Publikációk - Dr. Nagy Gergő

  1. T. Kiss and G. Nagy, On the σ-balancing property of multivariate generalized quasi-arithmetic means, Math. Inequal. Appl. 27 (2024), 1009-1019.
  2. G. Nagy, Connections between points of convexity of functions and centrality of elements in C*-algebras, Electron. J. Linear Algebra 40 (2024), 654-662.
  3. G. Nagy, Characterizations of centrality in C*-algebras via local convexity of functions, Publ. Math. Debrecen 105 (2024), 403-415.
  4. G. Nagy, Preserver transformations related to operator means, Debreceni Egyetem (2022), habilitációs értekezés.
  5. G. Nagy, Maps stemming from the functional calculus that transform a Kubo-Ando mean into another, Aequationes Math. 94 (2020), 761-775.
  6. M. Gaál, G. Nagy and P. Szokol, Isometries on positive definite operators with unit Fuglede-Kadison determinant, Taiwanese J. Math. 23 (2019), 1423-1433.
  7. G. Nagy and P. Szokol, Maps preserving norms of generalized weighted quasi-arithmetic means of invertible positive operators, Electron. J. Linear Algebra 35 (2019), 357-364.
  8. G. Nagy, Characterizations of centrality in C*-algebras via local monotonicity and local additivity of functions, Integral Equations Operator Theory 91 (2019), Article:28.
  9. M. Gaál and G. Nagy, A characterization of unitary-antiunitary similarity transformations via Kubo-Ando means, Anal. Math. 45 (2019), 311-319.
  10. M. Gaál and G. Nagy, Maps between Hilbert space effect algebras preserving unitary invariant norms of the sequential product, Rep. Math. Phys. 82 (2018), 311-315.
  11. G. Nagy, Maps preserving Schatten norms of power means of positive operators, Integral Equations Operator Theory 90 (2018), Article:59.
  12. M. Gaál and G. Nagy, Transformations on density operators preserving generalised entropy of a convex combination, Bull. Aust. Math. Soc. 98 (2018), 102-108.
  13. M. Gaál and G. Nagy, Maps on Hilbert space effect algebras preserving norms of operator means, Acta Sci. Math. (Szeged), 84 (2018), 201–208.
  14. M. Gaál and G. Nagy, Preserver problems related to quasi-arithmetic means of invertible positive operators, Integral Equations Operator Theory 90 (2018), Article:7.
  15. G. Nagy, Isometries of spaces of normalized positive operators under the operator norm, Publ. Math. Debrecen 92 (2018), 243-254.
  16. M. Gaál and G. Nagy, Maps on positive operators preserving Rényi type relative entropies and maximal f-divergences, Lett. Math. Phys. 108 (2018), 425-443.
  17. G. Nagy, Determinant preserving maps: an infinite dimensional version of a theorem of Frobenius, Linear Multilinear Algebra 65 (2017), 351-360.
  18. L. Molnár and G. Nagy, Spectral order automorphisms on Hilbert space effects and observables: the 2-dimensional case, Lett. Math. Phys. 106 (2016), 535-544.
  19. F. Botelho, L. Molnár and G. Nagy, Linear bijections on von Neumann factors commuting with λ-Aluthge transform, Bull. Lond. Math. Soc. 48 (2016), 74-84.
  20. G. Dolinar, B. Kuzma, G. Nagy and P. Szokol, Restricted skew-morphisms on matrix algebras, Linear Algebra Appl. 490 (2016), 1-17.
  21. G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), 1–12.
  22. Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205-227.
  23. L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), 3273-3278.
  24. G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal. 2014 (2014), Article ID 434121, 9 pages.
  25. G. Nagy, Preserver problems on structures of positive operators, Debreceni Egyetem (2013), PhD-értekezés.
  26. L. Molnár, G. Nagy and P. Szokol, Maps on density operators preserving quantum f-divergences, Quantum Inf. Process. 12 (2013), 2309-2323.
  27. G. Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen 82 (2013), 183–192.
  28. L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), 93–108.
  29. L. Molnár and G. Nagy, Thompson isometries on positive operators: The 2-dimensional case, Electron. J. Linear Algebra 20 (2010), 79–89.
  30. G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), 447–464.
Legutóbbi frissítés: 2024. 11. 09. 12:25