- G. Nagy, Maps stemming from the functional calculus that transform a Kubo-Ando mean into another, Aequationes Math. 94 (2020), 761-775.
- M. Gaál, G. Nagy and P. Szokol, Isometries on positive definite operators with unit Fuglede-Kadison determinant, Taiwanese J. Math. 23 (2019), 1423-1433.
- G. Nagy and P. Szokol, Maps preserving norms of generalized weighted quasi-arithmetic means of invertible positive operators, Electron. J. Linear Algebra 35 (2019), 357-364.
- G. Nagy, Characterizations of centrality in C*-algebras via local monotonicity and local additivity of functions, Integral Equations Operator Theory 91 (2019), Article:28.
- M. Gaál and G. Nagy, A characterization of unitary-antiunitary similarity transformations via Kubo-Ando means, Anal. Math. 45 (2019), 311-319.
- M. Gaál and G. Nagy, Maps between Hilbert space effect algebras preserving unitary invariant norms of the sequential product, Rep. Math. Phys. 82 (2018), 311-315.
- G. Nagy, Maps preserving Schatten norms of power means of positive operators, Integral Equations Operator Theory 90 (2018), Article:59.
- M. Gaál and G. Nagy, Transformations on density operators preserving generalised entropy of a convex combination, Bull. Aust. Math. Soc. 98 (2018), 102-108.
- M. Gaál and G. Nagy, Maps on Hilbert space effect algebras preserving norms of operator means, Acta Sci. Math. (Szeged), 84 (2018), 201–208.
- M. Gaál and G. Nagy, Preserver problems related to quasi-arithmetic means of invertible positive operators, Integral Equations Operator Theory 90 (2018), Article:7.
- G. Nagy, Isometries of spaces of normalized positive operators under the operator norm, Publ. Math. Debrecen 92 (2018), 243-254.
- M. Gaál and G. Nagy, Maps on positive operators preserving Rényi type relative entropies and maximal f-divergences, Lett. Math. Phys. 108 (2018), 425-443.
- G. Nagy, Determinant preserving maps: an infinite dimensional version of a theorem of Frobenius, Linear Multilinear Algebra 65 (2017), 351-360.
- L. Molnár and G. Nagy, Spectral order automorphisms on Hilbert space effects and observables: the 2-dimensional case, Lett. Math. Phys. 106 (2016), 535-544.
- F. Botelho, L. Molnár and G. Nagy, Linear bijections on von Neumann factors commuting with λ-Aluthge transform, Bull. Lond. Math. Soc. 48 (2016), 74-84.
- G. Dolinar, B. Kuzma, G. Nagy and P. Szokol, Restricted skew-morphisms on matrix algebras, Linear Algebra Appl. 490 (2016), 1-17.
- G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), 1–12.
- Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205-227.
- L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), 3273-3278.
- G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal. 2014 (2014), Article ID 434121, 9 pages.
- L. Molnár, G. Nagy and P. Szokol, Maps on density operators preserving quantum f-divergences, Quantum Inf. Process. 12 (2013), 2309-2323.
- G. Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen 82 (2013), 183–192.
- L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), 93–108.
- L. Molnár and G. Nagy, Thompson isometries on positive operators: The 2-dimensional case, Electron. J. Linear Algebra 20 (2010), 79–89.
- G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), 447–464.
Last update:
2023. 07. 05. 09:36