)>»< Ng(F), L,...,I, € Or[X,Y] (15.2.2)
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and for each o € Gal(G/K) there is a unique permutation o(1),...,o(n) of
1,...,n such that
o) = lyy foro e Gal(G/K), i=1,...,n. (15.2.3)
We put
Ajji=det(l,l) (1<i,j<n), Fy:=lL--l,=a'F. (15.2.4)
Notice that by (I5.2.1) we have
D(Fy) = l_[ A} = a” " D(F). (15.2.5)
I<i<j<n

Proposition 15.2.1 There exists a tuple B = (Byy : Ve T,i=1,...,n) of
positive reals with the following properties:

Ba'(i),V = Bi,VO(r fOl" Ve T, i= 1, ...,n, O € Gal(G/K), (1526)

|Aijlv
]_[ max <1, (15.2.7)
Ver I<i<j<n BiVBjV
[ 1] [ Biv < Nr(D(Fq)?@-272me=b, (15.2.8)
VeT i=1

Proof of Theorem We apply Theorem|[I3.4.1| with a tuple B with prop-

erties (15.2.6)-(15.2.8). Let g := [G : Q]. Recall that the quantities R, M from

Theorem [T3.4.1] are precisely the g-th roots of the left-hand sides of (15.2.7)),

(15.2.8). Thus, R < 1, and by (15.2.5) and Ny(x)"/¢ = Ng(x)'/? for x € K,
21(n-2)/dn(n-1

M < (Ns(a)l_”Ns(D(F))l/z) (rm2dntn=l),
Further, Ns(a) > 1 by (I5.2.2) and since F € Os[X, Y]. Now Theorem[13.4.1]
implies that there is a binary form F* which is GL(2, Os)-equivalent to F, such

that

n—1)/(n-2
)" < Ny (DR,

H(F") < (Ns(a)*M*R"
This proves Theorem [15.1.2] m|

In Section [T5.3] we construct the tuple B from Proposition [I5.2.1 and show

that it satisfies (I3.2.6), (I5.2.7). In Section [I5.4] we prove (I53.2:8) which is

more elaborate, and complete the proof of Proposition [I5.2.1]

15.3 Construction of the tuple

We keep the notation from the previous sections. Thus, K is a number field, S
a finite set of places of K containing the infinite places, F € Os[X, Y] a binary
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form of degree n > 4 and of discriminant D(F) # 0, G the splitting field of
F over K and T the set of places of G lying above the places of §. We fix a
factorization F = al, - - - I, of F with (15.2.2),(15.2.3) and put A;; := det(l;, [;)
forl <i,j<n.

In the remainder, we work in the number field G, and our arguments involve
only the absolute values | - |y (V € Mg). We use the notation s(V) = 1 if the
place V is real, s(V) = 2 if V is complex, and s(V) = 0 if V is finite.

We construct the tuple B = (B;y : Ve T,i=1,...,n). For the moment, we
fix two distinct indices p,q € {1,...,n} and V € T. Define the function
Dpuv(x) = 1—1 max (|Ayklve™, [Aglve®) (15.3.1)
k=1, k#p.q

where e = 2.7182 . ... This function is continuous on R with
lim ®,,v(x) = lim ®,,y(x) = co.

Hence it assumes an absolute minimum on R. Among all reals x at which ® v
assumes its absolute minimum, let x,,y be the smallest. First define for V € T,

pyqe{17-~~7”}9p¢Q7
pq 1/2 x Prq 1/2 —x
B( V) = |qu|V/ e V, B(V) = |qu|v/ e ["iv’

BPD = Al max (1A plve ™7, [Aglyer) (153.2)

A1<k<n k#p,q

andthen B:=(B;y: VeT,i=1,...,n) with

1/n(n—1)
Bv=( [] B " werT i=1,...,n). (15.3.3)
1<p.g<n, p#q
We first show that B satisfies (15.2.6). Let o € Gal(G/K), V € T, and let
P, q be two distinct indices from {1, ..., n}. By (15.2.3) we have

Aciroplv = lo(Aiply = |Aijlver

for 1 <1i, j < n. Hence

n
Dy (p),o(g),v(X) = 1—[ max (|Acp)oiwlve ™ [Avg).omwlve”)
k=1, k#p.q
n
= l_[ max (|Apk|Voa'e_X, |Aqk|V00'eX) = (qu,Voa'(x)
k=1, k#p,q

_ ((p).o (@) _ plrg
for x € R, and therefore, xo(p).o(q.v = Xpgver. Hence B, ;37" = By, for
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k=1,...,n. But this implies that

n 1/n(n—1)
— (0(p).o(q))
Bopy = ( l_[ B v ]

1<p.q<n, p#q

" 1/n(n-1)
— (pq) —
- ( l_[ Bi,VoU‘] - B[,Voo‘

1<p,qg<n, p#q
for o € Gal(G/K),V € T,i=1,...,n, which is (15.2.6).
We next prove (15.2.7). Take distinct p,g € {1,...,n} and V € T. By

(1532) we have

A pgly = B;P;)B;PV‘”, (15.3.4)
Apely < BEBED, [Auly < BEY B (15.3.5)

(1 <k<n k#p,q).
From the identities
Apgij = Bpilgj = Dpjlyi
and (I5.3.5) we infer
1ApgAijly < 2 max(1Apiglv, 18,,8,41v) < 2V BEP BRP BT BT

and subsequently, by inserting (15.3:4),

Aijly < 2V BEPBIY fori, je(1,...,n}\ (p.q). (15.3.6)
Now combining (15.3.4)—(15.3.6) with (15.3.3) gives, on noting that there are
precisely n(n — 1) pairs (p, q),

|Aijly < 2°V'BiyBjy forVeT,ijell,...,n)

and this obviously implies (15.2.7).

We finish this section with a lemma which is the starting point of the proof
of (153.2.8). The remainder of the proof of this inequality is postponed to the
next section. For distinct indices p,q € {1,...,n} and for V € T, put

Gpgv = min{@ ey (x) 1 x € R} = Opy(Xpgv),

¢pq = l_[¢pqv. (15.3.7)

VeT
Lemma 15.3.1 We have

1_[ 1_[ By = (NT(D(I':O))_("_‘W2 1_[ ¢pq)1/ﬂ(n—l)‘

VeT k=1 1<p.q<n, p#q
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Proof LetV eT and p,qe€{l,...,n} with p # gq. By (15.3.2) we have
n
l_[ szvq) = |qu|i//2equv : |qu|://2€_quv x
k=1

-1/2 —
x [ ] (8pgly'™> max(a,elye ™, 1Aglve )
k#p.q
_ A D2
- |Amlv Ppqv-

Notice that by (I5.2.5) we have [Tyer [1pz |Aplv = Nr(D(Fo)). Together
with (I5.3.3) and the above, this implies

1_[ ﬁ By = (H 1_[ ﬁ B;f‘;/q))l/n(n—l)

VeT k=1 p#q VeT k=1

- (NT(D(FO))—(n—4)/2 1—[ ¢pq)l/n(n_1).

P#q

15.4 Proof of the basic proposition

We prove Proposition[I5.2.1] We keep the notation from the previous sections.
It remains to estimate the numbers ¢, = [Tycr ¢pqv defined by (I15.3.7). No-
tice that log ¢,,v is the absolute minimum of the function ®,,, defined by
(15.3.1) which is a piecewise linear function. To compute this minimum we
use the following simple lemma.

Lemma 15.4.1 Let f(x) = max(a1x + by,...,a;x + b,) for x € R, where
ai,...,a; by,...,b, are reals with a; < --- < a,. Assume that fori =1,...,1,
the set

I :={xeR: f(x) =ajx+ b}

is non-empty.
(i) If ay > 0 or a; < O then f is monotone.
(ii) Suppose a; = 0 for some s € {1,...,t}. Then

min{f(x) : x € R} = b;.

(iii) Suppose a; < 0 < agy for some s € {1,...,t} (and hence a; # 0 for
i=1,...,t). Then
as+lbs - asbs+l

min{f(x): xe R} = P
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Proof Itis easy to check that

. bi—b;
I; =<xeR: x<min s

>1a;—ap
bi—b; . bi—b; .
I; =<{x €R: max < x <min (i=2,...,t=1),
J<i aj—a; >ioaj—a;
bt_bj
I, =<{x€eR: x>max .
Jj<t aj—a;

Put a; := (b; — bis1)/(aiy1 —a;) fori = 1,...,¢t = 1. Since I1,...,I, are by
assumption non-empty, we have @; < --- < @,, and hence

Il = (00,0’1], Ii = [ai—l’ai] (l = 2"' . at)7 II‘ = [ah OO)

We are now ready to prove Lemma[I15.4.1]

(i) Obvious.

@ii) If s # 1,¢, the function f is decreasing on (—co, @,_1], constant on I; =
[as-1, @] and increasing on [y, o). Hence f assumes its minimum on /. This
holds true also if s = 1, . Since f(x) = b, for x € I this proves (ii).

(iii) The function f is decreasing on (oo, a,], increasing on [y, o), and
hence minimal in «;. For x = a, we have

as+lbs - asbs+l
F(X) = @yx + by = Aga1 X + byyy = —s a7t
dgy] — dg

This proves (iii). O

Henceforth, we fix p,q € {1,...,n} with p # g. We use the following nota-
tion. Define the set

Wpe :=1{1,...,0}\ {p,q}.

Denote the cardinality of a set I by |/|. For a subset J of Wy, and for V € T
define

My(J) := 1if J = 0; My(J) := [ApAgply/” if J = {k);

My(J) := max nlApklv' l_[ Agely = 1 J, |l = 51|
kel keJ\I

if |J| > 2 and |J| is even, and

My (J) := (Myy(J)Myy (1))
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if |J| > 3 and |J] is odd, where

kel keJ\I

Miv(J) = max{]_] Apidv - [ ] WBgedv 2 1€ 0101 = 2001+ 1)},

Moy (J) = max{]—[ Apilv - [ ] 18gely = 1. 11 =40J1- 1)

kel keJ\I
Further, put
M) = [ M)

Vel

Lemma 15.4.2 We have ¢,y = M(Wy,).

Proof It clearly suffices to prove that ¢,,v = My(W,) for V € T. To this
end, we apply Lemma[T5.4.T]to

FO) = 10g@pey() = > max(fix — X, foi + %)

keW,,

where fir = log|Aply, fox = log|Agly. The function f(x) can be expressed
otherwise as

f(x) =max(Co—(n—-2)x, C; —(n—4)x,...,Ch3+(n—4)x,Cpp + (n —2)x),

where
CS:max{Zf1k+Zf2k: 1C Wy |l :n—2—s}
kel kel¢
= log max {]_[ A ply - ]—[ Agly = I C Wy, Il =n—2— s}
kel kel¢

fors=0,...,n -2, with I° :== W, \ I. We show that the sets
I;:={xeR: fx)=C;—(n—-2-2s)x} (s=0,...,n—-2)

are non-empty. By taking x very small or very large we see that I; # 0 for
s =0,n—-2.Letl <5 <n-3.Choose I C W, of cardinality n — 2 — s
such that Cs = Y ies fik + 2ere for. Then fi; + fo; = fi; + fo or equivalently
fii— i = fij— fjforiel, j € I°. Hence there is x with % maxjere(fij— foj) <
x < %miniel(f” — f2i). For this x we have f; —x > f5; + x for i € I and
fij—x < fo;+xfor j €I and so,

f(x)=Zfli+2f2j—(n—2—2s)x=CS—(n—2—2s)x.

iel JeI©
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This shows that Iy # @ for s = 0, ...,n—2. Hence we can apply Lemma|15.4.1}
and conclude that

log ¢qu = mm{f(x) X E R} = C(n_z)/z = ]0g Mv(qu)

if n is even, and

log ¢pqv = 3(Ciu-tyy2 + Cin3y2) = 3(log Miy(Wpy) + log Moy (W)
= log My(W,,)

if n is odd. This proves Lemma[15.4.2] m|

In what follows, we use the notation

|xla--~7xm|V = maX(|XI|V,...,|meV) (xla‘-"xm € G’ Ve MG)’
HT(XI,...,.X,,,) = 1_[|x1,--~,xm|v (.X1,...,)Cm € G)
VeT

We will derive an upper bound for M(J) for each subset J of W, by induc-
tion on the cardinality of J. This will eventually lead to an upper bound for
M(W,,), hence for ¢,,. The following lemma is the first step in our inductive
argument.

Lemma 15.4.3 Let J be a subset of Wy, of cardinality s > 2, let i, j € J with
i# jand J;j .= J\ i, j}. Then

M(J) < H'Hr(Apihgjs ApjA M), (15.4.1)
where
A il Agil i
H:= {HT(L#)HT(L &)x
ID Ayl Apih g
A

A, iAok Ay ik
xHy (1’ APJAq )HT (1’ Aq/Ap )}’
qj2pk pjRgk

1
0(s) := — if sis even, 0(s) := 5 u
S st -1

Proof We estimate from above the quantities My(J) (V € T) and then take
the product over V € T. We have to distinguish between the cases s even and s
odd. First assume that s is even. Let V € T. Notice that My (J) is the maximum
of the quantities

if s is odd.

g = J1auly [ ] 18udv (15.4.2)

kel keJ\I

taken over all subsets I of J of cardinality s/2. We estimate from above each
of these quantities.
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Let I be a subset of J of cardinality s/2. First assume thati € I, j € J\ I.
Then g([) < |Apiqu|VMV(Jij)’ since

MyUipz [ 1amv [] 18wl

kel\{i} ke\(IU{j})

If j e l,i e J\ I we have the same inequality, but with i and j interchanged. It
follows that if eitheri € I, je J\Torie J\ I, j €I, then

g(]) < |Apiqu, Aijqi|VMV(Jij)~ (1543)

Now let i, j € I. Choose [ € J \ I for which |A,;A;/Ay;Aply is minimal.
Then since |/ \ I| = s/2 and J \ I C J;; we have

1/I\]
ApjAgi < H 1 ApjAgk
quApl 1% ke\I quApk v
N
<|T] |, Rk . (15.4.4)
kel;; AgjBpkly

Put I’ := TU{}\ {j}. Then |I'| = s/2,i € I’ and j € J\ I'. Now (15.4.4) and
(15.4.3) imply

Aijql
qu Apl

<\l
kedij

By repeating the above argument but with #, j interchanged, we get the same
inequality with 7 instead of j in the first factor of the right-hand side. By taking
the geometric mean of both inequalities, we infer

g = g’

v
Ap.i Aqk
' quA[’k

/s
1 ] NApilgjs ApiAgilv My (J;)).
v

g < HII(/S|Apiqu, ApilgilyMy(J;)), (15.4.5)
where
Hyy = l—l 1 Apilgk 1 Bpilg
Ainpk 1% quApk 1%

kedij

If i, j € J\ I we obtain in the same way, by interchanging / and J \ I and p and
q, that

g(D) < HylPIA il gjs Ay iAgily My (J;)), (15.4.6)
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where
Aprlgi
Ay pi

Apkqu
' Aijqk

H2v=l—[

kedij

By combining (15.4.3),(13.4.3),(15.4.6) we infer that

My(J) = I
v(J) Icgllﬁgs/zg()

< H\I//S|Apiqu, Apjlgilv My (Ji)),

1a

Vv Vv

where HV = HIVHZV

_ l_l{ ApiAgi

9
ked;; Agipr

AgiApi
" ApiAgk

Aijqk
’ quApk

quApk

1 9
Aijqk

2

By taking the product over V € T we obtain (T5.4.1) in the case that s is even.

Now assume that s is odd. Let I ¢ J be a set of cardinality (s + 1)/2 and
define g(I) asin (I5.42). If i € I, je J\ITori € J\1, j € I, then (15.43)
holds with M;y(J;;) replacing My(J;;). If i, j € I and [ is chosen as above,
then (T5.44) holds, but with 2/(s — 1) instead of 2/s. Hence (15.4.5) holds,
but with 1/(s — 1) replacing 1/s in the exponent, and with M;y(J;;) instead of
My (J;j). Similarly, (I3.4.6) holds with 1/(s + 1) replacing 1/s in the exponent
and M,y (J;;) instead of My(J;;). Combining these inequalities we obtain

Vv Vv Vv

My(J) = oy ax )]
< Hy TV Hy VA g, A A gily Miv (Ji)).

Similarly

Moy (J) < HUPVHLO™VIA A Ap i gily Moy (J;)).
By combining these two inequalities, using

My(J)) = (Myy(DMay(D)'?, My(Jip) = (Miy(ipMay(Ji) '
and %(S—Ll + HL]) = ﬁ, we obtain
My(J) < HC D10, Apidgly My (J).

By taking the product over V € T we obtain (15.4.1) in the case that s is odd.
This completes the proof of Lemma[15.4.3] O

To proceed further, we need the following lemma which involves the theory
on S -unit equations. Here and below, we use Vinogradov symbols <, of which
the implied constants depend on n,G,S and an additional parameter € > 0.
These constants are in general not effectively computable from our arguments.
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Lemma 15.4.4 For any four distinct indices a,b,c,d € {1,...,n} and any
€ > 0 we have
HT(AahAcds AadAhc) <e NT(AabAchadAhcAacAhd)l+Ea (1547)

Augo,
HT(I,Ad b

) <e Nr(AapAca) Nr(DaalpeDachpa)' ¢, (15.4.8)
abBcd

Proof We obtain by applying Theorem {.3.1| with n = 2 and G, T
instead of K, S, to the identity

AapDea + DaaApe + Dealpa = 0.
Inequality (I5.4.8) is an immediate consequence of (15.4.7). i

We introduce some more notation. We put

Uiy = Ne(a) = [ [1agly (1 <ij<m),

VeTr
U= NiDF) =[] Uy
1<i#j<n
and for each subset J of W,
a,(D) =] [Up g =] [Ugo U =[] Un,
keJ keJ k#le]

where [];..c; indicates that the product is taken over all ordered pairs (k, 1)
with &,/ € J, k # [. The next lemma gives our upper bound for M(J).

Lemma 15.4.5 Let J be a subset of Wy, of cardinality s > 2. Then for all
e>0,

M(J) < U2 (ap(Dag())’ - UIY/CeD . Ue, (15.4.9)

Proof We prove a slightly stronger result. Let 8(s) be the quantity from Lemma
15.4.3| i.e., 6(s) = 1/s if s is even and 6(s) = s/(s*> — 1) if s is odd. We define
recursively the sequences (a(s))s>0, (P(5))s20, (€(5))s0 by

a(0) =b0) =c(0)=0, a(1) =0, b(1) = %, c(1) =0,

a(s) =a(s—2)+ 1 +4(s —2)6(s),
b(s) = 52 (s —2) + 2 + 2 Bg(y),
—2)(s-3 1+4(5-2)0
c(s) = %ﬁi)) 'c(s—2)+% for s > 2.
We shall prove by induction on s that for each subset J of W, of cardinality
s > 0 and every € > 0 we have

M(J) < Us(ap(Dag(D)OUI) U, (15.4.10)
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where a,(J) = a,(J) = D(J) := 1if J = 0, D(J) := 1if |J| = 1. One verifies
easily by induction on s that
5/2

a(s) < 1+3(s=2), b(s) <3, c(s) < ——
s—1

for s > 2. Hence (15.4.10) implies (15.4.9).

For s = 0, 1, inequality (I5.4.10) is obviously true. Let s > 2, and assume
that (T3.4.10) holds for all subsets J of W,,, of cardinality < s — 2.

Take a subset J of W, of cardinality s. Fix two distinct indices i, j from
J. We first estimate the quantity H from (I3.4.1). Notice that by (13.2.2) we
have A,y = det(l,,1,) € Or, whence Uy, = Np(Ay) = 1 fora,b € {1,...,n}
with a # b. Therefore, Uy, < U for 1 < a,b < n. Further, J;; = J\ {i, j} has
cardinality s—2. Together with Lemma|[I5.4.4]this implies that for every € > 0,

H < U [ [ (UpUgtUpgUsk - UptUyiUpg Ui
ked;;

XUpiUgUpqUjic - UprUqjUpq Ujk)

= U ]_[ U,,kqu)z(U,,,»U,, UaiUgi) ™( ﬂ U,-kUjk)sz/‘*,

ked;; keJij
which is equivalent to

H <. Ul (a,(Nag() x

. 2
X(UpiUpUgiUg)) ([ [ UsUs) U2, (15.4.11)
kelJij

Further, by Lemma [[5.4.4] we have for every € > 0,
Hr(Apilgjs DpjAgi) <e UpiUpjUgiUy; - UpgUij - US4, (15.4.12)
Lastly, by the induction hypothesis, applied to J;;, we have for every € > 0,
M) <e USS™ (e, (Uiag (i) 2 U ) 2 U, (15.4.13)

By inserting (13.4.11)—(15.4.13) into (15.4.1)), we infer that for each pair i, j €

J with i # j and every € > 0,

M(J) < Upy DHHH200B, (i, )Ba(i, U
= Up)Bili, )Bai, DU, (15.4.14)
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where
Bi(G, j) = (@p(Nag(D)™ - (UpiUpUgill)* ™" (e (Tiag (i),
B>(i, j) := ( 1_[ U;kUjk)ze(S) Uij - U(Jij)c(s_z)-
keJ;;

Inequality (13.4.14) holds for all ordered pairs (i, j) with i, j € J, i # j. By
taking geometric means, we obtain

M(J)) < Us)B B, - U, (15.4.15)

with

B, = ( n B](i, j))l/s(x—l), By = < l—[ Bl(i, j))l/s(x—l).

i#jel i#jel

By inserting the obvious identities

( 1_[ UpiUpjU4iUyj

i#jel

)l/s(s—l) _ (ap(J)(Iq(J))Z/S,

([T artinagn) ™" = @ ay)2",

i#jel
1/s(s=1) )/ o s—
([]]]uavs) ™ = v@yeieD,
i#jed ked;;
1/s(s—1) _
([Tos) ™ =v@reD,
i#je]

( H U(Jij)>l/x(sfl) _ U(J)(sfz)(rS)/s(sfl)’

i# s
we obtain
By = (ap(Day())’, By=UW),
where
b=26(s)+ 2 - ((s = DO(s) + 1) + =2 b(s = 2) = b(s),

_ 4(s=2)8(s) 1 (s=2)(s=3)
= oD 56D T TSe-D

By substituting these expressions for By, B, into (15.4.13) we obtain (13.4.10).
This completes our induction step, and thus the proof of Lemma[I5.43] O

cc(s —2) = c(s).
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Proof of Proposition It remains to verify inequality (T5.2.8). We apply
Lemma [15.3.1) and estimate from above the quantities ¢,,. By Lemma|[15.4.2]

and Lemma@with J = W,,, s = n— 2 we have for every € > 0,

bpg = M(Wyy)
<e UL D2 (0, (W )atg(Wpe)) UW, ) G U<, (15.4.16)

We have to take the product over all ordered pairs (p, g) with p,q € {1,...,n},
p # q. By combining (15.4.16) with [] ., Up, = U (where by [] ., we indi-
cate that the product is taken over all ordered pairs (p, g) with p,q € {1,...,n},
p # q) and with the identities

1—[ (a'p(qu)a'q(qu)) — U2n—4’ l_[ U(qu) — U(n—2)(n—3)

P#q P#q

we obtain that for every € > 0,

P#q

where

f(n)=1+@+3(2n—4)+%-(n—2)(n—3)=1ln—26.

Together with Lemma [15.31] this implies

n
l_[ l_[BiV <. U(—%(n—4)+11n—26+5)/n(n—1) <. U(21(n—2)—6+25)/2n(n—1).
VeT i=1

Taking € = 3, say, we obtain (15.2:8). This completes the proof of Proposition
0521 mi

15.5 Notes

We mention here some completely effective function field analogues of some of the
results of this chapter, which were obtained by W. Zhuang in his PhD-thesis [Zhuang
(2015)].

Let k be an algebraically closed field of characteristic 0, and A = k[f], K = k(r)
the ring of polynomials, resp. field of rational functions in the variable . We endow K
with an absolute value | - |, given by |a/b|, 1= e%249eb for q, b € A with ab # 0 and
|0l := 0. We define the height of a polynomial P € A[X;,...,X,] by H(P) := max|p|w,
where the maximum is taken over all non-zero coefficients p € A of P. Two binary
forms Fy, F, € A[X, Y] are called GL(2, A)-equivalent if there are £ € A* = k™ and
U € GL(2,A) such that F;, = &(F;)y.
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Theorem 15.5.1 Let F € A[X, Y] be a binary form of degree n > 3 and discriminant
D(F) # 0. Assume F has splitting field G over K and denote by g¢ the genus of G. Then
F is GL(2, A)-equivalent to a binary form F* for which

(5n—5)2gc - 1)
24[G : K]

Proof See [Zhuang (2015), chap. 5, Thm. 5.3.2]. The proof is basically a function
field analogue of that of Theorem[I5.1.1|presented here. Instead of the reduction theory
of Chapter [T3]Zhuang used a similar theory over function fields, which he also devel-
oped in his thesis. Further, instead of Lemma[T5.44]he used an effective function field
analogue, which he derived from the Stothers-Mason abc-theorem for function fields
[Stothers (1981)], [Mason (1983, 1984)]. O

H(F") < exp(n® +6n -7+ ) DA,

Along the same lines, Zhuang proved the following function field analogue of Con-
jecture[T3]1.

Theorem 15.5.2 Let F € A[X, Y] be a binary form of degree n > 3 and discriminant
D(F) # 0. Then F is GL(2, A)-equivalent to a binary form F* for which

H(F") < =D+6) | |D(F)|i?+(l/”).
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Invariant orders of binary forms

In this chapter, we consider the invariant order associated with a binary form.

In general, a Z-order of rank z is a commutative, associative Z-algebra that
is free of rank »n as a Z-module. Delone and Faddeev [Delone and Faddeev
(1940)] proved that there is a one-to-one correspondence between GL(2,Z)-
equivalence classes of irreducible binary cubic forms in Z[X, Y] and isomor-
phism classes of Z-orders of rank 3 that are integral domains. This was ex-
tended in [Gan, Gross and Savin (2002), §4] to a bijection between GL(2, Z)-
equivalence classes of arbitrary binary cubic forms in Z[X, Y], i.e., not neces-
sarily irreducible or with non-zero discriminant, and isomorphism classes of
arbitrary Z-orders of rank 3, which are not necessarily integral domains. Birch
and Merriman [Birch and Merriman (1972)] defined, for an irreducible binary
form F € Z[X, Y] of degree n, a free Z-module of rank n whose discriminant
is equal to that of F. Nakagawa [Nakagawa (1989)] showed that this mod-
ule is in fact a Z-order, i.e., closed under multiplication. Moreover, he showed
that GL(2, Z)-equivalent binary forms have isomorphic associated orders. This
suggests the name ‘invariant order’ of a binary form. If F(1,0) = 1, then the
invariant order of F is just Z[X]/(F(X, 1)).

The construction of Birch and Merriman and Nakagawa has the disadvan-
tage that it is not canonical, i.e., they defined the order by giving a basis for
it. Del Corso et.al [del Corso, Dvornicich and Simon (2005)] observed that if
F € Z[X,Y] is a primitive binary form (i.e., whose coefficients have greatest
common divisor 1) that is irreducible over Q and 6 is a zero of F(X, 1), then the
invariant order of F is just Z[@] N Z[#']. Using concepts from algebraic geom-
etry, Wood [Wood (2011)] gave other canonical constructions of the invariant
order, valid for arbitrary binary forms F with coefficients from an arbitrary
commutative ring. In fact, she generalized these to binary forms over arbitrary
base schemes.

In the present chapter, we give another canonical construction, which is

350
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however less general and flexible than Wood’s, and works only for binary
forms with coefficients from an integrally closed integral domain of charac-
teristic 0.

In Section [I6.1] we introduce some convenient terminology, which is also
needed in the subsequent chapter. In Section[I6.2] we give our definition of the
invariant order, and prove some basic properties. In Section [16.3] we prove the
result of Delone and Faddeev about the relation between binary cubic forms
and orders of rank 3.

For more extensive information on invariant orders of binary forms and their
properties, we refer to [Nakagawa (1989)], [Simon (2001, 2003)], [del Corso,
Dvornicich and Simon (2005)] and [Wood (2011)].

16.1 Algebras associated with a binary form

In addition to the notation introduced in Chapter [I2] we use the following.
Throughout this section, K is a field of characteristic 0 and Q a finite dimen-
sional, commutative, associative K-algebra with unit element. For terminology
related to such algebras we refer to Section

We first prove some properties of the projective line P!(Q) over Q. In our
set-up, our assumption that K has characteristic 0 is essential.

Definition 16.1.1 Consider the set of pairs
{(@,8) e QxQ: dy,0 € Qwithya + 6B = 1}.

Call two pairs (a1, B1), (@2,/5,) in this set equivalent if (a»,3) = A(ay,5;) for
some A € Q*. The collection of equivalence classes is denoted by P!(Q). The
equivalence class represented by (a, 8) is denoted by (« : B). [ |

Any matrix U = (¢ %) € GL(2, Q) induces a transformation
(UY: P{Q) - PY(Q): (@:B) — (aa +bB: ca +dp),

and U, U’ € GL(2,Q) induce the same transformation if and only if U’ = AU
for some 4 € Q.
Let ¢ : Q — Q' be a K-algebra homomorphism. Then ¢ induces a map

¢ PHQ) - PUQ): (a:f) - (p(@) : ¢(B)).
This map is a bijection if ¢ is an isomorphism.

Examples 1.If Q = L is a finite extension field of K, then P!(L) consists of
the points (« : §) with @, 8 € L and at least one of a, 8 non-zero. Two points
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(a:pB), (@ :pB) are equal if there is A € L* such that &’ = A, 8’ = AB.

2. Let Q be a finite étale K-algebra with [Q : K] = n. Assume without loss of

generality that Q = L;X,...,XL,, where Ly,..., L, are finite extension fields
of K. Then P'(Q) consists of the points (a : 8), where @ = (a1, ... ,0g), B =
B1,-..,B4) with ;,5; € L; and at least one of «;, 8; non-zero fori = 1,...,q.

Two points (@ : B), (&' : B') are equal if &' = Ao, B/ = AB, where 4 =
(A1,..., ) with 4; e LT fori=1,...,q.

Since Q is finite dimensional over K, for each (« : 8) € P'(Q) there is a
non-zero binary form F € K[X, Y] with F(a,8) = 0.

Lemma 16.1.2 Let(a:B8) € PY(Q), a,b € K, and let F € K[X, Y] be a binary
form with F(a,B) = 0 and F(a,b) # 0. Then ba — af8 € Q.

Proof Lety,5 € Q be such that ya + §8 = 1. There is a binary form W €
Q[X, Y] of degree n — 1 such that

(ay + bo)"

F(a,b)

This is shown by choosing ¢, d € K such that ad — bc # 0 and writing the left-
hand side as Y., b;(bX —aY)""'(dX —cY)' with b; € Q. Choosing X = a,Y = b
it follows that b,, = 0, whence the existence of W. By substituting X = o, Y = 8
in (T6.1.1)), we obtain (ba — aB)W(a,B) = 1. Hence ba — af € Q*. O

Definition 16.1.3 Let (a : 8) € P/(Q).

- A minimal binary form of (« : 8) over K is a non-zero binary form F €
K[X, Y] of minimal degree such that F(a,8) = 0. We define the degree of
(a : B) over K to be the degree of a minimal binary form of (a : ) over K.

- We write Q = K[a : 8] if K[a, 8] = Q, and there is no choice of homoge-
neous coordinates (o’ : §') = (o : B) with K[o’,B'] & Q.

- Let F € K[X,Y] be a binary form of degree n > 0. We say that F' is
associated with (Q,(a : B)) if F is a minimal binary form of (@ : ) over K
and Q = K[a : B]. We say that F is associated with Q, if F is associated with
(Q, (e : B)) for some (a : B) € P'(Q). ]

(yX +6Y)" — CF(X,Y) = (bX — aY)W(X, Y). (16.1.1)

Let F € K[X, Y] be a non-zero binary form of degree n > 0 associated with
(Q, (@ : B)). It is easy to check that for every 4 € K*, U € GL(2, K), the binary
form AFy is associated with (Q, (U (a : B)).

In particular, choose U = (¢ Z) € GL(2, K) such that F;(1,0) = F(a,c) # 0.
Such a matrix exists, thanks to our assumption that K has characteristic 0. Then
—ca + aB € Q' by Lemma [16.1.2] Define 6 by (o : B) = (U)@ : 1), ie.,
g =2 and put f(X) := Fy(X,1). Then f is a minimal polynomial of 6

—ca+af’

over K and Q = K[6]. As a consequence, [Q: K] =deg f =deg F = n.
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Lemma 16.1.4 Let F € K[X, Y] be a binary form of degree n > Q.

(i) There exist a K-algebra Q and (a : B) € P'(Q) such that F is associated
with (Q, (@ : B)).

(ii) Let Q' be another K-algebra and (' : B) € P(Q) such that F is associ-
ated with (&, (@’ : B')). Then there exists a K-algebra isomorphism o : Q —
Q' that maps (a : B) to (o’ : B').

Proof (i) Choose U € GL(2, K) with Fy(1,0) # 0, and put f(X) := Fy(X, 1).
Then take Q := K[X]/(f), 0 := Xmod f and (a : B) := (U@ : 1).

(ii) Define @ € Q' by (¢ : 1) := (U)~'(a’ : #). Then f is the monic minimal
polynomial of ¢ and Q" = K[6']. Hence there is a K-algebra isomorphism
g:Q—>Q : 60— ¢, and this maps (a : §) to (@’ : §). m]

We are assuming throughout that K has zero characteristic, but the above
proof is valid for any field K, as long as there exists U € GL(2, K) with
Fy(1,0) # 0. Such U need not exist if K has too few elements, e.g., if K = F,
and F = XY(X + 7).

The case of binary forms of non-zero discriminant is most relevant for us,
and we consider this in more detail. Let FF € K[X,Y] be a binary form of
discriminant D(F) # 0. Then F = Fy---F,, where Fy,..., F, are pairwise
non-proportional irreducible binary forms in K[X, Y]. Fori =1,...,q,letL; =
K, (a;:B;) =1 :0)if F; = ¢Y for some ¢ € K*, and L; = K(6), (a; : B;) =
(6; : 1) where Fi(6;,1) = 0 otherwise. Define Q(F) := L; X --- X Ly, ap =
(@i,...,aq), Br := (Bi,...,B4)- Then F is associated with (Q(F), (aF : Br)).

16.2 Definition of the invariant order

In what follows, let K be a field of characteristic 0, Q a finite dimensional,
commutative, associative K-algebra with unit element, A an integrally closed
integral domain with quotient field K, and Ag the integral closure of A in Q.
Let (o : B) € P'(Q) and suppose that (o : ) has degree n > 2 over K.
Further, let a be a non-zero ideal of A. Then define the A-modules
n—1
Mg = {ino/ﬁ"*lf’ cx;€Afori=0,...,n— 1},
i=0
16.2.1
L/%a/:ﬂ),a = {f eQ: é‘:%a/,ﬂ Cc a%@,ﬁ} s ( )
A(a:ﬁ),a =A+ f/%w:ﬁ),a-

We note that .#, 3 depends on the choice of the homogeneous coordinates
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of (@ : B). In fact, if (o’ : §’) is any other choice of homogeneous coordinates,
then o’ = Aa, B’ = AB forsome A € Q*, and thus, A#y g = /l”‘le///aﬁ. However,
Map.a» A:p),« are independent of the choice of the homogeneous coordinates.

Lemma 16.2.1 The A-module Ayp) is an A-algebra, and A C A(y.p). € Aq.

PFOOf Put ./ = %(Y’B, N = J%{t:ﬁ),a-

To show that A, is an A-algebra, we only have to show that it is closed
under multiplication. Let y; = x; + & with x; € A, & € A fori = 1,2. Then
Eer M CE\M C al hence é1&, € A, and 50 Y Y2 € Ao

It remains to show that A, C Aq, and to this end it suffices to show
that every element of .4 is integral over A. Take & € .#". Then &/~ =

;:é cija’B17 with ¢;; € A fori,j = 0,...,n — 1, and by straightforward
linear algebra,

det(¢I - C)a'B" 7 =0 fori=0,...,n—1,

where C is the n X n-matrix with ¢;; on the i-th row and j-th column, and / is
the n X n unit matrix. Take y,5 € Q with ya + 68 = 1. Then taking Q-linear
combinations we get det(¢1 — C) = det(¢1 — C)(ya + 88)"! = 0. Hence £ is a
zero of a monic polynomial from A[X], i.e., it is integral over A. O

We observe here that a K-algebra isomorphism ¢ : Q — Q' induces an
A-algebra isomorphism from A,.).q t0 A(p():0().q-

The next lemma states that the order A . defined above is compatible
with localization.

Lemma 16.2.2 Let .7 be a multiplicative subset of A, (a : B) € P{(Q), and a
a non-zero ideal of A. Then

(7 Aapr1a =7 Aapa-
Proof Straightforward. O
We prove an invariance property.
Lemma 16.2.3 Let (o : B), (o : B) € P'(Q) be such that
(@ :B)=(U)a:p) for some U € GL(2,A),
and let a be a non-zero ideal of A. Then A g0 = A@:p).a-

Proof Without loss of generality, @’ = aa + bB, B = ca + dB, where U =
@b). Then clearly, .#, g C .#,z, and by symmetry we also have the other
inclusion. This easily implies our lemma. O
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In the case that A is a Dedekind domain, Lemma [16.2.3] can be extended.
Recall that for a Dedekind domain A, we denote by Z?(A) the collection of
non-zero prime ideals of A. Further, for every p € Z(A), we denote by A, the
localization of A at p. This is equal to A, = Y;'A ={x € K : ordy(x) > 0},
where .7, 1= A\ p.

Lemma 16.2.4 Let A be a Dedekind domain of characteristic 0. Further, let
a be a non-zero ideal of A and let (« : B), (' : B') € PY(Q) be such that for
every p € P(A) there is U, € GL(2,A,) with (¢’ : B') = (Up)a : B). Then
Awpra = Awp).a

Proof We first observe that A, is finitely generated as an A-module, in
other words, it is an A-lattice of the K-vector space K - A(y.5).. Indeed, choose
7,6 € Qsuch that ya + 68 = 1. Then for a € A, & € (4.5« We have

n—1
a+é=a+(ya+p)écA+ Z YUK M p.

k=0
Therefore, A(q.p),q is contained in a finitely generated A-module, hence is itself
finitely generated.

Letp € #(A), and put a, := Aya. By Lemma[16.2.3] the A,-orders (Ay)w )0,

(Ap)(@:p).q, are equal. Further, by Lemma (Ap)@p)a, 18 precisely the lo-
calization Ay, - A(e:g),0 Of Ae:p),a at p, and likewise for (a’,5’). Together with

Proposition[2.9.1] this implies

A(a’:ﬂ’),a = ﬂ (Ap)((r’:ﬁ’),ap = ﬂ (Ap)(a:ﬁ),av = A(a:,B),a- ]
peP(A) peP(A)
We call 0,6 € Q GL(2,A)-equivalent if (¢’ : 1) = (U@ : 1) for some

U € GL(2,A). If U = (¢%), this means that cf + d € Q*, and ¢ = Zg:f;' This

is obviously an equivalence relation.
For 6 € Q we define Ag := Aq.1)). Clearly, if 6 has degree n over K, we
have

Ag={E€Q: EMy C My,
n—1
where Ay 1= My = {Z xt: xi € A}. (16.2.2)

=0
By Lemma([16.2.1] Ay is an A-subalgebra of Ag.

Lemma 16.2.5 (i) Assume that 6,0’ € Q are GL(2, A)-equivalent. Then Ag =
Ay.

(ii) Let A be a Dedekind domain of characteristic 0, and assume that 6,0 € Q
are GL(2, Ay)-equivalent for every p € Z(A). Then Ag = Ag.
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Proof Immediate consequence of Lemmas|16.2.3}[16.2.4 O

We keep our assumption that A is integrally closed.

Lemma 16.2.6 Let 6 € Q, and assume that 0 is integral over A. Then Ag =
Al6].

Proof By Proposition we have .#y = A[6]. Then (16.2.2) implies Ay =
A6, 0

We now introduce the A-algebra isomorphism class of invariant A-orders
of a binary form from A[X, Y]. We keep our assumptions that A is integrally
closed and its quotient field K has characteristic 0.

Definition 16.2.7 Let F' € A[X, Y] be a non-zero binary form of degree n > 2.
Choose a K-algebra Q and (o : B) € P!(Q) such that F is associated with
(Q, (@ : B)) (see Definition [T6.1.3). Denote by (F) the ideal of A generated by
the coeflicients of F. Then we define

Ap := the A-algebra isomorphism class represented by A, (F).

By Lemma this is well-defined. The elements of Ay are called the in-
variant A-orders of F. [ ]

Proposition 16.2.8 Let F, F’ € A[X, Y] be two non-zero GL(2, A)-equivalent
non-zero binary forms of degree n > 2. Then Ar = Ap-.

Proof By assumption, F’ = ¢Fy for some U € GL(2,A), € € A*. Choose
(Q, (a : B)) associated with F. Then (Q, (U )« : B)) is associated with F”’.
Further, (F”) = (F) since the coeflicients of G are A-linear combinations of
those of F and vice-versa. Now apply Lemma([16.2.3] m]

A free A-order of rank n is an A-algebra that as an A-module is free of rank
n. We keep assuming that A is integrally closed and of characteristic 0. The
next theorem implies that the invariant A-orders of F' are free A-orders of rank
equal to the degree of F.

Theorem 16.2.9 Let F = apX"+a1 X" 'Y+ -+a,Y" € A[X, Y] be a non-zero
binary form of degree n > 2, Q a K-algebra, and (« : B) € P'(Q) such that F
is associated with (Q, (a : B)).

(i) Awp)F) is a free A-order of rank n with basis {1,w,...,,w,_1}, where
Wi, ..., Wy-1 and w, = —F(0, 1) are the unique elements of Q satisfying

aF = (BX — a)( X" + 0 X"2Y + -+ w, V'), (16.2.3)
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(ii) We have

wiwj = — Z iy j—kWi + Z Ay j—k Wk (16.2.4)

max(i+j—n,1)<k<i J<k<min(i+j,n)
fori,jel{l,...,n—1}

(iii) Suppose F has discriminant D(F) # 0. Then Q is a finite étale K-algebra,
and

Dojx(1, w1, ..., wa1) = D(F). (16.2.5)

Proof (i). It is clear that wy,...,w,, if they exist, are independent of the
choice of the homogeneous coordinates (« : 5).
Assume for the moment that gy # 0. Then by Lemma [16.1.2] we may take

(a:B)=(8: 1), and we may rewrite (16.2.3) as
OF = (X — V) X" + - + w,Y"7). (16.2.6)

By induction, one easily shows that this relation is satisfied by precisely one
tuple (wy, ..., w,), that is,

wi=ad +a0 "+ +a,40 (=1,...,n). (16.2.7)

Notice that w, = —a, = —F(0, 1).

Write .# = ./”9!1, N = J%g;l)’(p). Then A(g;l)’(F) = A+ /. Since F is as-
sociated with (Q, (4 : 1)) we have Q = K[6], hence (1,6, ...,0" '} is a K-basis
of Q. This implies that 1, wy,...,w,_; are linearly independent over A. Now
statement (i) follows once we have shown that wy,...,w,_; € .4 and con-
versely that every element of ./ is an A-linear combination of 1, wy, ..., w,1.

First observe thatfori=1,...,n—1, j=0,...,n— 1 we have

i-1
Zaka”f—k ifi+j<n-—1,
w§ = k=0 e(F)- .
=Y @t fi+ jzn
k=i
Hence w; € A fori=1,...,n—1.

We now show by induction on i that if £ = Z;ZO b,-af e N ,withby,...,b; €
K, then £ is an A-linear combination of 1, wy, ..., w;. First, let i = 0. Then for
by € A N K we have by € (F) - ., which implies by € A. Now let i > 0 and
assume our assertion is true for all integers < i. From & € (F) - .# we infer
by, ...,b; € (F). Further, we have

n—

i—1
£t = 3o = (D) € -
J=0 :

1
(U

~
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which implies that b;a;/ag € (F) for j = 1,...,n. Hence (b;/aog)(F) € (F).
By an argument similar to that in the proof of Lemma [16.2.1} it follows that
b;/ay is integral over A, hence b;/ay € A by our assumption that A is integrally
closed. By applying the induction hypothesis to & — (b;/ap)w;, it follows that &
is an A-linear combination of 1, wy, ..., w;. This completes our induction step,
and finishes the proof of (i) in the case ay # 0.

Now let ag = 0. There is m € Z such that F(1,m) # 0. Let F/(X,Y) =
FX,mX+7Y) =boX" + -+ b,Y". Then by # 0, and thus, § — ma € Q* by
Lemma[16.1.2] We put 6 := /(B — ma), so that (@ : B — ma) = (6 : 1). Then
F’ is associated with (Q, (6 : 1)). Further, © := A5 (r) equals A1) by
Lemma [16.2.3] Applying the just established (16.2.6) to F”, we infer that O
has A-module basis {1, p1, ..., pn-1}, Where

OF = (X - 0Y) (01 X" + poX"72Y + - + p, Y1), (16.2.8)
with p,, = —b,. Multiplying with 8 —ma, substituting —mX + Y for ¥ and using

F(X,Y) = F'(X,-mX + Y), we obtain an identity of the type (16.2.3), where
wi,...,w, are related to py, ..., p, by

n n
Z WXyl = Z 0iX"(—mX + V).
i=1 i=1

This implies
(Wi, wy) =1, .., p)T, (16.2.9)

where T is a lower triangular n X n-matrix with entries from Z and ones on
the diagonal. Further, w, = p, = —F’(0,1) = —=F(0, 1). Since py,...,p, with
(16.2.8) are uniquely determined, also wy, ..., w, with (I6.2.3) are uniquely
determined. Further, since p,, € A, the elements 1, wy,...,w,—; form an A-
basis of O. This proves (i) in full generality.

(ii). In view of (16.2.3) we have
a(a; + w;) = Pwiy fori=0,...,n, (16.2.10)
where we have set wy = w,+1 := 0. There are y, § € Q such that ya+58 = 1. An

easy computation shows that for i = 0,...,n we have w;+1 = k@, a; + w; = K5,
where k; = 6(a; + w;) + yw;r1. Combined with (I6.2.10) this gives

(ai + WWjs1 = wiyi(aj + wj) fori, j=0,...,n. (16.2.11)

The identities (16.2.4) are easily seen to hold for all pairs (i, j) with i = 0,
j=0,...,norwithi =0,...,n, j = n. Then these identities can be deduced
in a straightforward manner for the other pairs (i, j) by repeatedly applying

(6.2.T1).
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(iii). First let ay # 0. Since D(F) # 0, the polynomial F(X, 1) is separa-
ble, hence Q = K[6] is a finite étale K-algebra. Further, follows from
Corollary[T.5.2](ii). Next, letap = O and let F’, py, ..., p,—1 be as in the proof of
(1) Then D(F/) = D(F) * 0, and DQ/K(], Wi, .. ,w,,_l) = DQ/K(I,p], e :pn—l)
by (1.3.3) and (16.2.9)). This implies again (iii). O

So far, we have defined invariant orders only for non-zero binary forms with
coefficients in an integrally closed domain of characteristic 0. Although not
needed later, for completeness we extend this to arbitrary commutative rings
A and arbitrary binary forms F € A[X, Y], where we allow that F = 0, i.e., all
coefficients of F are 0. We define the invariant A-order of F formally, i.e., by
giving a free A-module basis for it, together with a multiplication table for its
basis elements.

Definition 16.2.10 Let A be an arbitrary commutative ring and F' € A[X, Y] a
binary form of degree n > 2, given by F = 37, a;X""'Y'. Define Ar to be the
A-algebra isomorphism class represented by the A-algebra with free A-module
basis {1, wy, ..., w,-1} where wy, ..., w,—; and w, = —ay satisfy (16.2.4). The
elements of A are called the invariant A-orders of F. [ ]

Theorem [16.2.9] implies that if A is an integrally closed domain of charac-
teristic 0, then the class A defined in Definition [16.2.10] coincides with the
one defined in Definition Hence in this case the A-orders in Ap are
commutative and associative.

We prove that this holds for arbitrary commutative rings A. For this we
have to show that w;w; = wjw; and (w;w;)w; = wi(w;wy) for all i, j, k. Us-
ing (16.2.4), we see that these relations are equivalent to certain identities in
Zlay, . . .,a,). To verify these, we may as well assume that ay, . .., a, are inde-
terminates. Then A’ := Z[ay, ..., a,] is integrally closed and of characteristic
0, and so the orders in A}, are commutative and associative. This implies that
indeed the required polynomial identities in the a; are satisfied.

We now extend Proposition [16.2.8]to arbitrary commutative rings.

Proposition 16.2.11 Let A be any non-zero commutative ring, and F,F’ €
A[X, Y] two GL(2, A)-equivalent binary forms of degree n > 2. Then Ap» = Ar.

Proof Let F’ = ¢Fy withe € A*and U = (954) € GL(2, A), and define the
ring
A" :=Zlay, ... ,ana,b,c,d, e, &', (ad — be)™'].

Clearly, the coefficients ay,...,a, of F’ belong to A”. Put wy := 1, wy :=
1. Choose the invariant A-order of F' with A-basis {1, wy,...,w,—} satisfying
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(16.2.4). It suffices to prove that there are w/, ...,/ _, satisfying (16.2.4) with
ao, ...,a, replaced by aj,...,a,, as well as b;; € A”, b € A”, such that
W, = i bijwj, w; = 325 bUw) for i = 0,...,n — 1. By substituting these
expressions into (I6.2.4)), we can translate the problem into a particular system
of polynomial equations with coefficients in A” to be solved in b;j, b/ € A”.
Since in this system of equations, both the coefficients and the unknowns are
rational functions in ay, ..., a,, &, a, b, c,d, it suffices to verify the existence of
the b;j, b" in the case that ag, . . ., ay, €, a, b, ¢, d are indeterminates. Then A” is
integrally closed and of characteristic 0. Now the existence of b;;, b/ as above

follows from Proposition and Theorem[16.2.9] applied to A”. O

Example Let f = X" + a; X"! +--- + a, € A[X] be a monic polynomial
of degree n > 2 and F(X,Y) = X"f(X/Y). Take the invariant A-order of F
with A-module basis {1, wy, ..., w,—1} satisfying (16.2.7) with gy = 1, and let

w, = —a,. Then wi(w; + a;)) = wiy fori = 1,...,n — 1, and thus, w; =
W +aw ™ +---aiqw fori = 1,...,n by induction on i. It follows that our
invariant A-order has A-module basis {1, w,... ,a)’l"l}, that f(w;) = 0, and

thus, that it is equal to A[w;] = A[X]/(f).

16.3 Binary cubic forms and cubic orders

As mentioned in the introduction, first in a special case in [Delone and Fad-
deev (1940)], and later in full generality in [Gan, Gross and Savin (2002)], it
was shown that taking the invariant order defines a bijection from the GL(2, Z)-
equivalence classes of binary cubic forms in Z[X, Y] to the isomorphism classes
of Z-orders of rank 3. We mention here that this can not be extended to orders
of rank > 3. Simon [Simon (2001)] gave, for n = 4 and n any prime > 5, exam-
ples of number fields of degree n whose rings of integers are not expressible as
the invariant Z-order of a binary form.

We extend the result of Delone et.al. to binary cubic forms over an arbitrary
commutative ring. We mention that this extension follows from a much more
general result of Deligne (unpublished, incorporated in [Wood (2011)]).

Below, A will be an arbitrary commutative ring different from {0}. We allow
a binary cubic form in A[X, Y] to be 0, i.e., all its coeflicients are 0. We denote
the GL(2, A)-equivalence class of a binary form F by [F].

Theorem 16.3.1 Let A be any commutative ring with A # {0}. Then
[F]— Ap

defines a bijection between the GL(2, A)-equivalence classes of binary forms
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from A[X, Y] of degree 3, and the A-algebra isomorphism classes of free A-
orders of rank 3.

Proof We first construct a map in the other direction, i.e., from the A-isomor-
phism classes of free A-orders of rank 3 to the GL(2, A)-equivalence classes of
binary cubic forms, and then show that it is the inverse of the map [F] — Ap.

Let O be any free A-order of rank 3. We construct a basis of © with con-
venient properties. First, let {1, wp, po} be any A-basis of O. Then wypy =
ko + kiwo + kypo with ko, ki,k, € A. Let w := wy — ko, p := po — ki; then
{1, w, p} is an A-basis of O with wp = k € A. Next, we have

W' =l-aw-ap, p°=m—azw— ap,

with [,m, ao, ...,a3 € A. Using (w?)p = w(wp), w(p?) = (wp)p and equating
the coefficients of 1, w, p one infers k = apaz, [ = —apa,, m = —ajas. That is,
for w, p we have the multiplication table

wp = aopas,
w? = —apar — ajw — app, (16.3.1)
p2 = —a|az —azw — ap.

The triple {1, w, p} is also an A[X, Y]-module basis of O[X, Y]. We define the
index polynomial of a polynomial P € O[X, Y] relative to 1, w, p by

11w p(P) := det(Qij)i j=0,1,25 (16.3.2)
where the Q;; are the polynomials from A[X, Y] given by
P = Qi+ Qiw+ Qpp fori=0,1,2.

From elementary row operations, it follows that Iy, ,(P + Q) = I, ,(P) for
any Q € A[X, Y]. We now compute

Il,w,p(pY - U)X)

1 0 0
=0 -X Y
* —611X2 —as Y2 —a0X2 - a2Y2

= apX> + a1 X*Y + XY + a3Y? = F(X, Y).

Let {1, w’, o’} be an other A-module basis of O, satisfying (16.3.1) with by, ..., b3
instead of ay, . .. ,as, say. So

Ly ('Y — ' X) = boX® + b1 XY + b XY? + b3 Y? = F'(X, Y).

On the other hand, we have w’ = k + aw + bp, p’ = | + cw + dp, where
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k,l,a,b,c,d € A and ad — bc € A", since {l,w’,p’} is an A-basis of O. Put
X' i:=aX-cY,Y :=-bX+dY. Thenusing p'Y — w'X = Q + pX' — wY’ for
some Q € A[X, Y] and the product rule for determinants, we have

F'XY) =y @Y —wX') = (ad = be) ' 1) 4 p(wX - pY’)
= (ad - be) ' F(aX - ¢Y,—bX + dY).

This shows that F and F’ are GL(2, A)-equivalent. Consequently, there is a
well-defined map ¢ from the A-isomorphism classes of free A-orders of rank
3 to the GL(2, A)-equivalence classes of binary cubic forms from A[X, Y], de-
fined by taking an A-order O from the given isomorphism class, choosing any
basis {1, w, p} of O satisfying (16.3.1)) for certain elements ay, . .., a3 of A, and
then mapping the given isomorphism class to the GL(2, A)-equivalence class
of F := a0X3 + aleY + (,lzXY2 + 613Y3.

Notice that {1, wy, wy}, with w; = w, Wy := —p — as, is another A-basis of
O, which satisfies with n = 3. Hence O is an invariant A-order of F.
This shows that [F] — Ap is the inverse of . m]
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On the number of equivalence classes of binary
forms of given discriminant

In this chapter, we deduce, among other things, explicit upper bounds for the
number of GL(2,Z)-equivalence classes of binary forms F € Z[X, Y] with
certain properties. We improve and extend results from [Bérczes, Evertse and
Gyory (2004)].

One of our results implies that if O is a given order of a finite étale Q-algebra
Q of degree n, then the number of GL(2, Z)-equivalence classes of binary forms
F e Z[X, Y] with invariant order O is bounded above by 257" In [Bérczes,
Evertse and Gy&ry (2004)] this was proved with a bound 22" and only in the
special case that Q is an algebraic number field. In another result, we consider
binary forms F € Z[X, Y] of given degree n > 3 and given discriminant D(F) =
D # 0, associated with a given finite étale Q-algebra Q. We will see below that
for such binary forms we have D(F) = I’Dq, where I is a positive integer.
Our result implies that the number of GL(2, Z)-equivalence classes of binary
forms with the above mentioned properties is <, . 1?/""~*¢ n Section[17.5]
we give examples which show that this cannot be improved to I” for any y <

In Section we present in a precise form the results discussed above,
together with some other results. In fact, we prove generalizations of these
results over the S-integers of a number field; these are presented in Section
Special cases of these results, with larger bounds, were already proved in
[Bérczes, Evertse and Gyd&ry (2004)]. The basic tool in the proofs of these re-
sults is Corollary [4.3.5]on the number of solutions of systems of unit equations
in two unknowns, which is in turn a consequence of the result of of Beukers
and Schlickewei. Sectioncontains some preliminaries, in Sectionwe
prove some general results over discrete valuation domains, and in Sections
we complete our proofs. In Section we briefly consider binary
forms over integrally closed domains that are finitely generated over Z and
prove some basic finiteness results (i.e., without giving explicit upper bounds

363
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for the number of equivalence classes). Here we combine the techniques from
the previous sections.

17.1 Results over Z

In Definition we have defined, for any integral domain A of charac-
teristic 0, the isomorphism class A of invariant A-orders of a binary form
F e A[X,Y]. In particular, this gives the class Zy of invariant Z-orders of a
binary form F' € Z[X, Y]. From Theorem [16.2.9] (iii) it follows that if O is an
invariant Z-order of F, i.e., if O is in the class Zg, then D(F) = Dg, where Dg
is the discriminant of (a Z-basis of) O. Theorem [I4.1.1)implies, in an effective
form, that for every n > 3 and D # 0, there are only finitely many GL(2, Z)-
equivalence classes of binary forms F' € Z[X, Y] of degree n and discriminant
D. This implies that there are only finitely many GL(2, Z)-equivalence classes
of binary forms in Z[X, Y] with invariant Z-order O. Our first result implies
that the number of these classes can be estimated by a quantity depending only
on n.

Theorem 17.1.1 Let Q be a finite étale Q-algebra with [Q : Q] =: n > 3, and

O a Z-order of Q. Then there at most
25}12

GL(2, Z)-equivalence classes of binary forms F € Z[X, Y] having invariant

Z-order Q.

Recall that by Section[16.3]it follows that for any given Z-order O of a finite
étale Q-algebra of degree 3, there is precisely one GL(2, Z)-equivalence class
of binary forms F € Z[X, Y] with invariant Z-order O.

Let Q be a finite étale Q-algebra of degree [Q2 : Q] = n > 3, and 6 € Q with
Q[8] = Q. The Z-order Zy is given by

Zg={§ € Q: &My S My},

where .} is the Z-module generated by 1,6, ..., @', Recall that two elements
0,0 € Q are GL(2,Z)-equivalent if there is U = (¢%) € GL(2,Z) such that

* /_a6’+b
cO+deQ*and @ = Ord"

Theorem 17.1.2 Let Q be a finite étale Q-algebra with [Q : Q] =: n > 3, and
O a Z-order of Q. Then the set of 0 with

Qo1 =Q, Zy=90 (17.1.1)

. . 2 .
is a union of at most 2" GL(2, Z)-equivalence classes.
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Theorems [I7.1.1] and [T7.1.2] are deduced independently, but in a common
framework. We only observe here that Zy is an invariant order of a binary form
F € Z[X,Y]. Namely, let f € Z[X] be the the minimal polynomial of 6§ with
positive leading coefficient and coefficients having greatest common divisor
1, and define F := Y"f(X/Y). Then F is associated with (€, (8 : 1)), and
A@:1),r) = Ag.

We now consider binary forms of given discriminant. Let F € Z[X, Y] be
a binary form of degree n > 3 with discriminant D(F) # 0. Assume that F
is associated with the finite étale Q-algebra Q (see Definition [[6.1.3)). That is,
if we choose U € GL(2,Q) such that F(1,0) # 0 and put f(X) := Fy(X, 1),
then Q = Q[X]/(f). Then F has an invariant Z-order O of Q. Denote as usual
by Oq the integral closure of Z in , and by Dg, the discriminant of Og. Then
since O is a Z-submodule of Oq we have, in view of Theorem[16.2.9] (iii) and

2.10.3),

D(F) = Do = [Oq : O*Dq.

This shows that there is a positive integer I such that D(F) = I*?Dg. We con-
sider for given / the set of binary forms F' € Z[X, Y] such that

D(F) = I’Dq, F is associated with Q. (17.1.2)

Given a positive integer m, denote by w(m) the number of primes dividing m,
and by 7,(m) the number of ordered r-tuples of positive integers (dy, ... ,d,)
such thatd, ---d, = m.

Theorem 17.1.3 Let Q be a finite étale Q-algebra with [QQ : Q] = n > 3,
and I a positive integer. Then the number of GL(2,Z)-equivalence classes of

binary forms F € Z[X, Y] with (17.1.2)) is at most
‘I"(n, I) = 25"2(1+w(1))‘rn(n—1)/2(1) . IZ/n(nfl)‘

In a less precise form, Theorem states that for every € > 0, the
number of GL(2,Z)-equivalence classes of binary forms F with (I7.1.2) is
<ne [@/nn=D)+e for every € > 0. In Section we construct examples that
show that this can not be improved to [I” with y < ﬁ The idea of the
construction is to fix a binary form Fy € Z[X, Y] of degree n > 3 with discrim-
inant D(Fy) # 0, and then take binary forms F' of the shape (Fy)y, with U a
non-singular matrix with integer entries and determinant # +1.

We can rule out such constructions by imposing a further restriction on the
binary forms under consideration. We call a binary form F € Z[X, Y] minimal
if it can not be expressed as F' = a(Fy)y with F a binary form in Z[X, Y], a a
non-zero integer and U a non-singular 2 X 2-matrix with integer entries such
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that a # +1 or det U # +1. With this extra minimality condition, we obtain an
upper bound <, . I for every & > 0.

Theorem 17.1.4 Let Q, I be as in Theorem|l7.1.3} Then the number of GL(2, Z)-
equivalence classes of binary forms F € Z[X, Y] with

D(F) = IZDQ, F is associated with Q, F is minimal

is at most

2
2511 (1+w(1)) Tn(n— 1)/2(1).

17.2 Results over the S -integers of a number field

We present the generalizations over the S -integers of the results stated in Sec-
tion[I7.1] We fix a number field K and a finite set of places S of K, containing
all infinite places. Let s denote the cardinality of S, and Og the ring of S-
integers in K.

Further, the following notation is used:

- given a positive integer m, we denote by £,,(Os) the number of ideal classes
of Os whose m-th power is the principal ideal class;

- given a finite étale K-algebra QQ, we denote by Oy q the integral closure of
Os in Q, and by dg g the discriminant ideal of Os o over Oy, that is, the ideal
of Os generated by all quantities Dok (w1, ..., w,) for wy,...,w, € Osq,
where n = [Q : K];

- given a non-zero ideal a of Og, we denote by wg(a) the number of prime
ideals of Oy dividing a;

- for any non-zero ideal a of Oy and positive integer r, we denote by 7,(a) the
number of ordered r-tuples (dy, .. ., d,) of ideals of Og such thatd; ---d, = a.

- Og r is the Og-isomorphism class of invariant Og-orders of a binary form
F e Og[X,Y].

Let O be a given Og-order of a finite étale K-algebra Q with [Q : K] = n
and F € Og[X, Y] a binary form with invariant Og-order O. Then F has de-
gree n. Further, by Theorem (iii) we have (D(F))s = dg;0,, where
(D(F))s = D(F)Os is the ideal of Ogs generated by D(F), and where dg,0,
is the discriminant ideal of ©. Hence there is a fixed ¢ depending only on ©
such that D(F) € 60;. Theorem implies that there are only finitely
GL(2, Os)-equivalence classes of such F. Consequently, there are only finitely
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many GL(2, Os)-equivalence classes of binary forms with given invariant Og -
order. We deduce a uniform upper bound for the number of these classes, de-
pending only on n and S, and independent of the given order.

Theorem 17.2.1 Let Q be a finite étale K-algebra with [Q : K] =i n > 3
and O an Og-order of Q. Then the number of GL(2, Oy )-equivalence classes
of binary forms F € Og[X, Y] with invariant Og -order O is at most

5n*s if nis odd, 25"25h2(03) if n is even.

In [Bérczes, Evertse and Gy0ry (2004)] this result was shown in the special
case that Q is a finite extension field of degree n of K, and with bounds 24n’s
(n odd), 2%*"'shy(Os) (n even).

In Section we show that for every even n > 4, there exist finite étale
K-algebras Q with [Q : K] = n and Os-orders O of Q, with the property that
there are at least h,(Og)/n" distinct GL(2, Oy )-equivalence classes of binary
forms F € Og[X, Y] with invariant Og-order O. Hence for even n, the factor
h>(Oy) in the upper bound of Theorem [I7.2.1]is necessary.

The next result deals with elements of a finite étale K-algebra Q. Recall that
two elements 6, 8" of Q are called GL(2, O )-equivalent if there is U = (¢ Z) €
GL(2,05) suchthat c0+d € Q*,and & = Zg:f;' Further, for 6 € Q of degree n
over K we define

Osg:={E€Q: EMy C My},
where .#j is the Os-module generated by 1,6, ..., g1

Theorem 17.2.2 Let Q be a finite étale K-algebra with [Q : K] =:n > 3 and
O an Og-order of Q. Then the set of 6 € Q with

K] =Q, Osy=9 (17.2.1)
is contained in a union of at most
2" hy(Os)
GL(2, Os)-equivalence classes.

In Sectionwe show that the factor /,(Os) in the bound is necessary.

We consider binary forms F € Og[X, Y] of given discriminant. Let Q be
a finite étale K-algebra with [QQ : K] > 3, and F € Os[X, Y] a binary form
associated with Q, that is, if we choose U € GL(2, K) with Fy(1,0) # 0, then
Q = K[X]/(Fy(X, 1)). Then Q has an Os-order O that is the invariant Og-order

of F. By Theorem|16.2.9] (iii) and Proposition[2.10.3] we have
(D(F))s = doj0; = [0s.0: Olg, 050, (17.2.2)
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where [Os g : Do, is the index ideal of O in Oy . This shows that there is a
non-zero ideal J of Og such that (D(F))s = (\styg. We fix a non-zero ideal 3
of Og, and consider the binary forms F € Og[X, Y] such that

(D(F))s = 3*d5q, F is associated with Q. (17.2.3)
For integers n > 3, s > 0 and non-zero ideals J of Oy, put
W(n, 5,3) = 27O (SN (30D,

Theorem 17.2.3 Let Q be a finite étale K-algebra with [Q : K] =: n > 3, and
3 a non-zero ideal of Os. Then the number of GL(2, Os)-equivalence classes
of binary forms F € Os[X, Y] with (I7.2.3)) is at most

Y(n,s,J) ifnisodd, Y(n,s,3I)hy(Os) ifnis even.

In Section [17.5| we show that for even n > 4 the factor h,(Og) cannot
be removed. In terms of J, the upper bound in Theorem is <, k5.6
Ny (3)/m=D+2 for every & > 0. Also in Section [17.5] we show that this can-
not be improved to Ng(3J)” with y < #

The upper bound from Theorem [17.2.3| can be reduced to Ng(3)® for every
& > 0 if we impose a minimality condition on the binary forms under consider-
ation similar to that in Theorem[I7.1.4] But this works only if Og is a principal
ideal domain. A binary form F € Os[X, Y] is called Os-minimal, if it can not
be expressed in the form F = a(Fy)y, where Fj is a binary form in Og[X, Y], a
is a non-zero element of Og, and U is a non-singular 2 X 2-matrix with entries

from Oy such thata ¢ O or U ¢ GL(2, Os).

Theorem 17.2.4 Assume that Oy is a principal ideal domain, and let Q, n, 3
be as in Theorem[I7.2.3] Then the binary forms F € Og[X, Y] with
(D(F))s = SZDS‘Q, F is associated with Q, F is Og-minimal (17.2.4)
lie in at most
25 (s+os g (n—-1)/2(3)
GL(2, Os)-equivalence classes.

Theorems |17.1.1H17.1.4| are immediate consequences of Theorems|17.2.1
17.2.4] respectively.

17.3 Q-forms

In our proofs it will be necessary to keep track not only of binary forms but
also of their zeros. To facilitate this, we introduce below so-called Q-forms. In
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what follows, K is a field of characteristic 0 and Q a finite étale K-algebra with
[Q : K] =: n > 3. We fix an algebraic closure K of K. Denote by x — x@
(i =1,...,n) the K-homomorphisms from Q to K.

Definition 17.3.1 An Q-form is a pair F* = (F, («@:f)), consisting of a non-
zero binary form F € K[X, Y] and a point (a : B) € P'(Q) such that F is

associated with (Q, (@:3)) (see Definition [16.1.3). ]
Recall that this means that if we choose U = (%) € GL(2,K) such that
Fy(1,0) # 0, then Fy(X, 1) is the minimal polynomial of 6 := flf;ffg over K,

and Q = K[6]. We have Fy(X, 1) = a ], (X - 09y with a € K*, hence

n
F=2 n(ﬁ(i)X —a"Y) with 1 € K*.
i=1

The degree and discriminant of an Q-form F* = (F, (a : §8)) are defined by
deg F* :=degF, D(F"):= D(F).

Recall that a non-singular matrix U = (¢ Z) € GL(2, K) induces a bijective
map (U) : P1(Q) —» P'(Q), given by

(UXa:B)=(aa + bB: ca + dp).

For an Q-form F* = (F,(a : B)) and for U € GL(2,K), 1 € K*, we define
AFy, == (AFy,(U ~1Y(a : B)). Notice that this is again an Q-form.

Let A be an integral domain with quotient field K. Two Q-forms F7, F;
are called GL(2, A)-equivalent, notation F7 4 F3,if F5 = e(F})y for some
U € GL(2,A), ¢ € A*. Notice that in this case, D(F;) = nD(F7) for some
neaA.

Definition 17.3.2 An (Q, A)-form is an Q-form F* = (F,(« : 8)) with F €
A[X, Y]. We define the invariant A-order of an (Q2, A)-form F* = (F, (« : §)) by

Ape = Ap)p)

(see (16.2.1)). u
Lemma 17.3.3 Let Fy, F} be two (Q, A)-forms.

(i) Suppose that F}, F; are GL(2, A)-equivalent. Then Ap; = AF;.

(ii) Assume that A is a Dedekind domain and suppose that Fy, F;, are GL(2, A,)-
equivalent for every p € H(A). Then again Apr = Ap;.

Proof Let F = (F;,(a; : B)) for i = 1,2. In the situation of (i) we have
(Fy) = (F3). In the situation of (ii), for every p € Z(A), the ideals of A,
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generated by the coefficients of Fy, resp. F, are equal so that again we have

(F1) = (F3). Now the lemma follows directly from Lemmas|16.2.3|and|16.2.4]
O

We denote by I the 2 X 2-unit matrix. Further, we define

NS(2,A) := {(Z’ Z):a,b,c,deA, det(i Z);to}.

Then for two Q-forms F7, F; we write F} é F3 if F; = a(F})y for some
U € NS(2,A) and non-zero a € A.

In the lemma below we have collected some simple facts. As before, A is
an integral domain with quotient field K, and Q a finite étale K-algebra with
[Q:K]=n2>3.

Lemma 17.3.4 (i) Let F* be an Q-form, U € GL(2,K) and A1 € K*. Then
AFy, = F* if and only if U = pl with p € K* and p" = Al
(ii) Let F}, F be two Q-forms and suppose that F; = Ao(F})y, for some Uy €
GL(2,K), Ag € K*. Then for any other U € GL(2,K), A € K* we have F; =
A(F)y if and only if U = pUq with p € K* and p" = Ao/ A.

A A A
(iii) Let F}, (i = 1,2, 3) be Q-forms such that F < F3, F} < F; Then F7} < F;‘.
A A
(iv) Let F}, F} be two Q-forms. Then F{ < F3, F} < F] & F} 4 F;.

Proof (i). Let F* = (F,(a : B)). Then AFy = F and (U ")a : B) = (a : B).
Consequently, (U)(@? : B0) = (@ : ) fori = 1,...,n. Now (U) defines
a projective transformation on P'(K) having at least three fixpoints, hence it
must be the identity. Therefore, U = pI for some p € K*. So AF;I = F*, which
implies that p"A = 1.

(ii). Let F{ = AF7,. Then (/lol’l)(Ff)UOUfl = F*. Apply (i).

(iii). Obvious.

(iv). < is clear. To prove =, assume F’f é F; F; Q FT. Then there are
Uy, Uy € NS(2,A), ar,ax € A\ {0} such that F = a1(F)u,, F] = a2(F3)y,.
Thus F} = ajax(F})u,u,. Hence by (i), U1Uz = pl, with p € A, and p"aja; =
1. This implies that p, a1, a, € A*, Uy, U, € GL(2, A). Hence F} 4 F3. O

17.4 Local-to-global results

Below we prove some local-to-global results in the case that A is a Dedekind
domain. We denote by Z?(A) the collection of prime ideals of A, and for p €
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Z(A), we denote by A, the local ring of A at p. As before, A has quotient field
K of characteristic 0, and Q is a finite étale K-algebra with [Q : K] = n > 3.
We first prove some results for principal ideal domains.

Lemma 17.4.1 Assume that A is a principal ideal domain. Let . be a finite
subset of & (A). Further, let Fj be an (Q, A)-form, and for p € 7 let F; be an
(€, Ap)-form, such that F, Fy (p € ) are GL(2, K)-equivalent. Then there is
an (Q, A)-form F* such that

*Av % *Av 5
F*~F, forpe s, F' ~F, forpe PA)\7.

Proof By assumption, for each p € .7 there are 4, € K* and V,, € GL(2, K)
such that Fy = A,(Fg)v,. We construct F* of the form b(Fj)y with b € K*,
U € GL(2,K). This F* has the properties stated in the lemma, if b, U satisfy
the following conditions:

be A, forpe P2(A)\S, a;'beA;forpe ., (17.4.1)

U e GL(2,A,) for p e Z(A)\.7, } (17.4.2)

V,'U € GL(2,A,) forp € .7
Since A is a principal ideal domain, the prime ideals in .% are principal, say

' ordy, (ap,)

p; = (p;) with p; € Afori=1,...,t Then clearly, b := [[;_, p; satisfies

(T71).

As for (I74.2), for p € .7, let a,, b, be the columns of V,, and .4; the
Ap-module with basis {a,, b,}. By Proposition there is an A-lattice ./
of the space of column vectors K> such that A,.# = A% for p € Z(A)\ .7,
and A, 4 = A, N, for p € 7. Since A is a principal ideal domain, .# is free
of rank 2, with an A-basis {a, b}, say. Let U be the matrix with columns a, b.
Then it is easily seen that U satisfies (I7.4.2). o

Given an integral domain A and an (Q, A)-form F*, we call F* A-minimal,
A
if every (Q, A)-form F7 with F} < F* is GL(2, A)-equivalent to F™.
Proposition 17.4.2 Assume again that A is a principal ideal domain, and let
F* be an (Q, A)-form. Then the following two assertions are equivalent:
(i) F* is Ay-minimal for every p € P (A);
(ii) F* is A-minimal.
Proof The implication (i)=(ii) is clear. We now assume (ii) and prove (i).
A

Take g € Z(A). Let F; be an (Q, A,)-form such that F; < F*. We have to
prove that F; L p,

By Lemma|17.4.1} there is an (€2, A)-form F7} such that F} 4 F;, and F} o
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F* for p € Z(A) \ {q}. Hence F} A<v F* for every p € &(A). That is, for every
p € H(A) there are non-zero a, € A,, and U, € NS(2,A,) such that F} =
apFy, . By Lemma (ii), the matrices U, (p € H?(A)) are proportional to
one another. Since A is a principal ideal domain, there is a matrix U € NS(2, A),
with entries having ged 1, such that for every p € Z(A) we have U, = ¢, U
with ¢, € K* for p € &(A); but in fact, ¢, € A,, since U, has its entries in A,.
It follows that F| = aF7},, witha = a,c) € A, forp € HP(A). Thatis, a € A, and

A . Loy . .. .
thus, F < F*. But now assumption (ii) implies that F} £ F*, and this implies

Ag o .
that F; '~ F*, as required. m|

In what follows, A is a Dedekind domain with quotient field K of character-
istic 0. We keep our notation that Q is a finite étale K-algebra with [Q : K] =
n > 3. For a positive integer m, we denote by 5,,(A) the number (if infinite to
be understood as the cardinal number) of ideal classes of A whose m-th power
is the principal ideal class.

We define an equivalence relation % for (Q, A)-forms by setting F7 S F 5
if FY, F; are GL(2, Ap)-equivalent for every p € P(A). If two (Q, A)-forms
F T,F; are GL(2, A)-equivalent, then clearly F T é F; If n is odd, then the
converse is also true, but this is not the case if n is even. This is made precise
in the following proposition.

Proposition 17.4.3 Every g—equivalence class of (Q, A)-forms is a union of
precisely r(n,A) GL(2, A)-equivalence classes, where

r(n,A) = hy(A) ifnis even, r(n,A) =1ifnis odd.

We will apply this result in the case that A = Oy is the ring of S-integers in a
number field, in which case h,(A) is finite.
In the proof of Proposition we need some preparations and a lemma.
Let F}, F; be two (Q, A)-forms with F} 2 F3. Thus, for every p € Z(A)
there are U, € GL(2,Ay), &y € A}, such that F; = &,(F{)y,. Choose any
U € GL(2,K), A € K* such that F; = A(F})y. Then by (ii) of Lemma
for each p € Z(A) there is p, € K* such that

Uy=p,U, g =p". (17.4.3)
Define the fractional ideal of A,

a(F;, F) = [ w0 (17.4.4)
peP(A)

This is well-defined, since for all but finitely many p € Z?(A) we have ord, (1) =
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0, whence ord,(p,) = 0. Let A(F7], F3) denote the ideal class of a(F7, F?), that
is, {p - a(F, F3) : p € K™},

The fractional ideal a(F7, F;) depends on the particular choices of U, (p €
P(A)), U, but its ideal class A(F7, F3) does not. Indeed, for p € F?(A), choose
U, € GL(2,A,) such that F} = &(F})y, for some &, € A}, and then choose
U’ € GL(2, K), such that F; = A'(F})y for some A € K*. By (ii) of Lemma
[T7.4.T|there are p}, € K* such that U}, = p,U’ for p € &(A). This gives rise to a
fractional ideal o’ (F}, F3) = [e () P#¥"). Again by (ii) of Lemmal[17.4.1]
there is u € K* such that U’ = pU and A’ = ™" A. This implies for p € Z(A)
that U}, = pjup,' U, hence plup;' € A%, and so ord,(p),) = ordy(py) — ord,(w).
Therefore, o' (F}, F) = u~ a(F;, F3).

Lemma 17.4.4 (i) Let F}, F} be two (Q, A)-forms such that F} & F3. Then
AU(FT, F ;)gc‘i(”’z) is the principal ideal class.

(ii) Let F{, F5 be two (Q,A)-forms such that F; 4 F; and W(FY, F}) is the
principal ideal class. Then F7, F’, are GL(2, A)-equivalent.

(iii) Let F? (i = 1,2,3) be (Q, A)forms with F; & F} & F}. Then (F}, F?) =
WF:, F}) - A(FS, F).

Proof In (i) and (ii), we choose U, € GL(2,Ay), &, € Aj, such that F} =
£y(F)y, forp € #(A), and then U € GL(2,K), A € K* such that F5 = A(F))y.
(i). According to (T7.4.3) we have for p € Z(A), that

ord,(p3) = ordy(det U, - det U™") = ord,(det U™, (17.4.5)
ordp(pg) = ordp(/lagl) = ordy(4), (17.4.6)

and so according to (T7.44), a(F}, F3)* = (detU™") and a(F;, F3)" = (A),
where (a) denotes the fractional ideal of A generated by a. This implies (i).

(ii). Let a(F;, F3) be given by (I7.4.3), (I7.44). Then by our assumption,
a(F}, F3) = (p) with p € K. This implies p,o;1 € Aj for p € F(A). Put
V = pU, p := p~"A. Then F; = u(F})y. Further, by (I7.4.3), we have for
p € P(A), that U, = ppp~'V, &, = (ppp~!)™"u, which implies V € GL(2,A,)
and u € A}. Hence V € GL(2, A) and p € A*. Our assertion (ii) follows.

(iii) Straightforward computation. m]

Proof of Proposition Let € be a g-equivalence class of (Q, A)-forms.
Fix F* € ¥ . Partition ¥ into classes in such a way, that F 1, F5 belong to the
same class if and only if A(F*, F}) = A(F*, F;). By (i) of Lemma in
this way ¢ is divided into at most Agcqn2)(A) = r(n, A) classes. Further, by
(iii) of Lemma two (Q, A)-forms F|, F; € ¢ belong to the same class
if and only if A(F], F7) is the principal ideal class, and by (ii), this holds if
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and only if they are GL(2, A)-equivalent. Hence % is a union of at most r(n, A)
GL(2, A)-equivalence classes.

We still have to show that % is a union of at least r(n, A) GL(2, A)-equivalence
classes. Here, we may assume that n is even, and thus, that r(n, A) = h,(A). Let
F* € €. Let a be a non-zero ideal of A such that a? is principal, say a*> = (d).
Since A is a Dedekind domain, every ideal of A is generated by two elements.
Assume that a = (a, b). Then (a?, b*) = (d), hence there are u, v € A such that
ua® —vb> =d. Let

a b
vb  ua

U, := ( ) F; = d_”/zF’{jn.

We first show that F; € €. Let p € Z(A). The localized ideal A,a is principal,
say generated by e € A,. Then d = (e* for some { € A3}, a,b are divisible
by ein A,, and F = {’"/ZF:_]UG. The matrix e~! U, has its entries in A, and
determinant ' € Aj}. Hence Fy is an (€, A,)-form that is GL(2, A,)-equivalent
to F*. This holds for every p € #?(A). Hence F; € %.

Let o’ be another non-zero ideal of A such that a’? is principal, and choose
a',b',d ,u',v', and define the matrix U, and the Q-form F, completely sim-
ilarly as a,b,d,u,v, U, and F; above. Assume that F;, F;, are GL(2,A)-
equivalent. We show that a, o’ belong to the same ideal class of A. By as-
sumption, there are £ € A*, U € GL(2, A), such that F};, = &(F,);,. This means
that Fy, = AFy; ; for some A € K*. By (ii) of Lemma this implies that
Uy = pU,U for some u € K*. Comparing the first rows of both matrices, we
see that a’, b’ are A-linear combinations of ua,ub and vice versa. Hence the
ideals (a’, b’), (ua, ub) are equal, which means that a, a’ are in the same ideal
class of A. Summarizing, the F;, where a is a non-zero ideal of A such that
a® is principal, all lie in %, and they lie in at least hy(A) different GL(2, A)-
equivalence classes. This completes the proof of Proposition|[I7.4.3] O

We need a variation on Proposition We call 6 a generator of Q if
Q = K[#]. Recall that two generators 6, 6" of Q are called GL(2, A)-equivalent

if there is a matrix U = (¢%) such that ¢ + d € Q" and ¢ = a0+b e
co+d

define another equivalence relation on generators of Q, by setting 6’ R 0ife
is GL(2, Ay)-equivalent to 6 for every p € Z(A).

Proposition 17.4.5 Every g—equivalence class of generators of Q) is a union
of precisely hy(A) GL(2, A)-equivalence classes.

Proof We translate this into a result for Q-forms. Two Q-forms Fy, F7 (so
with the corresponding binary forms having their coefficients in K and not
necessarily in A), are called weakly GL(2, A)-equivalent if G, = A(F})y for
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some A € K*, U € GL(2,A). We define an equivalence relation Lg‘ on the Q-

forms, by setting F % F7 if Fy is weakly GL(2, Ay)-equivalent to F7, i.e., if
there are 4, € K*, U, € GL(2, Ay) with F} = A,(F})y, for every p € P(A).
Let 8 be a generator of Q, and choose a minimal polynomial f € K[X]
of  over K. Let F := Y"f(X/Y). Then F is associated with (Q, (6 : 1)); so
F* := (F,(@ : 1)) is an Q-form corresponding to 6. Notice that F is deter-
mined uniquely up to a scalar. Conversely, every weak GL(2, A)-equivalence
class of Q-forms contains Q-forms F* = (F,(a : B)) with F(1,0) # 0. For
such an Q-form F* we have 8 € Q* by Lemma[I6.1.2] hence F* = (F, (0 : 1)),
where now 6 = a8~! is a generator of Q, and f := F(X, 1) is a minimal poly-
nomial of 6 over K. Two Q-forms F{ = (F1,(6 : 1)), F; = (F2,(@ : 1))
are weakly GL(2, A)-equivalent if and only if F; = A(F})y for some 4 € K*,
U € GL(2,A), and by the definition of F ;; this holds if and only if 6, & are
GL(2, A)-equivalent. This shows that there is a bijection between the GL(2, A)-
equivalence classes of generators of €, and the weak GL(2, A)-equivalence
classes of Q-forms. In the same manner, one shows that there is a one-to-one
correspondence between the -classes of generators of Q, and the " classes of

Q-forms. Hence it suffices to show, that every vg‘-equivalence class of Q-forms
is a union of precisely /4,(A) weak GL(2, A)-equivalence classes.

The proof of this is a modification of the proof of Proposition|17.4.3] and we

. . . A
indicate only the differences. Let F{, F; be two Q-forms with F7 T F 5+ Then

like in the proof of Proposition[I7.4.3] we may choose U € GL(2, K) such that
F = A(F))y for some A € K*, and U, € GL(2,A,) such that F;; = &,(F))u,,
where now &, € K* instead of A;. Again, we have (I7.4.3)), and we define the
fractional ideal a(F7}, F3) by (I7.4.4). The ideal class of a(F}, F3), denoted by
A(F}, F3), again does not depend on the choices of U and the Uy,

. A .

There is an analogue of Lemma [17.4.4| for Wz-equwalence classes, whose
only difference is, that in part (i) one has that A(F7, F. ;)2 is principal instead
of A(F;, F3)&°4"?) In fact, the proof is precisely the same, except that
need not be true, since we now have ¢, € K* instead of A;. Now one con-
cludes in precisely the same way as in the proof of Proposition that a

% -equivalence class of Q-forms is a union of at most /#,(A) weak GL(2,A)-
classes. Conversely, again by following the proof of Proposition one

wA . . . . .
can conclude that the ~-equivalence class under consideration is a union of

at least hp(A) weak GL(2, A)-equivalence classes. The only modifications to
make, are that first z is an arbitrary integer > 3 instead of an even integer, and
second, one has to omit the factor d /2 and take F ni=F Zﬂ. This concludes
our proof. m}
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17.5 Lower bounds

We show that in Theorems [T7.2.1} [T7.2.3] for even n > 4, and in Theorem
[[7.2.2for all n > 3, the factor h,(Os) cannot be removed from the upper bound.
Further, we show that in terms of 3, the upper bound in Theorem@cannot
be improved to Ng(3J)” with y < ﬁ It will be convenient to work with Q-
forms instead of binary forms. The following lemma implies that a binary form

F associated with Q gives rise to at most n" different Q-forms (F, (a : B)).

Lemma 17.5.1 Let K be a field of characteristic 0, and Q a finite étale K-
algebra with [Q : K] =: n > 1. Let F € K[X, Y] be a binary form associated
with Q. Then F has at most n" zeros in P1(Q).

Proof Choose U € GL(2, K) such that Fy(1,0) # 0 and f(X) := Fy(X, 1).
Then Q = K[0], where (a : §) = (U)(@ : 1) and f is a minimal polynomial of 6
over K. The map y +— (U)(y : 1) gives a bijection from the zeros of f in Q to
the zeros of F in P!(Q). By Corollary [1.3.6, the polynomial f has at most n"
zeros in Q. O

Let K be an algebraic number field, S a finite set of places of K contain-
ing the infinite places, and Q a finite étale K-algebra with [Q : K] = n > 3.
Proposition[I7.5.2] Corollary [T7.5.3]and Proposition[T7.5.4)imply that in The-
orems [17.2.1] [T7.2.3] the factor h,(Os) can not be removed if n is even and in
Theorem [T7.2.2)it can not be removed for any n > 3.

Proposition 17.5.2 Assume that n is even. Then there is an Og-order O of Q
such that there are at least hy(Ogs)/n" GL(2, Os)-equivalence classes of binary
forms F € Os[X, Y] with invariant Os -order O.

Proof Choose an (Q, Os)-form F;, and let O be an invariant Og-order of

Fy. Let € be the st-equivalence class of (Q, Og)-forms represented by Fg.

By Lemma [17.3.3] every F* € % has invariant Og-order O. So by Proposi-
tion [T7.43] there are at least h,(Oy) different GL(2, Os)-equivalence classes
of (Q, Og)-forms F* = (F,(a : B)) with invariant Og-order O. Now Lemma
mimplies that there are at least 7,(Os)/n" different GL(2, Oy )-equivalence
classes of binary forms F' € Og[X, Y] with invariant Og-order O. O

Corollary 17.5.3 Assume that n is even. Then there is a non-zero ideal 3
of Og such that there are at least hy(Og)/n" different GL(2, Os)-equivalence
classes of binary forms F € Og[X, Y] that are associated with Q and for which
(D(F))s = 3*dgys.

Proof In view of (T7:2.2)), this holds for the binary forms F from Proposition
@Wlth 3= [OS’Q : D]OS. [m]
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Proposition 17.5.4 Let n be any integer > 3. Then there exists an Og-order
D of Q such that Og g = O for at least h,(Os) GL(2, Os)-equivalence classes
of generators 6 of Q.

Proof Let ) be a generator of Q, let O := Ogy,, and let € be the Ozs-
equivalence class of 6. By Lemma [16.2.5] every 6 € € has Osy = O, and
by Proposition these 6 lie in precisely hy(Os) GL(2, Os)-equivalence
classes. O

Finally, we show that in Theorem [17.2.3| the upper bound for the number
of GL(2, Og)-equivalence classes can not be improved to Ng(3J)” for any y <
2

n(n—1)°

Proposition 17.5.5 There are a constant ¢ > 0 depending only on K, S and
Q and an infinite sequence of ideals 3, of Os with Ng(3,) — o0 asn — oo,
such that for each n there are at least cNg (3,)Y"=D GL(2, Oy )-equivalence
classes of binary forms F € Og[X, Y] such that

(D(F))s = Sibg/s , F is associated with Q.

Proof We fix an (Q, Og)-form Fj = (Fo,(a : B)). For any a,b € Os with
a # 0, we define

1 0

Uas ::( b a

). F,=F}

ab’

We fix a, and investigate for which by, b, the (Q, Os)-forms F;hl, FZ,,’Z are
GL(2, Os)-equivalent. Let b;,b, € Os such that F;bl, F;’hz are GL(2, Og)-
equivalent. Then FZ,;;Z = S(Fz,b.)U for some £ € Og, U € GL(2, Oy). Part
(ii) of Lemma [T7.3.4] implies that Uy, = AU,p, U with 1 € K* and A" = &;
hence 4 € Of. But this implies U;,}yl U,p, € GL(2, Oy), and a straightforward
computation shows that b; = b, (mod a).

It follows that for any fixed, non-zero a € Os, the (Q, Og)-forms FZ,h b e
Ogs) lie in |Og /aOs| = Ns(a) distinct GL(2, Og)-equivalence classes. Then
by Lemma the binary forms F,;, = (Fo)y,, (b € Os), lie in at least
Ns (a)/n" different GL(2, Os )-equivalence classes. All these binary forms have
D(Fop) = a""VD(F,). Write (D(Fo))s = I3dass, 3 = Jpa"" V2. Then
(D(Fyp))s = SZDQ/S for b € Oy, each binary form F,, is associated with
Q, and the binary forms F, lie in at least

Ns(a)/n" > N (3)*"=D

GL(2, Os)-equivalence classes, where the implied constant depends only on
K, S and Q. By letting Ng(a) — oo, we can make Ny (3J) arbitrarily large. O
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17.6 Counting equivalence classes over discrete valuation
domains

Let K be a field of characteristic 0, v a discrete valuation on K, A, the lo-
cal ring of v and Q a finite étale K-algebra. Recall that two Q-forms F7, F;
are called GL(2, K)-equivalent if there are U € GL(2,K), 4 € K* such that
F; = A(F})y. Let € be a GL(2, K)-equivalence class of Q-forms. We consider
all (Q,A,)-forms F* € € (i.e., pairs F* = (F,(a : B)) € € with F € A,[X,Y])
satisfying certain additional constraints, and give an upper bound for the num-
ber of GL(2, A,)-equivalence classes of such (€, A,)-forms.

We start with some notation. Denote by p, the maximal ideal of A,. Given
a non-zero fractional ideal ¢ of A,, we define v(¢c) := r if ¢ = p]. For a finite
extension field L of K, we denote by A, ; the integral closure of A, in L. Recall
that A, 1 is a Dedekind domain with only finitely many prime ideals, i.e., those
occurring in the factorization of p,A, ;. Hence A, . is a principal ideal domain.
The fractional ideal of A, ; generated by a tuple or set .¥ is denoted by ().
For P € L[X|,...,X,] we denote by (P), the fractional ideal of A, ; generated
by the coefficients of P. We repeatedly use that by Corollary (Gauss’
Lemma for Dedekind domains),

(PQ)L. = (P)1(Q). for P,Q € L[Xi,...,X.]. (17.6.1)

Let Q be a finite étale K-algebra with [Q : K] =: n > 3. Denote by x > x®
(i = 1,...,n) the K-homomorphisms Q — K and let G be the compositum of
the images of Q under these K-homomorphisms. We write A, o for the integral
closure of A, in Q and denote by (a4, ..., a,)q the A, o-module generated by
ay,...,a,. Werecall the following easy but useful fact.

Lemma 17.6.1 Let(a : 8) € PY(Q). Then there is u € Q* such that (uer, uf8)q =
(Da.

Proof Assume without loss of generality that Q = L; X --- X L, where
Ly, ..., L, are finite extension fields of K. Then a = (a, ..., ;). 8 = (B1,...,B,)
where «;,8; € A, and at least one of «;,3; is non-zero fori = 1,...,q. For
i =1,...,q there is y; € LY such that (w;a;, u;5;)r, = (1), since A,y is a
principal ideal domain. Hence (ua, uf)a = (1)q, where u = (uy, . . ., tig). O

We denote by b, o/x the discriminant ideal of A, o over A,. We define, for
any two distinct k,1 € {1, ...,n} and any A,-lattice .# of Q, the fractional ideal
of A\’,Gv

d( ) = (&0 -V g e H)g. (17.6.2)

Further, we set dy; := dy(A, ).
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Lemma 17.6.2 There is an ideal 3 of A, such that
1—[ b, = 3% Dya/kAvG.
1<k<I<n
Proof We apply the theory of index forms. Since A, is a principal ideal do-
main, A, is a free A,-module of rank n containing 1, so it has an A,-basis
{1,w,,...,w,). Define the linear forms /% = a)(zk)Xz o+ 0PX, k =

1,...,n). According to Proposition there is a homogeneous polynomial
I €A [X,,...,X,] such that

[T @ =197 = Doyt wn.... )P

1<p<qs<n
Let J := (I)k. The coeflicients of /") — ) generate b,,, and
bk = (Do/k(l, wa, ..., wp))k-
Now our lemma follows easily from (i.e., Gauss’ Lemma). O

Let F* = (F,(a : §)) be an (Q, A,)-form. We choose «, 8 such that

(@,fa = (Da; (17.6.3)
such a choice is possible by Lemma|[I7.6.1] Thus,

n
F=al |B7X-a"Y)
i=1

witha € A,, (@7, =)gfori=1,....n. (17.6.4)

Indeed, we have ('), 8)g = (1)g fori = 1,...,n by (I7.6.3), a € K* since
the pairs (¢, %) are permuted by Gal(G/K), and (a)¢ = (F)g S A, by
(T7.6.1), and so, a € A,.

We define the ideals of A, ;:

du(F*) = (@®BP — a8 (1 <k, l<n, k+]1). (17.6.5)

The pair (@, ) in is determined uniquely by F* up to multiplication
with an element from A’ . The K-homomorphisms x > XD x e X
induce ring homomorphisms from A, g to A, . As a consequence, the numbers
a®pD — oDk are determined uniquely by F* up to multiplication with an

element from A] ;, and so the ideals d(F™*) depend only on F*. Clearly,

EF2 | ) = @F). (17.6.6)

1<k<I<r

Further, if F7 is an (€, A,)-form that is GL(2, A, )-equivalent to F™* then
du(F*) = dy(Fy) for 1 <k<l<n. (17.6.7)
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Indeed, let U € GL(2,A,), € € A} be such that F} = &F7}, and let (a',,B’)T =
U"(a,ﬁ)T. Then

F; = (eFy, (@ : B), (@,8)a = (Da, 2u(F}) = (@PpP - o/Pg®)g,
and thus, bkl(FT) = det U_lbkl(F*) =dw(F*)forl <k<l<n.

Lemma 17.6.3 Let F* be an (Q, A,)-form. Then dy(F*) Cdyfor 1 <k <<
n.

Proof Let F* = (F,(a : B)) with (a,8)q = (1)q, and let k,[ € {1,...,n} with
k < I. Then

0 1) ok k Dyl D ak 1
a®g0 _ o0k = (o® _ oD\gh _ (g _ gy ¢y, -
Let A, p- denote the invariant A,-order of F*.

Lemma 17.6.4 Let F* be an (QQ, A,)-form. Then

du(Ayr) = (Fedu(F*) (1 <k<l<n), (17.6.8)
[ o) = FN " Pou 0, - Ave. (17.6.9)
1<k<I<n

Remark This implies that (F*)g and the ideals d;;(F*) are all determined by
AV,F* .

Proof Let F* = (F,(a : B)) with (a,8)a = (1)o. By Theorem [16.2.9] the
order A, r- = (Ay)@:p)(F)c has an A,-module basis {1, wy, ..., w,_(}, where

aF = (BX —aY) (i X"+ XY + -+ w, Y

and w, = —F(0,1) € A,. Let k, [ be distinct indices from {1, . .., n}. Then using

wﬁ,k) = a)g) we get

(@®pd — o0abx . F

= BX = aPY)a®F — (BPX — P YY" F
n—1

= BPX = aP)("X - V) D (@ - wHxrY),
i=1

By taking the ideals of A, ; generated by the coefficients of the polynomials in

this identity, applying (I7.6.1), and using (a®, 30 = (@, 8D)¢ = (1)g we
obtain

W(F)F)6 = @ =0, 0" -0 )6 = du(A, ),

1
which is (17.6.8)).
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The identity (I7.6.9) is an immediate consequence of (17.6.8] , and
Theorem[16.2.9] (111)

The next result implies that (Q, A,)-forms that lie in the same GL(2, K)-
equivalence class and have equal invariant A,-order, in fact lie in the same
GL(2, A,)-equivalence class.

Proposition 17.6.5 Let F7, F;, be two GL(2, K)-equivalent (2, A,)-forms such
that AV,FT = AV,F;. Then F7, F; are GL(2, A, )-equivalent.

Proof We have F} = A(F})w, with W € GL(2,K) and 1 € K*. Since A, is
a principal ideal domain, we may assume without loss of generality that the
entries of W lie in A, and generate the unit ideal A,. Moreover, the matrix W
can be put into Smith Normal Form, i.e., there are U, U, € GL(2,A,) such
that

1
W=U1W1U2, Witth 2( 0 2)

for some non-zero d € A,. Now clearly, F; := (F])y,, F, = (F;)Uz—l are
GL(2, A,)-equivalent to Fy, F, respectively, and F; = A(F3)w,. So it suffices
to prove that F7, Fy are GL(2, A,)-equivalent. Let F; = (F3,(a : §)). Then
= (F4,(a : B/d)) with F4(X,Y) = AF3(X,dY). Our assumption implies
AV,F; = AV,F:, and we have to show thatd, 1 € A}.
By Theorem the order A, p; = A, r; has A,-module bases

{(Lwi,...,0p-1), Lo, pp-1),
where

aF3(X,Y) = (BX — aV) (o X" + w0 X"72Y + -+ w0, YY),
aFs(X,Y) = ((B/D)X — aV) (1 X" + p2X"2Y + - + p, Y"1,

with w, = —F3(0,1), p, = —F4(0,1). The elements of {1,p1,...,p,-1} are
A,-linear combinations of those of {1,wy,...,w,-;} and vice versa. Using
F4(X,Y) = AF3(X,dY) and the unicity of the w;, p;, we read off

pi=Adw; fori=1,...,n

This implies Ad' € A? fori = 1,...,n — 1, hence A,d € A?. This proves our
proposition. o

Let again F* be an (Q, A,)-form. By Theorem [16.2.9] (iii) and Proposition
[2.10.3] we have

(D(F*))k = da, -/, = [Ava 1 A p- ] Dy0/k,
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where [A, o : A, r+]a, is the index ideal of A, ¢+ in A, . Hence there is an ideal
3, of A, such that
(D(F*))x = 320, 0/k- (17.6.10)

Below, we consider (€, A,)-forms that lie in the same GL(2, A,)-equivalence
class and satisfy (17.6.10) for some given ideal J,, and give an upper bound
for the number of GL(2, A,)-equivalence classes of such forms. We start with
some observations that will be used also later, and then prove some lemmas.

Let again x — x (i = 1,...,n) denote the K-homomorphisms of Q to K
and G the compositum of the images of Q under these homomorphisms. Any
element of the Galois group Gal(G/K) permutes xV, ..., x™_ in other words,

for each o € Gal(G/K) there is a permutation (o(1),...,0(n)) of (1,...,n)
such that

() = x"D forxeQ,i=1,...,n. (17.6.11)

This induces an action on the collection of 2-element subsets (i.e., unordered
pairs) of {1,...,n}, via

o(k,1}) = {ok), (D} (17.6.12)
For any 2-element subset {k, [} of {1,...,n}, let K;; be the field given by
Gal(G/Ky) = {0 € Gal(G/K) : o({k,1}) = {k, 1} }. (17.6.13)

Denote by %}, ...,%; the orbits of the action defined by (17.6.12)). For p =
1,...,t, choose a representative {k,, [,} € €, and let K, := Ky, ;,. Then €}, =
[K, : K], the fields K}, ({k, [} € €),) are the conjugates of K, over K, and

Z[K,, K] = Z %] = Ln(n - 1). (17.6.14)

p=1 p=1

We now prove some lemmas.

Lemma 17.6.6 Fix a non-zero ideal 3, of A,. If F* runs through the (0, A,)-
forms with (I7.6.10), then the tuple of ideals

Ou(F): 1<k<l<n)

runs through a collection of cardinality at most (V(S;l)(;f(ln)k])/ 2).

Proof Let F* be an (Q, A,)-form with (17.6.10). By Lemma there are
ideals ay(F*) of A, ¢ such that

op(F*) = au(F") -y (1 <k<l<n). (17.6.15)
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Combining (T7.6.13)) with (T7.6.10), (I17.6.6), Lemma|[[7.6.2] we get

A =a'3 [ au),

1<k<i<n
hence

[] w2340 (17.6.16)
1<k<I<n
Let {k, [} be a 2-element subset of {1, ..., n}. Since ay(F*)™! = by - du(F*)~' is
generated by

&b _ g0
a®ph — w0

which by (I7.6.13) are all elements of Kj,, the ideal ay(F*) itself is generated
by elements from A, ¢ N Ky = A, g, Further, it is clear that o(ax) = 5,0
for o € Gal(G/K).

For p = 1,...,1, there exists a, € K, such that .1, = (a,,)Kp, since AV,K/,
is a principal ideal domain. Then a; = (o(a,))¢ for some o € Gal(G/K)
whenever {k, [} € €),. This shows that the ideals (ap)k, (p = 1,...,1) uniquely
determine ay(F™) and hence dy(F™). The numbers o(a,) corresponding to the
sets {k,l} € €, are precisely the conjugates of a, over K. So by (I7.6.16) we

(f € AV,Q)9

have
t t
SvAv,G C ]_[ l_[ A = (]_[NKP/K(ap))G,

p=1 (k1EE, p=1

ie.,
t
3 [_[ Nk, /K(a,,))K. (17.6.17)
p=1

Forp =1,...,t we have a factorization (ap)Kp = ]—[fﬁl ‘BEV”", where By, ..., ‘Bg[_

are the prime ideals of Ak, and the w,; are non-negative integers. Let f,; de-
note the residue class degree of B; over p. Let r := w(J,). Then by (17.6.17)

and Proposition 2.7.1]

t 8p £
~ p:lzizlfﬂiwpi
Sy =P, Cpy >

implying

The tuple w(F™) := (wp; : p=1,...,t,i = 1,...,g,) determines the ideals
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(ap)k, (p = 1,...,1), hence dy(F*) (1 < k < I < n). Further, by the
number of entries in w(F™) is

(K, : K] =in(n-1).

t t
=1

ng§

p=1 P

It follows that the number of possibilities for w(F™) is at most (r;?rgﬁ)%z) Our

lemma follows. m]

Let € be a GL(2, K)-equivalence class of Q-forms, and 3, a non-zero ideal
of A,. Consider the (Q, A,)-forms F* with

F* €%, (D(F))x=3",q/k. (17.6.18)
Lemma 17.6.7 There are (Q, A,)-forms F7, ..., F;, with

v(3,) +nn—-1)/2
"= 2( n(n - 1)/2

such that for every (Q, A,)-form F* with (17.6.18)) there isi € {1,...,m} with

Fr 2P
Proof We start with the following observation: if Fy, F; are Q-forms with
F} = A(F})y forsome 4 € K*, U € GL(2, K), then the matrix U is not uniquely
determined, but from Lemma[I7.3.4] (i) it follows that the parity of the integer
v(det U) is uniquely determined.

We define the following relation on the set of (Q, A,)-forms with (I7.6.18):
Fy ~ F3if b;;(F7) = ;;(F3) for 1 < i < j < n and if there exists 4 € K~
and U € GL(2, K) with v(det U) = 0 (mod 2) such that F; = A(F})y. This is
easily seen to be an equivalence relation, and from the previous lemma and the
two possibilities for the parity of an integer, it follows that there are at most
Z(V(BZ)(:f({;E)/ 2) equivalence classes for this relation.

Let {G7,...,G;,,} consist of precisely one (€2, A,)-form from each equiva-
lence class. Fixi € {1,...,m}. Let G} = (G, (; : ;) with (@i, Bi)a = (1)a. By
we have

Gi=a ]_[(ﬁﬁ")x - a®y) with g € A,.
k=1
The quantities a;,3; are linearly independent over K since G; is a minimal
binary form of (a; : ;) over K and degG; = n > 3. Let V; be the K-vector

space with basis a;,8; and let .#; := V; N A, . Then .#; is an A,-lattice of V;,
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and since A, is a principal ideal domain, it must be a free A,-lattice of rank 2.
Let {y;, 6;} be an A,-basis of .#; and put

Fi = (F;,(y;i: 6)) with F; := l_[((sl(,")x —yPy).
k=1

Then F; is an (Q, A,)-form. Since a;,8; € M;, there are a,b,c,d € A, such
that a; = ay; + b6, ; = cy; +do;. This shows that G} = a,(F})y, where q; € A,
and U; = (¢ Z) is a non-singular matrix with entries from A,. Hence F; A< Gr.
We show that F7, ..., F,, satisfy the conditions of our lemma.

Let F* be an (Q, A,)-form with (I7.6.18)). Suppose that F* belongs to the
class represented by G}. Then F* = A(G})y with 4 € K* and U € GL(2, K)
such that v(det U) is even, i.e. det U = ge* with & € A and e € A,. Replacing
U by e7'U, and A by de" as we may, we see that there is no loss of generality
to assume that det U € A} Let U = (%) and write

(aa; + bB;, ca; + dB;) = u(a, B),

where u € Q* and (@, B)q = (1)q. Thus, F* = (F, (a : B)). Now for each pair
of distinct indices k,/ € {1, ...,n},

du(F*) = (@B = aPpP)g

= UG - et )G - (@B - af"B)6

= g ou(G))
since detU € Aj. The binary forms F*, G; belong to the same class, so in
particular dy(F*) = dy(G}). Hence (u¥u)g = (1) for each pair of distinct
indices k,! € {1,...,n}. This implies (u®); = (1)g for k = 1,...,n, hence
(a = (Do

Put @’ := aa;+bB;, B := ca;+dB;. Then F* = (F,(a’ : B)), (@,8)a = (1)a
and moreover, ', 8 € .#;. Using that o, 8’ are A,-linear combinations of y;, §;
A, .

one shows, similarly as was done above for G, that F; < F*. This completes
the proof of our lemma. O

We need the following elementary lemma. Let 7 be a local parameter for
v.Forl=0,1,2,..., let ] be a full system of representatives for the residue
class ring A, /v’ = A,/(x'), where .%, = {0}.

Lemma 17.6.8 Let W € NS(2, A,). Then there exist U € GL(2,A,), k,l € Zxg
and ¢ € %) such that
k0
WU = ( - )

C T
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Proof Left to the reader. O

Proposition 17.6.9 (i) The (Q, A,)-forms that satisfy and are A,-

minimal lie in a union of at most
) v(3,) +nn—-1)/2
nn—-1)/2
GL(2, A,)-equivalence classes.
(ii) Assume that Nv := |k,| is finite. Then the (Q, A,)-forms with m lie in
a union of at most
V) +nn = DI2) . v mn-n)
nn-1)/2

GL(2, A,)-equivalence classes.
Proof (i) Clear from Lemma|[17.6.8]

(it) Let F} € {F{, ..., F},}. We estimate the number of GL.(2, A,)-equivalence

classes of (Q,A,)-forms F* that satisfy (I7.6.18), and for which F} 2P

Take such F*. Then F* = b(F})w, where W € NS(2,A,) and b € A,. We
may assume that the entries of W generate the unit ideal of A,. Using that
b = en' for some & € A}, t € Zso, and Lemma[17.6.7] it follows that F* is
GL(2, A,)-equivalent to Fj = '(F;)w,, where

k
le(” Ol) with k, [ € Zsg, ¢ € ..
C T

So the GL(2,A,)-equivalence class of F* is determined by (¢,k,/,c), and it
suffices to estimate from above the number of possibilities for this quadruple.
We have (D(F))k = S(Z)VDV’Q/[( where 3, is an ideal of A,. Hence

(D(Fy)[D(F))k = (3,/30,)> 2 32
Further,
D(F(*)) — ﬂ'(z”‘z)(det Bl)n(n—l)D(F;).
Hence
@2n =t +n(n - Dk + 1) = 20(3,/Jp,) < 20(3,).
This shows that 7 is uniquely determined by k, /, and that

2v(3,)
nn-1)

k+l<r:=
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Further, for given k, [ there are at most |A,/ pf,l = NV possibilities for ¢. Hence
for the tuple (¢, k, [, ) we have at most

r r—1 r

ZNVI( 1)= Z(r—l+ DNV
=0 0 =0

=NV Z(r — 1+ DNV < NV Z(h + Ny
1=0 h=0

B NV .
T Ao =

k=

possibilities. This shows that the (€, A,)-forms F* with and F; L
lie in at most 4Nv" GL(2, A,)-equivalence classes. Multiplying this with the
upper bound for m from Lemma|[17.6.7] part (ii) of Proposition imme-
diately follows. O

17.7 Counting equivalence classes over number fields

Let K be an algebraic number field, and S a finite set of places of K, containing
all infinite places. By v ¢ S’ we indicate a finite place of K outside S. The
local ring of v ¢ § is given by A, := {x € K : |x|, < 1}. This is just the local-
ization of Oy at the prime ideal {x € Oy : |x|, < 1}. For any finite extension L
of K, we denote by A, ; the integral closure of A, in L.

Let Q be a finite étale K-algebra with [QQ : K] =n > 3. Forv ¢ S, we denote
by A, q the integral closure of A, in Q. Given an (Q, Og)-form F* (i.e., a pair
(F,(a : B)) where F € Og[X, Y] is a binary form associated with (Q, (a:5)) we
denote by Og p- its invariant Og-order. Analogously, we denote the invariant
A,-order of an (Q, A,)-form F* by A, p-. If O is an Og-order of Q, then for
v ¢ S, its localization O, := A, 9D is an A,-order of Q.

The following proposition, which is an application of Corollary will
be crucial. It looks somewhat complicated, but it allows us to deduce all our
theorems, and it also has the potential of further applications.

Proposition 17.7.1 Let s :=|S|, n:=[Q : K] > 3, and let O be an Og-order
of Q. Then the set of Q-forms F* with the property that for every v ¢ S there is
an (Q, A,)-form F;, such that

F; is GL(2, K)-equivalent to F*, A, p: = Oy, (17.7.1)

. . 2_ .
is a union of at most 2"~ GL(2, K)-equivalence classes.
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We recall some facts from projective geometry. For the moment, let K be
any field of characteristic 0, Q a finite étale K-algebra with [Q : K] =n > 3,
and x - x? (i = 1,...,n) the K-homomorphisms of Q to K. Denote by G
the compositum of the images of Q under x — x (i = 1,...,n). For a point
P = (@ : B) € P(G), and a projective transformation (U) € PGL(2,G) =
GL(2, G)/G", represented by a matrix U = (4 Z) € GL(2, G), say, we have

(UYP = (aa + b : ca + dp).

The cross ratio of four distinct points Py, P», P3, P4 € PY(G) is given by

cr(Py, Py, P3, Py) = (@182 — a2B1)(@3fs — 054’33)’
(@183 — a3f1)(@2fs — asf32)

where P; = (a; : B;) for i = 1,2,3,4. For any distinct P, P, P3 € PY(G)
and any distinct Qy, Q, Q3 € P'(G) there is precisely one (U) € PGL(2,G)
such that (U)P; = Q; for i = 1,2, 3. Further, for any distinct Py, P, P3, P4 €
P!(G) and distinct Oy, Oz, O3, Q4 € P'(G), there is (U) € PGL(2, G) such that
(U)P; = Q;fori = 1,2,3,4if and only if cr(Py, Py, P3, Py) = cr(Q1, Q2, O3, O4).

If n > 4, then for an Q-form F* = (F,(a : B8)), and any distinct indices
i,j,k,le{l,...,n}, we define

criju(F*) == cr(Py, Pj, Py, Py),

where P, = (@™ : M) forh = 1,...,n.
We first prove some lemmas.

Lemma 17.7.2  Let F}, F} be two Q-forms.
(i) Assume n = 3. Then F, F; are GL(2, K)-equivalent.
(ii) Assume n > 4. Then F7, F; are GL(2, K)-equivalent if and only if

cr123,-(FT) = cr123,-(F;) fOF = 4, A (X

Proof Write F; = (Fy,(a : B)), F; = (F2,(y : 6)), and put P; := (' : ),
Qi =0V :6M)fori=1,...,n.

We start with the proof of (ii). Let n > 4. First assume that F}, F; are
GL(2, K)-equivalent, say F; = A(F])y for some 4 € K*, U € GL(2,K).
Then (U) maps Q; to P; for i = 1,...,n. Hence cripi(F}) = cripz(F}) for
i=4,...,n.

Conversely, assume that cryps;(F}) = crisi(F3) fori = 4,...,n. There is a
unique transformation (U) € PGL(2, G) such that Q; = (U)P; for i = 1,2, 3.
Then also (U)P; = Q; for i = 4,...,n. We normalize the matrix U such that
one of its entries is 1. We use the action given by (17.6.11)), i.e., oo(x?) =
XD forx € Q,i = 1,...,n, o € Gal(G/K). Thus, for & € Gal(G/K) we
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have o(P;) = Py, 0(Q) = Q) fori = 1,...,n, hence (c(U))P; = O,
for i = 1,...,n. By the unicity of (U), we have for o € Gal(G/K) that the
matrix o(U) is a scalar multiple of U, but then in fact o7(U) = U since one of
the entries of U is equal to 1. Hence U € GL(2, K). Now both F; and (F,)y
have zeros Py,..., P,, therefore, both F; and (F,)y are constant multiples of
[T7,(B”X — @”Y), which is a binary form in K[X, Y]. This shows that F; and
F are GL(2, K)-equivalent.

We prove (i). There is a unique transformation (U) € PGL(2, G) such that
(U)P; = Q; fori = 1,2,3. By a similar reasoning as above, one shows that U
can be taken from GL(2, K), and that F}, F7; are GL(2, K)-equivalent. ]

We now assume again that K is a number field, S a finite set of places of
K of cardinality s containing all infinite places and Q a finite étale K-algebra.
Further, we keep the notation introduced above.

Part (i) of Lemma implies Proposition at once if n = 3. So
henceforth we assume n > 4. Let O be an Og-order of Q, and denote by .% (D)
the set of Q-forms satisfying the condition of Proposition

Given points P; = (a; : 8;) € P/(G) (i = 1,2,3,4) we have the fundamental
identity, which was also at the heart of the proofs in Chapters that is,
A12A34 + A23A41 + A31A24 = 0, where A,‘j = (Y,ﬂj - Cl’jﬁ,'. This translates into an
identity for cross ratios,

cr(Py, Pa, P3, Py) + cr(Py, Py, P3, P2) = 1.
In particular, for any Q-form F* we have
crizi(F*) +crypp(F*) =1 (i=4,...,n). (17.7.2)

We want to apply Corollary to (T7.7:2). To this end, we need an upper
bound for the rank of the multiplicative subgroup of (G*)?"~° generated by the

tuples
(CI‘123,'(F*), CI'],'32(F*); i=4,..., n) (F* S E(D)) (17.7.3)

Lemma 17.7.3 The multiplicative group generated by the tuples (17.7.3) has
rank at most %n(n —1)s.

Proof Given the action of Gal(G/K) on {1,...,n} defined by (I7.6.11), con-
sider the induced action on the 2-element subsets of {1,...,n} defined by
(I7.6.12), and for any 2-element subset {k, I} of {1,...,n}, let K}, be the field
defined by (17.6.13). We denote by Oy, the integral closure of Og in Kj;, and
by O, its unit group. Since K}; has at most [K}; : K]s places lying above those
in S, we have

rank Oy, < [Ky : K]s — 1. (17.7.4)
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Let again 4}, . .., %; be the orbits of the action on the 2-element subsets, and
for p = 1,....t, choose a representative {k,,[,} € ¢, and put K, := K, .
Op = Ok,,,l,,v Op = Okp,l,'

Assume that #(9) ;It 0. We fix Fy = (Fo,(ao : Bo) € F(D), and let
F* = (F,(a : B)) vary through .7 (D). We observe that for every F* € .7 (D),
in (I7.7.1) we can choose F; = F* for all but finitely many v ¢ S. Indeed,
if v does not correspond to one of the finitely many prime ideals of Og in
the factorizations of D(F) or the discriminant ideal dg,¢,, then D(F) € A} and
O, = A, . By Theorem[16.2.9] we have for these v that also A, - = A, o = O,.

Forv ¢ S, let F} = (F,,(a, : B,)) be an (Q, A,)-form with (I7.7.1)), where
we have assumed that «,, 8, generate the unit ideal of A, . There are 4, € K*
and U, € GL(2,K) such that F};, = A, F ;‘] We may choose U, such that its
entries lie in A, and generate the unit ideal of A,. As observed above, we may
choose F;, = F* and thus for U, the identity matrix for all but finitely many
v ¢ S. Further, for all but finitely many v ¢ S, the pair a, S generates the unit
ideal of A, o, and so for these v we may also choose @, = @, 5, = 8. Forv ¢ §
we have (a : B) = (U, )(«, : B,), which means that there is k, € Q* such that

(5) = U(3). (17.7.5)

Here, for all but finitely many v, U, is the identity matrix, and «, = 1.

Assume that Q = L X---X Ly, where Ly, ..., L, are finite extension fields of
K. Denote by h the lowest common multiple of the class numbers of K, Ly, ..., L.
Since det U, = 1 for all but finitely many v, there is a fractional ideal a of Og
such that aA, = (det U,)A, for v ¢ S. The fractional ideal o” is principal, say
equal to A0y for some A € K*. Thus,

(detU,)'A, = 1A, forv ¢sS. (17.7.6)

Every fractional ideal b of Os o can be expressed as a direct sum b; & - - - @ by,
where b; is a fractional ideal of Ogy,, for i = 1,...,q. It follows that b =
b} @ --- @b is principal. Since k, = 1 for all but finitely many v ¢ S, there
is a fractional ideal b of Oy q such that bA, o = kA, o for v ¢ S. Now b is
principal, say equal to uOg o for some p € Q*. That is,

KfAV,Q =uA,q forvegsS. (17.7.7)

Let {k, [} be a 2-element subset of {1,...,n} and define

(@®ph — gDy
PTG

Ou(F*) =
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the right-hand side is invariant under Gal(G/Ky) so Oy (F*) € Ky. By (I7.7.3)-

(T7777) we have

. a®g0 _ ok \2h
Ou(F)A, G = (u) Avg

KPKD det U,
= (@B — "BV A6 = do(F),
where D, (F7) is the ideal of A, generated by aik),B(Vl) - a(vl)ﬁik). By Lemma
[I7.6.4], this ideal depends only on O,. This holds for all v ¢ S. Hence the ideal
O (F*)O0y; depends only on O.
Repeating the above argument with our fixed F|; € .#(9D) instead of F*,
defining Ao, o, O (Fy) similarly to A, u, @ (F*), we obtain

Ou(F*)On = O(Fy)Ou,

and thus
Ou(F™) . -
——— =1 gu(F") € Oy
Ou(Fy) “ “
Since
cr; 'kl(F*)Zh _ ®lj(F )®kl(F )
! O (F*)O ;(F*)

and likewise for Fj, we obtain

(mMWﬁ_%WMMﬂ
criju(Fy))  ea(F9)e(F*)
for all distinct i, j, k, [ € {1,...,n}.

Let I'; denote the multiplicative subgroup of (G*)""~D/2 generated by the
tuples (ey(F*) : 1 < k <1 < n), for all F* € (D). It is straightforward to
check that if o~ € Gal(G/K) maps {k,, [} to {k, [}, then o(ek,1,(F*)) = eu(F*),
ie., &, (F*) (p =1,...,1) determine all &,(F™). Hence the map

(17.7.8)

(xg:1<k<l<nH (xkl,zl, e ,xkhl,)
defines an injective group homomorphism
I = 0] x--xO0;. (17.7.9)

Let I'; € (G*)**% be the image of I'; under the group homomorphism
(x:1<k<l<n)me-

Then by (T7.7.8) we have

(cr123i(F*), CI'],‘32(F*) = 4, . ,I’l) el forF*' e E(D),

X12X3;  X1iX23 .
——, —— 1 i=4,...,n].
X13X2i  X13X2i
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where I is the multiplicative group generated by the tuple
(criosi(Fp),crim(Fy) : i=4,...,n)
and by the 2h-th roots in (G*)** of the elements of I',. Invoking (17.7.9),

(T7-74) and lastly (17.6.14), we get

t
rank I, <rankI'y < Z rank O;
p=1

< Z([K,, :Kls—1) < dn(n—1)s—1.
p=1

Hence I has rank at most %n(n — 1)s. This proves our Lemma. ]

Proof of Proposition[I7.7.1] Let I be the multiplicative group generated by
the tuples (I7.7.3). We may view (I7.7.2) as a system of n — 3 equations as
considered in Corollary 4.3.3] with solution tuples taken from I'. Now Corol-
lary [4.3.3]and the estimate for rank I from the above lemma give that there are
at most

28(n(n—l)s/2+2n—7) < 2(5:12—24)3

distinct tuples among those in (17.7.3), as F* runs through .Z (O). By Lemma
[T7772] this gives an upper bound for the number of GL(2, K)-equivalence
classes of F* € #(0). O

17.8 Proofs of the Theorems

Let as before K be a number field, S a finite set of places of K of cardinality
s, and Q a finite étale K-algebra with [Q : K] =: n > 3. We observe that
it suffices to deduce upper bounds for the number of GL(2, Og)-equivalence
classes of (Q, Oy )-forms. We define an equivalence relation % on the (Q, Os)-

forms by setting F* 2 G* if F* and G are GL(2, A,)-equivalent for all v ¢ S'.

Further, define r(n, Og) := 1 if nis odd and r(n, Os) := hy(Os) if n is even.

Proof of Theorem[I7.2.1] Let O be an Os-order of Q, and consider the (Q, Os )-
forms F* with invariant Og-order

Os - = 90. (17.8.1)

By Lemma |16.2.2} this implies A, - = A,O =: O, forv € Mg \ S. So
by Proposition [17.7.1] these F* lie in at most 265" ~24s GL(2, K)-equivalence

classes. By Proposition [I7.6.10} any two GL(2, K)-equivalent (Q, Os)-forms
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with (T7.8.1) are in fact GL(2, A,)-equivalent for every v ¢ S. That is, any

two GL(2, K)-equivalent (Q, Os)-forms with (T7.8.1)) are 2 equivalent. By
Proposition |17.4.4] each Ozs-equivalence class is a union of precisely r(n, Os)
GL(2, Oy )-equivalence classes. Hence the (Q, Og)-forms with invariant Og-

order O lie in at most 25”2Sr(n, Os) GL(2, Os)-equivalence classes. This proves

Theorem [[7.2.11 O

Proof of Theorem[I7.2.2] Let again O be an Og-order of Q, and consider
those 6 € Q with

K[0]=Q, Osy=90. (17.8.2)

Let f € K[X] be the monic minimal polynomial of 8 over K, put F := Y" f(X/Y)
(so that F is associated with (Q, (6 : 1))) and define the corresponding Q-form
F* := (F,(0 : 1)). For every v ¢ S, choose u, € K* such that F, := u,F is
in A,[X, Y] and its coefficients generate the unit ideal (1) = A,, and let F} :=
(F\, (6 : 1)). Now the invariant A,-order of F, is by definition A, g.1)(1) = Ay
and by Lemma[16.2.2]this is equal to A, D := O,. So we have

AV,F\’T = Dv forves.

Now Proposition[17.7.1|implies that such F* lie in at most 2" ~29s GL(2, K)-
equivalence classes. Further, by Proposition[17.6.5] if we take any two GL(2, K)-
equivalent such F*, then for every v ¢ S, the corresponding F; are GL(2, A,)-
equivalent, and hence the corresponding 8 are GL(2, A, )-equivalent. This shows

that the 6 € Q with (T7.82) lie in at most 267295 2 -equivalence classes,
where 6, Ozs 0, if 6,,6, are GL(2, A,)-equivalent for every v ¢ S. By Propo-

sition |17.4.5| each %S—equivalence class of 6 is a union of /,(Os) GL(2, Os)-
equivalence classes. This implies Theorem[17.2.2] m]

Proof of Theorem[I7.2.3] Let 3 be an ideal of Og, and consider the (Q, Os)-
forms F* with

(D(F*))s = b0 (17.8.3)

Let T be the set of places of K, consisting of the places in S and of the prime
ideals dividing 3. Similarly as for S, we denote by Or g the integral closure of
Or in Q, and by dr the discriminant ideal of O7 g over Or. Further, we write
(a)r for the fractional ideal of Or generated by a@. Then any (€, Og)-form F*

with (T7-83) satisfies

(D(F*)r =dra.

By Theorem[16.2.9](iii), the discriminant ideal of the invariant Oz-order O p-
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of F* is equal to drg, which implies that Oy - = Orgq. Now Proposition
17.7.1} and the obvious estimate |T| < s + ws (3J), imply that the (Q2, Og)-forms

F* with (T7.833) lie in at most

(5 =24)(s+ws (3) (17.8.4)

GL(2, K)-equivalence classes.

Consider the (Q, Os)-forms F* with (I7.8:4) lying in a single GL(2, K)-
equivalence class. Then for v ¢ T, these forms satisfy A, p» = A, o, hence by
Proposition[I7.7.1] they lie in a single GL(2, A, )-equivalence class. Proposition
[[7.6.9](ii) implies that for v € T\ S, these forms lie in at most

ord,(3) + n(n — 1)/2

n(n B 1/2 . Nk(p)ZOrdp(S)/n(nfl) (1785)

gW) = 8(

GL(2, A,)-equivalence classes, where p is the prime ideal of O corresponding
to v. It follows that the (Q, Os)-forms F* that satisfy (I7.8.3) and lie in a single
GL(2, K)-equivalence class, in fact lie in at most

[ 8 = 8012 (@)Ns (320D (17.8.6)
veT\S

Ozs—equivalence classes. By Proposition|17.4.3] each of these classes is a union
of r(n, Os) GL(2, Oy )-equivalence classes. By multiplying this with the bounds
from (T7.8:4), (I7.8.6)), we obtain that there are at most

2 R R o~ ~\2 ~1
2IresQr 1 (I)Ns (3" Vi, Og)

GL(2, Os)-equivalence classes of (€, Os)-forms with (T7.83). This implies
Theorem [17.2.3] O

Proof of Theorem We are now considering minimal (Q, O )-forms sat-

isfying (T7.83). By Proposition [I7.4.2] such forms are A,-minimal for every

v ¢ S. Now the rest of the proof is the same as that of Theorem [I7.2:4] except
that by Proposition[I7.6.9] (i) we have instead of (I7.8.5) the bound

ord,(3J) + n(n —1)/2

’ = 2 P

g ( n(n—1/2

Further, we have r(n,Og) = 1 since Og is assumed to be a principal ideal
domain. O
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17.9 Finiteness results over finitely generated domains

In this section we consider binary forms with coefficients in an integrally
closed integral domain A of characteristic 0 that is finitely generated over Z
(i.e., as a Z-algebra).

Let K be the quotient field of A, Q a finite étale K-algebra with [Q : K] =n
and ¢ a non-zero element of A. We have shown that if K is a number field and
A the ring of S-integers in K for some finite set of places S, then there are
only finitely many GL(2, A)-equivalence classes of binary forms F' € A[X, Y]
with D(F) € §A* that are associated with Q. For arbitrary domains A with
the conditions given above this is no longer true. As a consequence of Lemma
17.5.1} a binary form F € A[X, Y] associated with Q gives rise to at most n"
(Q, A)-forms F* = (F, (a : B)), so to give a counterexample it suffices to show
that for some Q, ¢ there are infinitely many GL(2, A)-equivalence classes of
(Q, A)-forms F* with D(F*) € 5A*.

In general, for finitely generated domains A and non-zero 8 € A, the residue
class ring A/SA need not be finite. Choose such A and 8 (e.g., A = Z[t],B = ¢
with ¢ transcendental over Q). Fix an (Q, A)-form F* and consider all (Q2, A)-
forms F; = F, wherea € Aand B, = (}, 2) These forms all have discriminant
B~V D(F*). According to the definition, if a, b € A then F;,, F}; are GL(2, A)-
equivalent if and only if F; = &(F})y for some ¢ € A*, U € GL(2,A), and by
Lemma|I7.3.4]this holds if and only if there is p with B, = pB,U, p" = €. An
easy computation shows that this is the case precisely if a = b (mod ). So the
(Q, A)-forms F}, (a € A) lie in infinitely many distinct GL(2, A)-equivalence
classes.

We now state and then prove some finiteness results that do hold true over
arbitrary integrally closed domains of characteristic O that are finitely gener-
ated over Z. So let A be an integrally closed integral domain that is finitely
generated over Z, with quotient field K of characteristic 0. Denote by &?(A)
the collection of minimal non-zero prime ideals of A. Since by Proposition
A is a Krull domain, there are discrete valuations ord, (p € Z?(A)) satis-
fying the conditions of Definition[0.5.2] Let A, = {x € K : ord,(x) > 0} denote
the local ring of ord,.

Definition 17.9.1 Let F € K[X, Y] be a binary form. We say that F' has good
reduction at p € ZP(A) if it is GL(2, K)-equivalent to a binary form F, €
A,[X, Y] with ord,(D(F,)) = 0. We say that F has good reduction outside a
finite subset . of Z(A) if it has good reduction at every p € Z(A)\ .. =

Theorem 17.9.2 Let G be a finite extension of K and let . be a finite subset
of P(A). Then the binary forms F € K[X, Y] of degree > 4 such that F factor-
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izes into linear forms over G and has good reduction outside . lie in finitely
many GL(2, K)-equivalence classes.

In the proof we need some lemmas. Let .# be the collection of discrete
valuations on G that lie above those in {ord, : p € Z?(A)} and let J be the
collection of discrete valuations on G that lie above those in {ord, : p € .¥}.
Define

I'={xeK: V(x)=0forVe.Z\TJ).
Lemma 17.9.3 T is a finitely generated abelian group.

Proof LetJ ={Vy,...,V,}. The setT is clearly a group under multiplication.
Denote by Ag the integral closure of A in G. Recall that x € A if and only if
ord,(x) > 0 for p € #(A). Together with Proposition [2.6.3] this implies

Ag={xeG : V(x)=0for Ve .Z).
Further, by Corollary Ay is a finitely generated group. The map x

(Vi(x),..., Vi(x)) defines a homomorphism from I' to Z' with kernel Ag. Tt
follows at once that I' is finitely generated. O

Let F € K[X, Y] be as in the statement of Theorem Then we can
write F = a[[L,(8iX—a;Y)withn>4,a € K*and @;,8i € Gfori=1,...,n.
Let P; = (a; : 8;) € P{(G) (i = 1,...,n) and define the cross ratios

crij := cr(Py, Pj, Py, Py) (1 <14, j,k, 1 <n, i, j kI distinct). (17.9.1)
Lemma 17.9.4 Let i, j, k, [ be distinct indices from {1, ...,n}. Then
Clijk € T.

Proof Letp e HP(A)\ 7. Then F is GL(2, K)-equivalent to a binary form
Fy € Ay[X, Y] with D(F,) € A}. By Proposition 2.6.3] the integral closure A, g
of A, in G is a principal ideal domain. As a consequence we can write F, as

n
Fy =] [BipX - aip¥)
i=1

where a;,,B8i, (i = 1,...,n) are in A, . Put A;;, = a1,8;, — @B, for
i,j=1,...,nwithi # j. Then the A;;, are all elements of A, ; with
2 *
[] &2, =DF)ea;,
1<i<j<n
hence A;;, € A;‘G fori,j =1,...,nwithi # j. Now since F is GL(2, K)-
equivalent to F,, we may assume, after reordering the pairs (@;,,8ip) (i =
1,...,n), that there is a projective transformation on P'(G) mapping the point



17.9 Finiteness results over finitely generated domains 397

Pi=(a;:Bi)to Q; = (a;p : Bip) fori=1,...,n Leti, j,k, [ distinct indices
from {1, ..., n}. Since projective transformations preserve cross ratios, we have

Aij,vAkl,v
AikpAjip

which by Proposition [2.6.3|means that V(cr;j) = 0 for each valuation V on G
lying above ord,. But this holds for all p € &?(A) \ .. Hence cr;ji; € T. O

criju = cr(Qi, Qj, Ok, O)) =

€A

Proof of Theorem[I7.9.2] Let F € K[X,Y] be a binary form as in the state-
ment of Theorem We first show that the degree of F can be bounded
from above in terms of G and .7

Let cr;j; be the cross ratios as defined in (I7.9.T). Then from the identities
crigzi +cryzp = 1 (i = 4,...,n) and Lemma it follows that n — 3 is
bounded above by the number of solutions of

x+y=1inx,yel, (17.9.2)

which, by Theorem[d] 1 and Lemma[T7.9.3] is finite. Hence n can be bounded
from above in terms of I', hence in terms of G and ..

We may now restrict ourselves to binary forms F' € K[X, Y] of fixed degree
n > 4. Then F is associated with a finite étale K-algebra Q that is isomorphic
to a direct product of extension fields of K that are contained in G and the
sum of whose degrees is n. This leaves only finitely many possibilities for Q.
So we may restrict ourselves to binary forms associated with a given finite
étale K-algebra Q with [QQ : K] = n. But then it suffices to show that the
Q-forms F* = (F,(a : B)) such that F has good reduction outside . lie in
only finitely many GL(2, K)-equivalence classes. We observe here that the K-
homomorphisms of Q have their images in G, since the binary forms with
which Q is associated can be factored into linear forms over G.

Let x = x (i = 1,...,n) denote the K-homomorphisms of Q to G. Take
an Q-form F* = (F, (a : B)) such that F has good reduction outside .. Then
F = a[lL,(B7X - oY) with a € K*. Let cr;u(F*) := cr(P;, P}, Py, P)),
where P; := (@ : pP) fori = 1,...,n. By Lemrna the pairs of cross
ratios (crizsi(F*), criz(F*)) (i = 4,...,n) are all solutions to (17.9.2). Using
again Theorem A1 and Lemma[17.9.3] it follows that the tuple of cross ratios
(crip3i(F*) : i = 4,...,n) lies in a finite set depending only on I', hence only
on G and .. Now Lemma(I7.7.2](ii) implies that indeed there are only finitely
many possibilities for the GL(2, K)-equivalence class of F*. O

We keep our assumption that A is an integrally closed integral domain of
characteristic O that is finitely generated over Z. Denote by K the quotient field
of A and let Q be a finite étale K-algebra with [Q) : K] =: n > 4.
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Theorem 17.9.5 Let O be an A-order of Q. Then the binary forms F €
A[X, Y] with invariant A-order O lie in only finitely many GL(2, A)-equivalence
classes.

In the proof we need some facts about divisors on A. A (multiplicative)
divisor of A is a formal product

a= ]_[ [p]™

peP(A)

where the n, are integers, at most finitely many of which are non-zero. We
write ord,(a) for n,.

The divisors of A trivially form a multiplicative group, which we denote by
I(A). A principal divisor of A is a divisor of the shape [@] := [T e 5(4)[P]"%®
where @ € K*. For a divisor a of A and @ € K*, we write aa for the product
divisor [a] - a.

The principal divisors of A form a subgroup of /(A), which we denote by
P(A). The quotient CI(A) := I(A)/P(A) is called the divisor class group of A.
We mention that in the case that A is a Dedekind domain, there is an obvious
isomorphism between the group of fractional ideals of A and the divisor group
of A.

Proposition 17.9.6 The group CI(A) is finitely generated.
Proof This is a result of Roquette [Roquette (1957)]. O

For a positive integer m, denote by 5,,(A) the number of divisor classes of A
whose m-th power is the principal divisor class.

Corollary 17.9.7  For each positive integer m, the quantity h,,(A) is finite.
Proof Immediate from Proposition O

The last auxiliary result we need is a local-to-global result for (2, A)-forms.
We define an equivalence relation 2 on the set of (Q, A)-forms by defining
Fi 2 F3 if F} is GL(2, Ap)-equivalent to F for every p € Z(A).

Lemma 17.9.8 Each é-equivalence class of (Q,A)-forms is a union of at
most r(n, A) GL(2, A)-equivalence classes, where r(n,A) = 1 if n is odd, and
h(A) if nis even.

Proof 1If A is a Dedekind domain, this follows directly from Proposition
If A is an arbitrary integrally closed domain of characteristic 0 that
is finitely generated over Z, then one can verbatim copy the part of the proof

of Proposition |17.4.3| where it is shown that a given ~-equivalence class € is
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a union of at most r(n, A) GL(2, A)-equivalence classes, except that one has to
replace everywhere ‘fractional ideal’ by ‘divisor’ and ‘ideal class’ by ‘divisor
class’. |

Proof of Theorem[17.9.3] Suppose there is a binary form F € A[X, Y] with
invariant A-order O. Then by Theorem[16.2.9] O is a free A-module with basis
{1,wi,...,wy—1} such that D(F) = 6 := Dqk(l,w1,...,ws-1). This shows
that F has good reduction outside ., where . consists of those minimal
non-zero prime ideals of A such that ord,(6) # 0. Further, F factorizes into
linear factors over G, where G is the compositum of the images of Q under its
K-homomorphisms. Now Theorem implies that the binary forms F' €
A[X, Y] with invariant order © lie in only finitely many GL(2, K)-equivalence
classes.

We continue with (Q, A)-forms. By Lemma[I7.5.1] a binary form F € A[X, Y]
gives rise to at most n" (Q, A)-forms F*. Hence the (€, A)-forms with in-
variant order O lie in only finitely many GL(2, K)-equivalence classes. Let
F* = (F,(a : B)) be such an (Q, A)-form. By Theorem [16.2.9] the order O is
a free A-module with basis {1, wy, ..., w,-1} where wy,...,w,-; depend only
on F* and not on the choice of a domain A containing the coefficients of F.
So for p € Z(A), the invariant Ap-order A p- of F* is a free Aj-module with
the same basis {1, w1,...,w, 1}, i.e., Ayp+ = A,O. Hence if F}, F; are two
GL(2, K)-equivalent (Q2, A)-forms with the same invariant A-order, then for ev-
ery p € (A) they have the same invariant A,-order, and so by Proposition
they are GL(2, A,)-equivalent. It follows that the (Q, A)-forms with in-

variant A-order O lie in finitely many é—equivalence classes.

By combining this with Corollary and Lemma we infer that
the (Q, A)-forms with invariant A-order O lie in only finitely many GL(2, A)-
equivalence classes. This clearly implies Theorem[17.9.5] O

17.10 Notes

We mention some other counting results for binary forms. For integers n > 3, and
positive reals y, Q and v with 0 < v < n — 1 we denote by N(n,y, Q,v) the number
of binary forms F € Z[X, Y] of degree n such that H(F) < Q and 1 < |[D(F)| <
yQ?'~2-%_ Building further on work of [Bernik, Gétze and Kukso (2008)], the following
was proved in [Beresnevich, Bernik and Gotze (2015), Thm.1]: there is y(n) > 0 such
that for every sufficiently large Q and every v with 0 < v < n — 1 one has

N(I’l, ’)/(}’l), Q’ V) > Qn+l—(n+2)v/n

where the constant implied by the Vinogradov symbol depends on 7 only.
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Further applications

In this chapter, we discuss two applications of the results from the previous
chapters. The first application is concerned with obtaining non-trivial lower
bounds for the minimal distance between two roots of a given polynomial.
Part of our discussion has been taken from [Evertse (1993)]. The second ap-
plication gives an effective proof of the Shafarevich conjecture in the case of
hyperelliptic curves. Here we follow [von Kinel (2014a)].

18.1 Root separation of polynomials

Let f € Z[X] be a separable polynomial of degree n > 2. Then f has » distinct
roots in C, say «ay, ..., a,. Define the minimal root distance of f by

sep(f) := 1513}1,, i — . (18.1.1)

Denote by H(f) the height of f, i.e., the maximum of the absolute values of its
coeflicients, and by D(f) the discriminant of f. From an elementary result of
Mahler [Mahler (1964b)] it follows that

sep(f) > c(mID(HI'"PH(H'™, (18.1.2)

where c(n) is an effectively computable positive number depending only on #.
Since D(f) is a non-zero integer, this implies that

sep(f) = c(mH(f)'™". (18.1.3)

Our interest is in obtaining general lower bounds for sep(f) with a better de-
pendence on H(f). This problem was inspired by the paper [Mignotte and
Payafar (1978)]. From work of Schonhage [Schonhage (2006)] it follows that
(T8:1.3) is best possible in terms of H(f) if n = deg f < 3. On the other hand,

400
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by combining ideas from [Evertse (1993)] with the results from Chapters [Ef],
of the present book it is possible to improve (I8.1.3) for polynomials of
degree n > 4.

In Subsection we state our results for polynomials with coefficients
from Z and give a brief overview of related results, in Subsection we
state extensions for polynomials with coefficients from a number field and with
other absolute values, and in Subsections we give the proofs. In
Subsection [I8.T.3] there is an overview of related literature.

18.1.1 Results for polynomials over Z

In this section, we state some results about lower bounds for the minimal root
distance of a polynomial f € Z[X]. We first deal with polynomials of degree 2
or 3. Two polynomials f, g of degree n are called GL(2, Z)-equivalent if f(X) =
+(cX+d)"g((aX+b)/(cX+d)) for some matrix (¢ Z) € GL(2,Z). The following
result implies that (T8.1.3)) is best possible in terms of H(f) if n = deg f < 3.

Theorem 18.1.1 Letn € {2,3} and let fy € Z[X] be any separable polynomial
of degree n. Assume that fy has a real irrational root if n = 3. Then there are

an effectively computable number c(fy) > 0, and infinitely many polynomials
f € Z[X] such that

sep(f) < c(fo)H()'™, f is GL(2,Z)-equivalent to f.

The case n = 2 is easily dealt with by taking polynomials of the shape
f(X) = X*’g(m + X~') (m € Z). The case n = 3 was proved by Schonhage
[Schonhage (2006)], using continued fractions. In Subsection [T8.1.2] we for-
mulate an extension of this result where we consider polynomials with coeffi-
cients in a number field, and the minimal root distance is taken with respect to
an arbitrary absolute value. This extension is proved in Subsection[I8.1.3]

We now consider polynomials of degree n > 4. We state two results.

Theorem 18.1.2 Let G be a finite, normal extension of Q, and n an integer
> 4. There is a number Ci]"e“(n, G) > 0 with the following property: for every
separable polynomial f € Z[X] of degree n with splitting field G we have

sep(f) = C(n, G)H(f)' /42, (18.1.4)

This is a consequence of Theorem from Chapter It is a slight
improvement of [Evertse (1993), Thm. 4]. The constant Ci"(n, G) can not be
determined effectively from the method of proof.

The next result gives a lower bound for sep(f) where we do not have to fix
the splitting field of f.
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Theorem 18.1.3 Let n be an integer > 4. There is an effectively computable
number Cgﬁ(n) > 0 with the following property: for every separable polyno-
mial f € Z[X] of degree n we have

sep(f) = CSF(m)H(f)! " (log 3H(f))"/ 109, (18.1.5)

This is a consequence of Theorem[I4.1.1]

In the next subsection we state generalizations of Theorems [I8.1.2] [I8.1.3]
to polynomials over number fields. These will be proved in Subsection[I8.1.4]

Inspired by Theorems [I8.1.2] [I8.1.3] we would like to pose the following
conjecture.

Conjecture 18.1.4 There are positive numbers C(n), a(n) depending only on
n such that for every separable polynomial f € Z[X] of degree n > 4 we have

sep(f) = C(mH(f)' ™.

18.1.2 Results over number fields

Let K be a number field of degree d. For v € M, denote by K, an algebraic
closure of the completion K, of K at v. Then | - |, has a unique extension to
K,, which we denote also by | - |,. Given a polynomial P € KJ[X,...,X,] we
denote by |P|, the maximum of the |- |,-values of the coefficients of P. As usual,
the absolute height of P € K[X{, ..., X,] is defined by

H(P) = ( ]_[ max(1, |P|v))1/ ‘

vEMy

Let f € K[X] be a separable polynomial of degree n, i.e., with n distinct
roots in some extension of K. For v € M, we define the v-adic minimal root
distance of f by

sep,(f) := min lay — @l (18.1.6)
I<i<j<n
where ay,, . .., @y, are the distinct roots of f in K,.

We start with deducing a generalization of Mahler’s inequality (T8.1.2). We
assume now that f has its coefficients in the ring of integers Ok of K. Let S
be a finite set of places of K, containing all infinite places. Denote by ay the
leading coefficient of f. The constants below implied by >, are effectively
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computable, and depend on » only. Then we have

nmin(l,sepv(f)) > 1_[ min iy — @l
s

i
ves e L<i<j<n max(1, |a;l,) max(1, |al,)

v, — ajvlv
=[]
max(l, |aiv|v) maX(l’ |ajv|v)

veS 1<i<j<n

_ DU
ves (laol, T2, max(l, lal))
12
>, % by Proposition[3.5.3|
LI
and thus
(T minc1,sep, () ™ 0 Ns @Y 8! (18.1.7)
vesS
Since f € Ok[X], we have Ng(D(f)) > 1, implying
([ minct.sep, ()" 0 HPY'™ (18.1.8)

veS
The next result implies that this is best possible in terms of H(f) if n < 3.
Two polynomials f,g € K[X] of degree n are called GL(2, K)-equivalent if
8(X) = AcX +d)" f((aX + b)/(cX + d)) for some (¢ Z) € GL(2,K)and 1 € K*.

Theorem 18.1.5 Letn € {2,3} and v € Mg. Further, let fy € Okx[X] be any
separable polynomial of degree n such that fy has a root from K, \ K ifn = 3.
Then there are an effectively computable number c(K,v, fy) > 0, and infinitely
many polynomials f € Og[X], such that

sep, (N < (K, v, f)H()'™,  f is GL(2, K)-equivalent to f.

The proof, given in Subsection [I8.1.3] uses the geometry of numbers from
Section We will show in Subsection [I8.1.3] that the theorem becomes
false if we allow deg fy = 3 and f; has no root from K, \ K.

We next consider polynomials of degree n > 4.

Theorem 18.1.6 Let n > 4, let G be a finite normal extension of K, and
let S be a finite set of places of K, containing all infinite places. Then there
is a number C;“eﬁ(n, K,G,S) > 0, such that for every separable polynomial
f € Okl[X] of degree n with splitting field G,

(1—[ min(1, sepv(f)))]/d > C;neﬁ(n, K, L’S)H(f)l—n+n/42.

ves
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This result is a slight improvement of [Evertse (1993), Thm. 4]. The theorem
is proved in Subsection The main tool is Theorem [I5.1.2] The number
C;“eﬁ(n, K, G, §) can not be effectively computed from the method of proof.

In case that we do not fix the splitting field of the polynomial under consid-
eration, we have:

Theorem 18.1.7 Let n > 4 and let S be a finite set of places of K con-
taining all infinite places. Then there is an effectively computable number
C*"(n, K, S) > 0 such that for every separable polynomial f € Ox[X] of degree
n,

( 1_[ min(1, sepv(f)))l/d > Ciﬁ(n, K, S)H(f) "(log 3H(f))"/10m-9

ves

The proof is also given in Subsection[I8.1.4] Here, the main tool is Theorem

1421

18.1.3 Proof of Theorem [18.1.3]

Let again K be a number field of degree d. Denote by Dy the discriminant of
K, and by ry, r, the number of real, resp. complex places of K. For any finite
place v of K, denote by |K*|, the group of values of | - |, assumed on K*.

It will be convenient to use a notion of v-adic minimal root distance of a
binary form. Let F € K[X, Y] be a binary form of degree n > 2 with non-zero
discriminant. Take v € K and choose a factorization

F=ua ﬁ(afivx - B ),

i=1

of F over K,, where a € K*. Then the minimal v-adic root distance of F is
given by
. |a’ivﬁjv - a’jv,Bivlv

homsep,(F) := min . (18.1.9)
P 1<% max (@ ly: [Bivly) max(a uhy. Bl)

This is independent of the choice of the factorization of F. Further,
homsep,(bF) = homsep,(F) forb € K.

We state the lemmas needed in the proof of Theorem [I8.1.5] The first is an
effective version of the Chinese Remainder Theorem.
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Lemma 18.1.8 Let C, (v € Mx) be positive reals, such that

C, € |[K*|, for every finite place v of K,

C, =1 for all but finitely many v € Mk,
d

[ ] ¢ = (3aeimyip'?).

veMyg

Further, let a, € K, (v € Mg) be elements such that a, = 0 for all but finitely
many v. Then there exists x € K such that

x—a,l, <C, forve Mg.

Proof This follows at once from a result of McFeat [McFeat (1971), Thm.
8]. A weaker result, also sufficient for our purposes, was obtained in [Mahler
(1964a), Thm. 3]. O

Recall that the homogeneous height of P € K[X|,...,X,] with P # 0 is
defined by

1/d
H™™(P) := ( ﬂ Pl) "
veMg
Lemma 18.1.9 For every non-zero P € K[Xy,...,X,], there is b € K* such
that

bP € Ok[Xi,...,X,], H(OP) < |Dg|'**H™™(P).
Proof By Corollary|13.2.3] there exists b € K* such that
bl, < [P, if v is finite,

sv) -, .. .
b, < |P|;1(IDKII/MHh"m(P))v 7 it vis infinite,

where s(v) = 1 if v is real and s(v) = 2 if v is complex. This b satisfies the
conditions of our lemma. m]

Proof of Theorem[@] We fix a separable polynomial fy € Ok[X] of de-
gree n € {2,3} which has a root in K, \ K if n = 3. The constants implied by
<, > occurring below will be effectively computable, and depend on K, v, fj
only. We index places of K by w.

Let Fy := X"fo(X/Y). Recall that a binary form F is GL(2, K)-equivalent
to Fy if there are u € K* and U € GL(2, K) such that F = u(Fy)y. We first
observe that it suffices to show that there are infinitely many binary forms
F € Okl[X, Y] such that

homsep, (F)"/Y < H(F)'™", F is GL(2, K)-equivalent to Fy.  (18.1.10)

Indeed, let F be one of these binary forms. First choose k € {0, ..., n} such that
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F(1,k) # Oand let F{(X,Y) := F(X,kX + Y). Then choose [/ € {0,...,n} such
that F1([,1) # 0 and let F»(X,Y) := F1(X + 1Y, Y). Then F»(1,0)F,(0,1) # 0
and so we have

n
Fr=a H(X = YY),
i=1

where a € K* and yy,, . .., ¥n, are distinct, non-zero elements of K,.
Now let f1(X) := F2(X, 1), f2(X) := F»(1,X). Then f; has roots yi,, ..., Vuw
and £, has roots yl‘vl, e y;vl. One easily shows that for any non-zero o, 8 € K
la — Bl

> min(1, @ - Bl,, a =871

max(1 )y max(L, [y 1T el =AY

Indeed, assuming without loss of generality |a], < |5],, one easily proves this

inequality by distinguishing the cases ||, < %, Bl < 2;lal, < %, |8l, > 2; and
|, > %, 18, > %, say. This implies

[yiv — 7jv|v
homsep (F;) = min
pV( ) I<i<jsn max(1, |yiv|v) max(l, |7jv|v)

> min(1, sep,(f1), sep,(f2)).

Consequently, if F satisfies (I8-1.10), then there is f € {f}, f>} such that
sep,(f)"/? < homsep, (F»)"/¢ < homsep, (F)"/? < H(F)'"™ < H(f)'™.

Clearly, if the binary form F has its coefficients in Ok and is GL(2, K)-equivalent
to Fy, then f € Og[X] and f is GL(2, K)-equivalent to fy. Moreover, if F runs
through an infinite set then so does f.

We start with the case n = 2. By Corollary[13.2.3] there exist infinitely many
numbers § € K* with 6], < 1 for w € Mg \ {v}. For every such 6 we define
Foo(X,Y) := Fo(X + 6Y,Y). By Lemma [I8.1.9] there is a scalar multiple Fj of
Fop with Fy € Og[X, Y] and H(Fp) < H™((Fy)g). Thus, we obtain infinitely
many binary forms Fy € Ok[X, Y].

Over E, the polynomial f; can be factored as ao(X — a1,)(X — @»,). Then

Fog = ap(X — (@, — )Y )X — (a2 — O)Y).
Now by Proposition [3.5.3] we have

|alv - aZVlv

h F = h F =
omsep.(F) = homsep.(Fos) = L T T = 61,y - max(1, [azy — O

-1
< |Gl

Since fy € Ox[X] we have |Fygl,, < 1 forw € Mg \ {v} and in fact < 1 if w is
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finite. This shows that

-1
homsep, (Fg) << ([ | IFoshs) = H™™(Fos) ™ < H(Fg)™.

weMg

As we observed above, there are infinitely many binary forms among the F.
This settles the case n = 2 of Theorem[18.1.3]

Now let n = 3. We apply Theorem [I3.2.4] By assumption, fy € Og[X] is
a separable cubic polynomial with a root in K, \ K. Let S be the finite set of
places of K, consisting of v and of all infinite places of K. For w € §, let a;,
(i = 1,2, 3) denote roots of fy in K_W, and assume that o, € K, \ K.

Our construction starts with taking

6 e K* with|g, > 1.
Define linear forms
Iy = 0X — ), Ly =60 (X —ayY) (i=2,3),
Ly =X—-a;,Y WeS\{},i=1,2,3).

For each w € §, the system {/,,,, b, [3,,} is K,,-symmetric in the sense of Sec-
tion Define the following convex bodies ,, ¢ K2 (w € S):

G 1= {x € K} ¢ ()l < 1 fori=1,2,3],

and let € := [],,es %, Denote by A1, A, the successive minima of €. Then by
Theorem [13.2.4] we have

1/d
DAy < (an) , Where R, := 1213}23 [ det(Li, Ljw)lyw-
weS -

A straightforward computation shows that R,, < 1 for w € S. It should be
observed here that in the estimation of R,, the terms depending on 6 cancel
out. So we have in fact

LA < 1. (18.1.11)

Choose linearly independent vectors X, X, € 0% such that x; € A;€ for j =
1, 2. This means that

i Phy < A forwe S, i=1,2,3, j=1,2,

where s(w) = 1 if w is real, s(w) = 2 if w is complex, and s(w) = 0 if w is
finite. By Corollary[T3.2.3] for j = 1,2 there is non-zero a; € Oy such that

lajhy < A7, Jajlh, < 477 forw e S\ ).
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It follows that y; := a;x; (j = 1,2) are linearly independent vectors of O3,
such that fori =1,2,3, j = 1,2,

a(yply < A9, oyl < 1forw e S\ {v).

We want to construct new vectors z;, Z, such that |/,,(z,)|, has about the same
size as |[1,(z1)|,. Put
1
wi =yl

since @1, € K, \ K, we have u; > 0. By Lemma|[I8.1.8] there is m € Og such
that

‘ I1v(y2)
m—
I(y1)

With this choice of m, it is clear that

<1, Iml,<1 forweS\ {v}.

v

Iml, < (A1)

Now take z; := yy, z; := y» — myy, and put yp := A;A/u;. Then z,,2, are
linearly independent vectors in Og, and

@Dl = w1, @)l < uf,

li(z))l, < A4 fori=2,3, (18.1.12)

l(22)ly < (max(da, |m|v/11))d < ud fori=2,3.
Further,

@)y <1 forweS\{v},i=1,2,3,j=1,2. (18.1.13)

The construction of z;, z; depends on the number § € K* chosen above. Let
71 = (a1, by), 22 = (az, by) and define

F(),g(X, Y) = Folai X + arY, b1 X + sz).

Thus, for w € Mg,

3

Fog = ag 1—[ (a1 = aiwb )X + (a2 — aiwb)Y).
i=1

By Lemma|18.1.9|there is a scalar multiple Fy of Fyy with Fy € Og[X, Y] and
H(Fy) < Hh"m(Fo,g). ‘We show that homsepV(Fe)l/d < H(Fy)™2.
Put

m;y, = Max (lal = @iwbilw, laz — aiwb2|w) weS,i=12,3, ] =1,2).
Then by Proposition [3.5.3| we have

|F()’g|w < MyyMo,,M3,, forw e S. (18114)
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By (I81.12) we have
my, < 10, 1, my, < |6l,ud fori=2,3. (18.1.15)
Further, by (I8.1.12) and (T8.1.11),

laiby — asbyl, = |det(lyy, ) 11(20)lay(22) — by(20)]1,(Z2)]y
< (i)' = (M) < 1,

and likewise
d
mp,my, <K ()" < 1, myms, < 1.

Together with (T8:1.14) this implies

. laiby — axby|\lay, — ajy
homsep,(Fy) = min M
1<i<j<3 miyn jy,

-1 -1 -2
< (mgyms,)” < (moymg, - myymy, - myms,) < |[Fogl,”
The inequalities (TS.T.13), (I8.1.14) imply

[Foelw << my,my,ms, < 1 forweS \ {v}. (18.1.16)

Further, since aj,as,b1,b, € Og and fy € Ok[X], we have |Fygql,, < 1 for
w € Mg\ S. Hence

homsep,(Fa) < ( | | 1Fosl) = H™"(Fo)™ < H(Fa ™,
weMyg
which is what we were aiming at.

It remains to show that if 6 runs through the elements of K with |6], > 1,
then Fy runs through an infinite set of binary forms. Assume the contrary.
Then there are a binary form F € Ok[X, Y], and an infinite sequence {6;};7,
of elements of K with |6|, — oo, such that the corresponding binary forms
Fy, are all equal to F. Let zy; = (ax1,br1), Zio = (axe, bry) be the linearly
independent vectors from O% satisfying (I8.1.12)), (I8.T.13) with 6 = 6, and
let Uy := (Zi: Zg ). By construction, Fyg, = (Fo)y, and F = Fy, = u(Fo)y, for
some u; € K*. Let ay, az, a3 be the roots of f; in some finite extension of K.
Then F splits into linear factors over this extension, say

3
F = l_[(ﬁiX - 7Y,
i=1

After taking a subsequence of the 6;, we may assume that
(@i : 1) =(Up(yi : Bi) fori=1,2,3,

where (Uy) is the projective transformation defined by U,. But this implies
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that the projective transformations (Uy) are all the same, i.e., there is a matrix
U = (j ) such that for each k there is py € K* with Uy = pxU. Then
Fog = p(Fo)y fork=1,2,....

In (18.1.15) we have

< < ()" < 1.
So we have
loely max(lay — a1,b1ly, lazh — apbal) < 16, — 0

as k — oo. The second factor on the left-hand side is positive, since det U # 0.
Hence |otl, — 0 as k — oo. On the other hand, by we have for
w €S \ {v}, that
ol (Fo)ule = 1(Fogle < 1,

while for w € Mg \ S we have the same inequality but with < 1 instead of
< 1 since Fyg, has its coefficients in Og. Taking S 2 S to be the finite set
of places w at which |(Fy)yl, # 1, we obtain that |ox|, — 0 as k — oo, |kl
remains bounded as k — oo for w € S’ \ {v}, while |, < 1 for all k and all w
outside S’. But then, [],,cp, loxlw — 0 as k — oo, which is impossible by the
Product Formula. m|

We now show that Theorem [I8.1.5| becomes false if deg fy = 3 and there is
v € S such that fy does not have a root from K, \ K. In fact, we show that for
every separable cubic polynomial f € Og[X] with no zero in K, \ K, we have

sep, (N4 > H(f)™", (18.1.17)

where here and below, constants implied by <, > depend on K and v only.
First assume that f has three distinct roots from K, say
Jf=a0X = B)X = B2)(X - B3)

with B1,8,,83 € K. By Proposition [3.5.3] we have for w € Mg and any two
distinct indices i, j € {1, 2, 3},

3
1B: = Bilw < | | max(1, Belw) < laoly' 11
k=1

with < instead of < if w is finite. Hence
laoly1Bi — Bl 1—[ laolw|Bi — Bjlw

Bi =Bl 2 == 5 s

weMyg

=([] 1) =B > HH™.

weMg
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This implies sep, (f) > H(f)™.

Next, assume that f has one root from K, and two roots not belonging to K.
Then f = ap(X — B1)f1, where B; € K and f; € K[X] is irreducible over K,.
Let 3,,, 83, be the roots of f in K,. We estimate from below B2y — B3vly and
181 = Binl, for i = 2,3. We have (8, — 83,)*> = D(f1) € K*, and by Proposition
B33

laolyID(AIL? < laglyl filw max(1, [Bil) < 1 fly

for w € Mg, with < instead of < if w is finite. Hence

laol ID(f)IY laol ID(f)
o [ e

= H™™ () > H(f)™,

B2y — Bavly = |D(fl)|i/2 >

weMk

where in the one but last step we have applied the product formula. Since the
numbers 3 —B;, (i = 2, 3) are conjugate over K,, they have the same |- |,-value.
Hence

B1 = Buly = 1B1 = B2)(B1 = B3l = 1/ (B
Further, by Proposition [3.5.3|we have for w € Mk,

1/2 1/2
laoll A(BOIL? < laollfill/* max(1, |Bilw) < | fl

with < instead of < if w is finite. Hence for i = 2,3 we have, using again the
product formula,

1/2 1/2
laob i L™ M laoblfi B

o _ 1/2
|B1 ,Bzvlv |fl(ﬂl)|v > |f|v |f|w

weMyg

> H(f)™.

So also in this case, sep,(f) > H(f)™.

Finally, assume that f has no roots in K,; then it is irreducible over K,. Let
Biv (i = 1,2,3) be the roots of fin E Then the numbers §;,—8;, (1 < i< j<3)
are up to sign conjugate over K,,, hence they have the same |-|,-value. Therefore,

sep,(f) = laoly?*ID(f)I)6.

Further, for w € Mg we have |D(f)|,, < |fI}, with < instead of < if w is finite.
So in this case we even have

1/6 1/6
Sepv(f) > |D(f)|v - 1_[ |D(f)|w > H(f)_ZdB.

2/3 2/3
|f|v weMg |f|w
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18.1.4 Proof of Theorems[18.1.6/and [18.1.7]

Let again K be a number field of degree of degree d. Recall that in (T8.1.9) we
have defined the minimal v-adic root distance of a binary form F € K[X, Y] of
degree n > 2 with non-zero discriminant.

The following lemma is crucial.

Lemma 18.1.10 Let S be a finite set of places of K, containing all infinite
places. Let F,F* € Og[X,Y] be two GL(2, Os)-equivalent binary forms of
degree n > 4, of non-zero discriminant. Then

Ns (D(F))'/>

([T homsep, )™ 2 ctm ) =

ves
where c(n,d) is an effectively computable positive number, depending only on
nandd.

Proof Forve S, we choose a factorization over K of F,
n
F= l_l(ozi‘,X—ﬁ,»vY). (18.1.18)
i=1

We have F* = gFy, with U € GL(2, Os) and € € Oj. Thus, for v € § we have

n

F =s| (@ X -B,Y), where (a},, ;) = (@, -B)U.  (18.1.19)
i=1

Note thatp :=detU € Og. Forve S, i, j=1,...,n, we put
dijv = |a'iv v ajvﬁiv|\/s ﬁv = max(laivlv, |ﬁiv|v), f:/ = max(la/;,lv, Iﬁ;'v)-

For the moment we fix v € §. Constants implied by the Vinogradov symbols
<, > used below are effectively computable and depend on n and d only.
Further, if v is finite, <, > should be read as <, >, respectively. It is obvious
that for any two distinct 7, j € {1,...,n} we have d;;, < f; fj. On the other
hand,

dijy = Inl; 07,85, = @ Bil < Ity fin -
Hence
dijy < min (fi v, |77|;1fitﬁv) forl <i<j<n.
We may assume that homsep,(F) = d12,/ fiv.f>»- Then

dioy dijv
fl vf2v I<i<j<n min(ﬁvf/'v, |77|\71f:f;‘,)

@)#(1,2)

homsep, (F) >
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and together with [T, <;cj<, dijy = |D(F)|‘1,/2 this implies
homsep, (F) > |D(F)[\?A; ", (18.1.20)

where

. : —1 px o
AV = flvaV : l—l min (ﬁvfjv’ |7]|v f;v‘f;v)
1<i<j<n
(@i.)#(1,2)

We estimate A, from above. First suppose that n is even. Then n > 4. Let

=) 1i<j<af\{(1L2,3.4),....(n - 1,n)}.
Then

Av < Finbd Pt - o) | | (05 £ 7))

@, ))el

(P T
i=1 i=1

Next, assume that n is odd. Then n > 5. Let
I={G ) 1<i<j<n]\[(1,2).3.4).....(0 - 4.n - 3),
(n=2n=1),(n=2,n),(n—1,n)}.
Then we have

Av < (flvav)(vaf4v) e (ﬁ174,vf;173,v) X
x ] ssitialiH"- [T ok £ 53

n-2<i<j<n (.l

(LT ) e
i=1 i=1

By Proposition[3.3.3} (I8.1.18)), (I8.1.19) we have

n n

s -1
| |f < |F),, | |f < g7 F7l,.
i=1 i=1

We conclude that for all n > 4,
A, < |FIIF* P22, with ¢ := &7 "722 € 0.
By inserting this into (I8:1.20), we obtain

D)L
\FLIFR210
This holds for all v € §. Recall that the constant implied by > is effectively

homsep, (F) >
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computable and depends on 7, d if v is infinite, while it has to be understood as
> if v is finite.
We take the product over all v € S. Using
[ J1F1 < [ | max1F1) = HEY, [ 1F < HEY,

ves veMg ves

[ 1o, = Ns@F), | [1l = 1 (since ¢ € 03),

ves vesS
and then taking d-th roots, we arrive at

Ns(D(F))!/>¢

( 1_[ homsepv(F))l/d > c(n, d)m,

vesS

with an effectively computable number c(n,d) > 0 depending on n,d, as re-
quired. O

Proof of Theorem[I8.1.6] Let f € Ok[X] be a separable polynomial of de-
gree n > 4. Let F := Y"f(X/Y). Choose a binary form F* in the GL(2, Os)-
equivalence class of F of minimal height. Then by Theorem[T5.1.2| we have

Ns(D(F) > H(F*y"?',

where here and below the constants implied by >> depend on K, S, n and the
splitting G of F. These constants are not effectively computable.
It is easy to see that for v € Mg we have

homsep, (F) < 2°* min(1, sep,(f)),

where in the usual manner we have put s(v) = 1 if v is real, s(v) = 2 if v is
complex and s(v) = 0 if v is finite. Together with Lemma[I8.1.10]and H(F*) <
H(F), this implies

1/d

( 1_[ min(1, sepv(f)))l/d > %( 1_[ homsepv(F))

veS ves
> H(FY  H(F")"4D=0-2) 5 f(pyl=nni42.
This proves Theorem[18.1.6] m|

Proof of Theorem[I81.7] Let f,F,F* be as in the proof of Theorem [T8.1.6]
Theorem [T4.2.T] gives us

Ns(D(F))'4 > (log 3H(F*))"/6n3),

where here and below the constants implied by > are effectively computable
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and depend on K, S,n only. Then a similar computation as in the proof of
Theorem leads to

( l_[ min(1, sepv(f)))”d > H(f)' ™" (log 3H(f))"/10"=9)

vesS

This proves Theorem m|

18.1.5 Notes

e In the literature there are various results that that give good upper bounds for the
minimal root distance of polynomials in terms of their heights. We give a brief overview.
Constants implied by <, > depend on 7 only.

It was proved in [Beresnevich, Bernik and Gotze (2010)] that for every n > 4 and
every sufficiently large Q, there are > QU*1/3 irreducible polynomials f € Z[X] of
degree n with

H(f) < Q, sep(f) < H(f) i3,

Improving on the earlier work [Bugeaud and Mignotte (2004, 2010)], in [Bugeaud and
Dujella (2011)] the authors constructed for every integer n > 4 an infinite parametrized
class of irreducible polynomials f € Z[X] of degree n with the property that

Sep(f) < H(f)—(n/Z)—(iz—Z)/4(/1—l).

In their more recent paper [Bugeaud and Dujella (2014)] they constructed for every
n > 4 an infinite parametrized class of reducible separable polynomials f € Z[X] of
degree n such that

Sep(f) < H(f)—(Zn—l)/}.

The results of Bugeaud and Dujella imply that the quantity a(n) in Conjecture [[8:1.4]
should be < (n — 2)/3. In [Dujella and Pejkovié¢ (2011)] the authors proved that for
quartic monic irreducible polynomials f € Z[X] one has sep(f) > H(f)™2, and this
result is best possible in terms of H(f).

e Bugeaud and Mignotte [Bugeaud and Mignotte (2004)] and Evertse [Evertse (2004)]
considered the quantity

sep,(f) = min [ | lai - |

{i.jycl

for polynomials f € Z[X] of degree n, where as before a1, ..., @, are the zeros of f,
the minimum is taken over all k-element subsets / of {1,...,n}, and the product over
all 2-element subsets of /. Bugeaud and Mignotte gave examples of polynomials f for
which sep,(f) is very small, while Evertse obtained an analogue of Theorem [T8.1.2] for
sep,(f)-

o In his PhD-thesis [Zhuang (2015)], Zhuang proved the following function field ana-
logue of Conjecture [T8:1.4] Let k be an algebraically closed field of characteristic 0
and A := K[z], K := k() the ring of polynomials, resp. field of rational functions in
the variable ¢. Define an absolute value on K by |a/bl. := e2~%? for g, b € A with
ab # 0 and |0], := 0, and extend this to the algebraic closure of the completion of K

with respect to | - |, i.e., kK((t™1)). Let f € A[X] be a separable polynomial of degree
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n > 4 in X. Define H(f) := maxdeg p, where the maximum is taken over the coeffi-
cients p € A of f. Further, let sep(f) := min, <, la; — @jle, Where o, ..., @, are the

distinct zeros of f in k((z~!)). Then

(n—Dn+ 6))

sep(f) > C(n)H(f)l—n+n/(40n+2)’ where C(n) = CXp( - 1

18.2 An effective proof of Shafarevich’ conjecture for
hyperelliptic curves

Shafarevich’ conjecture [Shafarevich (1963)] asserts that for a number field
K, finite set S of places of K containing all infinite ones, and integer g > 2,
there are only finitely many K-isomorphism classes of (smooth, projective, ge-
ometrically connected) curves of genus g over K with good reduction outside
S. Shafarevich proved an analogue of this conjecture for elliptic curves over
K, these are curves of genus 1 over K with a K-rational point, see [Silverman
(2009), chap. 1, §6] for a proof. Parshin [Parshin (1972)] proved Shafarevich’
conjecture for curves of genus 2, and Oort [Oort (1974)] did so for hyperel-
liptic curves of arbitrary genus > 2. Parshin [Parshin (1968)] pointed out that
Shafarevich’ conjecture implies Mordell’s conjecture, which asserts that there
are only finitely many K- rational points on a curve over K of genus g > 2.
Later, with his celebrated theorem Faltings [Faltings (1983)] confirmed the full
Shafarevich conjecture and thus, Mordell’s conjecture. Faltings’ proof is inef-
fective.

Effective versions of Shafarevich’ conjecture for elliptic curves over K were
established in [Coates (1969/1970)] and [Fuchs, von Kénel and Wiistholz (2011)].
Recently, these results were generalized in [von Kinel (2011, 2014a)] to hy-
perelliptic curves with effectively computable and partly explicit bounds for
the heights of representatives from the isomorphism classes. In his proof, von
Kinel combines among other things the results from Evertse and Gyory [Ev-
ertse and Gyory (1991a)] with results on Weierstrass models of hyperelliptic
curves obtained in [Lockhart (1994)] and [Liu (1996)].

In this part of Chapter |18 we present an improved and completely explicit
version of von Kinel’s theorem. We follow von Kinel’s proof, but in place
of the result of [Evertse and Gydry (1991a)] we apply the corresponding im-
proved and explicit variants from Chapters 8| and

18.2.1 Definitions

In this subsection we introduce some definitions to state the results in the
next subsection. For further details, we refer to [von Kinel (2011, 2014a)],
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[Lockhart (1994)], [Liu (1996)], [Hindry and Silverman (2000)] and [Silver-
man (2009)].

Let K be a number field and g > 1 an integer. A hyperelliptic curve € over K
of genus g is a smooth projective and geometrically connected curve of genus
g such that there is a finite morphism ¢ — P}( of degree 2, where ]P’}( denotes
the projective line over K.

Let A be an integral domain with quotient field K. Then the function field
K(%) of ¥ takes the form K(%) = K(X)[Y], where

Y2+ H(X)Y = fi(X), with fi(X), A(X) € A[X], }

We call (I821) a hyperelliptic equation of € over A. Define f := f + f3/4.
Then the discriminant of this equation is defined by

2%D(f)  if deg f =2g +2,

24ga(2)D(f) otherwise, (18.2.2)

A=A(f, ) = {
where D(f) is the discriminant of f and, in case that deg f < 2g + 2, ag is
the coefficient of X?¢*! of f (which a priori might be 0). In fact, A(fi, f5) is
a polynomial with rational integral coefficients in terms of the coefficients of
f1, f>; therefore, A € A. If in particular, % € A, then % fH(X) € A and (I8.2.1)
gives

Y5 = f(X), feAlX], (18.2.3)

where Yy = Y + 1 f2(X). Hence, in this case we may assume that in (T8:2.1)
f(X)=0.

We define the discriminant ideal of the hyperelliptic curve . Let p be a
prime ideal of Ok and let A, = {x € K : ord,(x) > 0} be its local ring.
Define 9, to be the minimum of the quantities ord,(A(f1, f2)), taken over all
hyperelliptic equations (I8.2.1)) of € over A,. Then the minimal discriminant
of ¥ is given by

NE) = ]—[ e, (18.2.4)
iy

where the product is taken over all prime ideals of Ok. This is an ideal of Ok.
We say that € has good reduction at p if §, = 0, in other words, if it has a
hyperelliptic equation of the shape (I8.2.1) over A, with ord,(A(f1, f2)) = O.
In this case, the reduction of (I8:2.1) modulo p defines a smooth curve over
Ok /p. Let S be a finite set of places of K, containing all infinite places. We say
that ¢ has good reduction outside S if it has good reduction at all prime ideals
of Ok not corresponding to a finite place in S.
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18.2.2 Results

Let K be an algebraic number field of degree d with ring of integers O and
discriminant Dg, S a finite set of places of K containing all infinite places, Og
the ring of S -integers in K, and &g the class number of Og. We remark that Ag
is a divisor of hg, the class number of K. We denote by s the number of finite
places in S, and by py, ..., p, the corresponding prime ideals of Og. For s > 0,
let

N

Ps = max Ng(). Qs := | | Ne(w),

i=1
while for s = 0 we put Ps = Qg := 1. Let
ps =log, hg and o := s+ pg + 2.
Further, let g > 1 be an integer, and put
vi =5dQ2g + 1)2g)(2g — 1) and v, = 2g + 2)v;.

Recall that the (inhomogeneous) height of a polynomial F(X) = aoX"+a; X" '+
-+ +a, € K[X] is defined by

H(F) = ( | | max(1,laoh ..., janh)”

veEMg
We notice that H(a;) < H(F) fori =0, ..., n. In the proof we shall work with
the logarithmic height h(F) := log H(F) of F; see Section[3.5]
In what follows, we assume that K and S are given effectively in the sense
defined in Subsection The following theorem is an improved and com-
pletely explicit version of the main result of [von Kénel (2014a)].

Theorem 18.2.1 There is an effectively computable finite set of places T of
K containing S such that if € is a hyperelliptic curve over K of genus g with
good reduction outside S, then € has a hyperelliptic equation

Y? = F(X), F € Ok[X]
with discriminant A € O}, and with the following additional properties:

(i) if € has a K-rational Weierstrass point, then F is monic and separable of
degree 2g + 1 and

H(F) < exp{(10v10)*™'7 (Qs|Dy|#5>)"}, (18.2.5)

(ii) if € has no K-rational Weierstrass point, then F is separable of degree
2g +2and

H(P) < exp {(Tva0r) 7 (05 1Dl D)) (18.2.6)
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As will be seen from the proof, for K = Q we can take T = § U {2}.

The bound occurring in (I8.2.3) is comparable with that of [von Kénel
(2014a)] which has been deduced directly from Theorem 1 of [Gy&ry and Yu
(2006)1, that is from Theorem [{.1.T] The estimate (18.2.6) is an improved and
explicit version of the estimate of [von Kinel (2014a)].

Theorem [I8.2.1] holds for all elliptic curves and all smooth projective and
geometrically connected genus 2 curves over K, since they are hyperelliptic.
It generalizes the results of [Coates (1969/1970)] and [Fuchs, von Kinel and
Wiistholz (2011)] on elliptic curves and arbitrary hyperelliptic curves over K.

As a consequence of his version of Theorem [I8.2.1] von Kinel [von Kinel
(2011, 2014a)] deduced the following effective version of Shafarevich’ conjec-
ture in the special case of hyperelliptic curves. For notions such as ‘effectively
given/computable’ we refer to Section[3.7]

Corollary 18.2.2 There are only finitely many K-isomorphism classes of hy-
perelliptic curves of genus g > 1 over K with good reduction outside S, and
if K, S are effectively given, then all these classes can be, at least in principle,
effectively determined.

We note that Merriman and Smart [Merriman and Smart (1993b)], [Smart
(1997)], using the results from [Evertse and Gy6ry (1991a)], determined all
genus 2 curves over Q with good reduction outside {2}.

The following corollary gives an upper bound for the absolute norm of the
minimal discriminant d(%4) of an hyperelliptic curve € (see (I8:2.4)) in terms
of the genus g of €, the degree d and discriminant Dk of K, and the prime
ideals dividing d(%).

Corollary 18.2.3 Let € be a hyperelliptic curve of genus g defined over a
number field K. Let S be the set of places of K consisting of the infinite places
and of the finite places corresponding to the prime ideals dividing d(%). Then

Ng(d(%)) < exp(c105),
where c1, ¢y are effectively computable and depend on g, d and Dk only.

In terms of Qg this is a sharpening of Theorem 3.1 of [von Kénel (2013)]
where a similar result was obtained but with an upper bound exp exp (c(log Qs )°)
with a completely explicit expression for ¢ in terms of g, d and Dg. In the same
paper, in analogy to Szpiro’s discriminant conjecture for elliptic curves, von
Kinel poses the conjecture that Nx(d(%)) < c3Q¢' with ¢3, ¢4 depending only
on g, d and Dk.
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18.2.3 Preliminaries

In the proof of Theorem [I8.2.1] we shall use Theorems [8.2.3] and [14.2.2] from
Chapters[§|and[T4] respectively. Besides, some further preliminary results will
also be needed.

Keeping the above notation, let again K, S, s, P, Q and ps be as in the
previous subsection. For any finite set of places T of K containing all infinite
places, let ¢, Pt and Qr denote the parameters defined similarly as s, Pg and
Qs . For proofs of the next two lemmas we refer to [von Kénel (2011, 2014a)].

Lemma 18.2.4 There is a finite set of places T 2 S of K such that t < s+ pg,
Pr < max (Pg, IDKI‘I/Z), Or < Qs|DklPs’* and such that Oy is a principal
ideal domain.

Lemma 18.2.5 Suppose T 2 S and Oy is a principal ideal domain with
2 € O3. Let € be a hyperelliptic curve over K of genus g with good reduction
outside S. There is a hyperelliptic equation

Y? = £(X), f(X) € O7[X]

of € with discriminant A € O} such that

(i) if € has a K-rational Weierstrass point, then f is monic, separable and of
degree 2g + 1,

(ii) if € has no K-rational Weierstrass point, then f is separable and of degree
2g + 2.

18.2.4 Proofs

Proof of Theorem[I8.2.1] Let ¢ be a hyperelliptic curve of genus g defined
over K with good reduction outside S. Further, let s, Py, QOs, ps, o and vy,
v be as in Subsection For any finite set of places T of K, we denote
by t, Pr and Q7 the quantities corresponding to s, Ps and Qg. By Lemma
there exists a finite set of places T 2 S of K such that r < s + pg,
P7 < max (Pg, |DK|d/2), Qr < Qs|DklP+/? and that O is a principal ideal do-
main. By assumption K and S are effectively given. Hence Dk, ps and Qg can
be determined effectively by means of the algorithms from Subsection
Thus all rational prime divisors p of 207 can be determined. Consider now
all prime ideals in Ok lying above the prime divisors p of 2Q07. These prime
ideals and hence the set of the corresponding finite places can be effectively de-
termined. For simplicity, we denote by T this finite set of places. Then Oy, the
ring of T-integers remains a principal ideal domain, and each prime p under
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consideration is contained in O}.. Further, we have
t<d(s+ps + 1), Pr <max (2%, P¢, ID|"?) (18.2.7)
and
d

Or < (20sIDk ") (18.2.8)

First consider the case where % has a K-rational Weierstrass point. Then by
Lemmall8.2.5] ¥ has a hyperelliptic equation

7% = f(W) (18.2.9)

in the variables W, Z with discriminant A € O7, where f € Or[W] is a monic
polynomial of degree n := 2g + 1 and, in view of (I8.2.2), its discriminant
satisfies D(f) € O%. We note that g > 1 implies n > 3. It follows now from
Theorem [8.2.3] that there are £ € O}, a € Or and a monic polynomial f* in
Or[W] such that

fW)y=&"f"(e7'W+a), (18.2.10)
D(f*) = €D D(f) € 0%, and
h(f*) < CLPE (QrIDg))"™"D =: C, (18.2.11)

where n3 = n(n — 1)(n — 2) and C; = n®"4(10n3(d + 1)1 @+,
In view of Proposition m there are £, &, € O} such that & = 818% with

h
h(e)) < Z(CRK + 7’( log QT) = Cs, (18.2.12)
where R denotes the regulator of K and ¢ = 29e(d + 1)!. Then putting
z W+
Zy:= — and Wy := zaa’
& &
we arrive at a hyperelliptic equation
Zi = fiWy), (18.2.13)

where
fiWy) = g f* (Wi /&) € Or[Wi]

is monic of degree n with discriminant D(f;) = si”_l)("_z)D( f*) € 0;. So
by (I8:2.2), the discriminant of (I8:2.13) is a T-unit. The curve defined by
(T8:2:13) is clearly birationally equivalent to the one given by (I8:2.9), that is,
(I8:2.13) is another hyperelliptic equation of €.

We give now an upper bound for A(f}). Denote by a7, ..., @, the zeros of f*.
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Then gaj,...,&a; are the zeros of f;. Using (I8:2.1T)), (I8:2.12), Corollary

[3.5.5]and (B:1.8), we get

h(fi) < ). h(z1a}) + nlog?2 < nh(ey) + ) h(a}) +nlog?

i=1 i=1

< nCs + h(f) + 2nlog2
<nCy + C + 2nlog?2 < 2Cs. (18.2.14)

In the next step we modify (I8:2.13) to get a hyperelliptic equation of ¢
over K with the desired properties. Let a be a coefficient of f;. We recall that
for a finite place v of K, |a|, is defined as Ng(»)™%@  where p is the prime
ideal of Ok that corresponds to v and ord,(a) is the exponent of p in the prime
ideal decomposition of the ideal (a). Taking the product over the finite places
v of K, we infer that

o(a) := l_[ max(1, |al,) (18.2.15)

is a positive integer not exceeding H(a)® which is at most H(f;)". Further, by
[Fuchs, von Kénel and Wiistholz (2011), Lemma 4.2], 6(a)-a € Ok holds. Each
rational prime dividing Q7 is invertible in Oy. Since f; has its coefficients in
Or, it follows that 6(a) € O%. This implies that

x:= [ 6@ e o, (18.2.16)
where the product is taken over the coeflicients a of f;.
Writing
Y X
— =2, =W,
K" K

we get the hyperelliptic equation
Y? = F(X) (18.2.17)
of € with discriminant contained in O7, where
FX) = " fi(X/i)

is a monic separable polynomial of degree n with coefficients in O.

We now give an upper bound for A(F). In view of (I8.2.15) and (18.2.16))
we get (k) < ndh(f,), and hence using again Corollary[3.5.3]

h(F) < 2nh(k) + h(f;) + 2nlog2 < (2dn® + Dh(f;) < 5dn*C,.

On replacing n by 2g + 1 and ¢, Pr and Qr by the upper bounds given in
(T8277) and (T8:2:8)) and simplifying the upper bound so obtained for A(F),
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we conclude that the hyperelliptic equation defined by (I8:2.17) satisfies the
requested properties. Thus the proof of Theorem (i) is completed.

Consider now the case when % has no K-rational Weierstrass point. By
Lemma |18.2.5[(ii), € has a hyperelliptic equation Z*> = f(W) with discrim-
inant A € Oy, where f € Or[W] is a polynomial of degree n := 2g + 2.
Further, in view of (I82.2) we have D(f) € O;.. By assumption g > 1, hence
n > 4. Now Theorem@limplies that there are € € O%., a, b, ¢, d in O with
ad — bc € O% and a polynomial f* € Or[W] such that

JW) =e(cW +d)" f*((aW + b)/(cW + d))
and
h(f") < CaPy 1 (QrIDkl)" "™ =: Cs, (18.2.18)
where ny = n(n — 1)(n — 2)(n — 3) and
C4 — 2n5n2dl‘(]2n3(d + t))25n2(d+t)'

As was seen above, there are &1, &, € O} such that & = &1£3 and h(g;) < Cs
with the above C3. Now let

Wy = (@W + b)/(cW +d), Zy = Z/ex(cW + d)"?
and f| = g, f*. Then
Zi = fi(W)
which gives another hyperelliptic equation for ¥. Here, f; is a polynomial of
degree n with discriminant D(f;) = &7"*(ad — bc) ™™ VD(f) € O, and so
by (I82.2), the associated hyperelliptic equation has discriminant in O}.. By
(3.8) and B.LIB). we get

h(fi) < h(e1) + h(f*) < C3+ C5 < 2Cs.

Using the arguments from the proof of part (i), we infer that there isa k € Ox N
O} such that ka € Ok for each coefficient a of f; and that h(k) < (n+ 1)dh(f1).
Then

F(X) := K" fi(X/K)

is a polynomial in Og[X] with degree n and discriminant contained in O7.
Further, using (3.3.5), we can see that

h(Fy < @D b 1 (n+ DAS) < (0 + 1°dh(fi) < 2(n + 1)°dCs.

Putting
Wi = X/k, Zi = Y/K5*2,
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we get again a hyperelliptic equation Y?> = F(X) of € with the properties
desired. O

Proof of Corollary|18.2.2] By Theorem [18.2.1] there is an explicit constant
C = C(K,S, g) such that any hyperelliptic curve % over K of genus g with

good reduction outside S provides a separable polynomial F € Og[X] of de-
gree at most 2g + 2 with height not exceeding C.

By Theorem [3.5.2]there are only finitely many polynomials in Ox[X] which
are either of degree 2g + 2, or monic and of degree 2g + 1, and have height
at most equal to the explicit upper bound given in Theorem For each
of these polynomials, it can be decided effectively whether their discriminant
belongs to OF. Let F be such a polynomial. We have to check whether the
hyperelliptic curve ¢ defined by Y? = F(X) has good reduction at v for every
place v outside S. This is automatic for v ¢ T since D(F) € O7. For the re-
maining finitely many places v € T \ S, we may apply a general algorithm to
compute the regular minimal model of € and check whether this is smooth;
see for instance [Serra (2013)].

It remains to check whether two given hyperelliptic equations Y? = F(X),
7Z? = F’(W) define K-isomorphic hyperelliptic curves, where either both F, F’
are monic and have degree 2g + 1, or both F, F’ have degree 2g + 2. In the
former case, by, e.g., [Lockhart (1994), Prop. 1.2], we have to check whether
F'(X) = u 2 DF X + b) for some u € K*, b € K. If there are such y, b,
then x > p”x + b maps the zeros of F’ to the zeros of F. Since 2g + 1 > 3, this
implies that ,uz, b can be expressed as rational functions in the zeros of F, F’,
hence the heights of y, b are effectively bounded in terms of F, F”. This leaves
only finitely many possibilities for y, b to try.

In the latter case, by, e.g., [Liu (1996), p. 4581] we have to check whether
there are a, b, ¢, d, A € K with A(ad — bc) # 0 and

F'(X) = 22(cX + d)*2F((aX + b)/(cX + d)). (18.2.19)

There is no loss of generality to assume that one of a, b, c,d is 1. If there are
such a, b, c,d, A, then x — (ax + b)/(cx + d) maps the zeros of F’ to the zeros
of F. Since both F, G have degree 2g + 2 > 3, this implies that a, b, ¢, d can
be expressed as rational functions in terms of the zeros of F, F’, hence their
heights are effectively bounded in terms of F, F’. Then leaves only finitely
many possibilities for a, b, ¢, d and for each of them one has to check whether
there is A € K* with (I8.2.19). This completes our proof. m]

Proof of Corollary|(18.2.5] Take for S the set consisting of all infinite places
of K and the finite places corresponding to the prime ideals dividing d(%).
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Then % has good reduction outside S. Let F be as in Theorem [I8:2.1] Then
clearly, ord,(d(%)) < ord,(D(F)) for all prime ideals p of Ok. Hence

Nk(d(6)) < Ng(D(F)) < CeH(F),

where Cg, C7 and Cg, C9 below are effectively computable and depend only
on g, d = [K : Q] and Dg. Note that by (3:1.8) we can estimate the class
number of K hence pg effectively from above in terms of d and Dg. Together
with the elementary inequality s < Cglog Qs /loglog Qg this implies that o <

Colog Qg /loglog Os. By inserting this into (I8.:2.3) and (I8:2.6) and using
again (3.1.8), our corollary easily follows. i

18.2.5 Notes

Effective versions of Shafarevich’ conjecture have been proved for a couple of other
classes of curves and varieties, e.g., in [de Jong and Rémond (2011)], where curves that
are cyclic covers of degree a prime p over P! are considered, and in [Javanpeykar and
Loughran (2015)], which deals with reduction of algebraic groups and flag varieties.
Levin [Levin (2012)] showed that if one could effectively determine the K-isomorphism
classes of all hyperelliptic curves % of given genus g over a number field K whose
Jacobian has good reduction outside a given finite set of places S, then one could give
an effective finiteness proof of Siegel’s Theorem for hyperelliptic curves, i.e., one could
effectively determine the Oy -integral points on such curves.

For further results related to [von Kénel (2011, 2013, 2014a)], we refer to [Javan-
peykar (2013)], [Javanpeykar and von Kénel (2014)] and [von Kénel (2014b)].
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Glossary of frequently used notation

General notation

||

log" x
log;, x
<, >

Zs0, Zso
QR,C

D(f), D(F)
R(f.8). R(F,G)

Fy

K
A AT AT

AlXy, ..., X,]
Alay, ..., a,]
GL(1n, A), SL(n,A)

NS(n, A)
V7 AVS pv, kV

e(V|v), f(V]v)

cardinality of a set &7
max(1,log x), log" 0 := 1.
log" iterated n times applied to x

Vinogradov symbols; A(x) < B(x) or B(x) > A(x) means that
there is a constant ¢ > 0 such that A(x) < ¢B(x) for all x in
the specified domain. The constant ¢ may depend on certain
specified parameters independent of x

positive integers, non-negative integers

rational numbers, real numbers, complex numbers
discriminant of a polynomial f(X), binary form F(X, Y)
F(X),8(X),

resultant of polynomials forms

F(X,Y),G(X,Y).

Fy(X,Y) := F(aX + bY,cX + dY) for a binary form F and a
matrix U = (¢},

binary

algebraic closure of a field K

ring (always commutative with 1), additive group of A, group
of units of A

ring of polynomials in n variables with coefficients in A
A-algebra generated by ay,..., @,

multiplicative group of n X n-matrices with entries in A and
determinant in A*, resp. determinant 1

semigroup of n X n-matrices with entries in A and non-zero
determinant (if A is an integral domain)

discrete valuation on a field (always with value group Z), local
ring, maximal ideal, residue class field of v

ramification index, residue class degree of a discrete valuation
V above a discrete valuation v
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Finite étale algebras over fields

Q/K

TVQ/K(OZ), NQ/K(UI)
Dqk(wi, ..., wy)

x - x®
P'(Q)
Ag

Oq
)

Dedekind domains

P(A)

I(A), P(A), CI(A)

p,a
ord,(a)
ord,(a)

S1A
Ap
AL

Blp

e(BIp), f(Blp)
Na,/a

D y/a

D 4

[ A : M)a

[ A : M)
Fo(a)

Is(@)

finite étale algebra over a field K, i.e., a direct product L; X
-+» X L, of finite separable field extensions of K

dimg Q

characteristic polynomial of @ € Q over K

trace, norm of @ € Q over K
discriminant of a K-basis {w1,...,w,} of Q
non-trivial K-algebra homomorphisms Q — K
projective line over Q

integral closure of an integral domain A with quotient field K
in a finite étale K-algebra Q

integral closure of Z in a finite étale Q-algebra Q

A-order of Q, i.e., a subring of Ag containing A and generating
Q as a K-vector space

collection of minimal non-zero prime ideals of the Dedekind
domain A

group of fractional ideals, subgroup of principal fractional ide-
als, class group of A

non-zero prime ideal, fractional ideal of A
exponent of p in the unique prime ideal factorization of a

exponent of p in the unique prime ideal factorization of (@) for
«a in the quotient field of A, ord,(0) := co.

localization of A away from a multiplicative set .7
localization of A at a prime ideal p

integral closure of A in a finite extension L of K, where K is
the quotient field of A

prime ideal ‘B of A, dividing the prime ideal p of A
ramification index, residue class degree of P over p
norm map from /(A;) to I(A)

discriminant ideal of an A-lattice .# over A
discriminant of a Z-lattice .#

index ideal of an A-lattice .#5 in an A-lattice .#;
index of a Z-lattice .#, in a Z-lattice .#,

index ideal of A[«] in an A-order O

index of Z[«] in a Z-order O
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Glossary of frequently used notation

Algebraic number fields

ord,(a)

lal,

|ale

Nk (a)

My

My

My

|1, (v € M)

Ns (@)
Rs
Ps, Os, Wg

Ixl, (v € M)
H™™(x)

H(x)

H(a)

hom(x), h(x), h(a)
[a]

exponent of a prime number p in the unique prime factoriza-
tion of a € Q, ord,(0) = oo
p—ordp(a)

max(a, —a), ordinary absolute value of a € Q

, p-adic absolute value of a € Q

p-adic completion of Q, Q, =R
{co} U {primes}, set of places of Q

ring of integers, discriminant, class number, regulator of a
number field K

absolute norm of a fractional ideal a of Ok
set of places of a number field K

set of infinite (archimedean) places of K
set of finite (non-archimedean) places of K

normalized absolute values of K, satisfying the product for-
mula, with ||, 1= Ng(p)™%@ if @ € K and p is the prime
ideal of Ok corresponding to v

completion of K at v
finite set of places of K, containing My

fa € K: |a|, < 1forv e Mg\ S}, ring of S-integers, written
asZg it K =Q

{e e K: |a], =1forve Mg\S}, group of S-units, written as
Z;ifK=Q

[Toes laly, S-norm of @ € K

S -regulator

max(Ng(p1), ..., Nk(py), H§:1 Nk (P, H;:1 log Nk (v;),
where py, ..., p, are the prime ideals of Ok corresponding to
the finite places of S

max; |x;|,, v-adic norm of x = (x,...,x,) € K"

(TTversy |X|‘,)l/ KA absolute homogeneous height of x € K"
(Moear, max(1, Ix},)) <

( HVEM[( maX(l s |(l'|\;
log H™™(x), log H(x), log H(a), absolute logarithmic heights

, absolute height of x € K"

)9 absolute height of a € K

house of @, maximum of the absolute values of its conjugates
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