Publications - Csaba Vincze | Institute of Mathematics

Publications - Csaba Vincze

List of publications/publikációs lista

  1. Cs. Vincze, M. Oláh, M. Stoika, Non-transitive subgroups of co-rank one in the orthogonal group, submitted.
  2. Cs. Vincze, Á. Nagy, On taxicab distance mean functions and their geometric applications: methods, implementations and examples, submitted.
  3. Cs. Vincze, M. Oláh, Finsler metrics and semi-symmetric compatible linear connections, J. Geom. 113 (45) (2022),  https://doi.org/10.1007/s00022-022-00654-2arXiv:2204.01034.
  4. Cs. Vincze, Mathesis necesse est: 45 éves a DAB Matematikai Munkabizottsága, Debreceni Szemle, 2022/1, pp. 108-111.
  5. E. Gselmann, Cs. Vincze, A matematika iránytűi: riport a DAB Matematikai Munkabizottsága 2021. évi rendezvényéről a Magyar Tudomány Ünnepén, Debreceni Szemle, 2022/1, pp. 94-98.
  6. Cs. Vincze, M. Oláh, On generalized Berwald manifolds of dimension three, Publ. Math. Debrecen. 100 (3-4) (2022), pp. 337-363, DOI: 10.5486/PMD.2022.9059. arXiv:2108.10032.
  7. Cs. Vincze, On the extremal compatible linear connection of a generalized Berwald manifold, Aequat. Math. 96 (2022), pp. 53–70, https://doi.org/10.1007/s00010-021-00859-x. arXiv:1909.03096.
  8. Gselmann Eszter, Pongrácz András, Varga Nóra, Vincze Csaba: Mathesis necesse est : 45 éves a Debreceni Akadémiai Bizottság Matematikai Munkabizottsága, Debreceni  Egyetemi Kiadó, Debrecen 2021.
  9. Cs. Vincze, On generalized Berwald manifolds: extremal compatible linear connections, special metrics and low dimensional spaces, AUT Journal of Mathematics and Computing 2 (2) (2021), pp. 213-237. 10.22060/AJMC.2021.20348.1063 
  10. A. Pongrácz, Cs. Vincze, On the reconstruction of the center of a projection by distances and incidence relations, J. Math. Imaging Vis. 63 (2021), pp. 443–456, https://doi.org/10.1007/s10851-020-00999-w.
  11. Cs. Vincze, M. Oláh, On the extremal compatible linear connection of a Randers space, J. of Geometry 111 (19) (2020), https://doi.org/10.1007/s00022-020-00532-9. arXiv:2001.04389.
  12. Cs. Vincze, On compatible linear connections with totally anty-symmetric torsion tensor of three-dimensional generalized Berwald manifolds, Contributions to Algebra and Geometry,  Vol. 61 (1) (2020), pp. 117-128. arXiv:1903.06665.
  13. Cs. Vincze, M. Oláh, L. Lengyel, On equidistant polytopes in the Euclidean space, Involve - a Journal of Math., Vol. 13 (2020), No. 4, pp. 577–595, DOI: 10.2140/involve.2020.13.577.
  14. Cs. Vincze, M. Oláh, L. Muhsin, On the divergence representation of the Gauss curvature of Riemannian surfa-ces and its applications, Rend. Circ. Mat. Palermo, II. Ser. 69 (2020), pp. 1-13, https://doi.org/10.1007/s12215-018-0382-6.
  15. E. Gselmann, G. Kiss and Cs. Vincze, On a class of linear functional equations without range condition,  Aequat. Math. (2019),  https://doi.org/10.1007/s00010-019-00672-7. arXiv:1903.07974.
  16. E. Gselmann, G. Kiss and Cs. Vincze, Characterization of field homomorphisms through Pexiderized functional equations, J. of Difference Equations and Appl., Vol. 25 (12), 2019, pp. 1645-1679.  arXiv:1810.11999.
  17. Cs. Vincze, T. Khoshdani, M. Oláh, On generalized Berwald surfaces with locally symmetric fourth root metrics, Balkan Journal of Geometry and Its Appl., Vol. 24 (2019), No. 2., pp. 63-78. arXiv:1808.10855.
  18. Cs. Vincze, T. Khoshdani, S. Mehdi Zadeh, M. Oláh, On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach, Communications in Math., Vol. 27 (1) (2019), pp. 51-68. ArXiv version: On compatible linear connections of two-dimensional generalized Berwald manifolds, arXiv:1808.02644.
  19. Cs. Vincze, M. Oláh, Convex polytopes as equidistant sets in the space, submitted to Acta Math. Acad. Paedag. Nyíregyh.
  20. Cs. Vincze, Á. Nagy, On the average taxicab distance function and its applications, Acta Appl. Math. (2018), first online: 04 September 2018.
  21. Cs. Vincze, On the taxicab distance sum function and its applications in discrete tomography,  Periodica Math. Hungar. (2018), first online: 17 December 2018.
  22. E. Gselmann, G. Kiss and Cs. Vincze, On functional equations characterizing derivations: methods and examples, Results Math (2018), arXiv:1709.03038
  23. Cs. Vincze, Lazy orbits: an optimization problem on the sphere, J. of Geom. and Phys. Vol. 124, pp. 180-198 (2018). arXiv:1709.06410.
  24. Cs. Vincze, Z. Kovács, Zs. F. Csorvássy, On the generalization of Erdős-Vincze's theorem about the approximation of closed convex plane curves by polyellipses, Annales Mathematicae et Informaticae 49 (2018), pp. 181-197. arXiv:1705.04318.
  25. Cs. Vincze, On convex closed planar curves as equidistant sets, manuscript. arXiv:1705.07119.
  26. Cs. Vincze, A. Varga, M. Oláh, L. Fórián, S. Lőrinc, On computable classes of equidistant sets: finite focal sets, Involve - a Journal of Math., Vol. 11 (2018), No. 2, pp. 271–282.
  27. Cs. Vincze, A. Varga, M. Oláh, L. Fórián, On computable classes of equidistant sets: equidistant functions, Miskolc Math. Notes, Vol. 19 (2018), No. 1, pp. 677-689.
  28. G. Kiss, M. Laczkovich, Cs. Vincze, The discrete Pompeiu problem on the plane,  Monatschefte für Math. 186 (2), pp. 299-314 (2018), arXiv:1612.00284.
  29. Cs Vincze: Analytic properties and the asymptotic behavior of the area function of a Funk metric, Houston J. of Math., Electronic Edition, Vol. 44 (2), 2018, pp. 495-520. arXive:1602.06565.
  30. G. Kiss, Cs. Vincze, On spectral analysis in the varieties containing the solutions of inhomogeneous linear functional equations, Aequationes Math., August 2017, Volume 91 (4), pp. 663–690.arXiv:1704.04753.
  31. G. Kiss, Cs. Vincze, On spectral synthesis in the varieties containing the solutions of inhomogeneous linear functional equations, Aequationes Math., August 2017, Volume 91 (4), pp. 691–723.arXive:1704.04755.
  32. Cs. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors, European J. of Math., December 2017, Volume 3 (4), pp. 1098–1171.
  33. Csaba Vincze, An observation on Asanov's Unicorn metrics, Publ. Math. Debrecen 90:(1-2), (2017), 16 pages. arXiv:1605.04407
  34. Cs. Vincze, A. Varga, On a sufficient and necessary condition for a multivariate polynomial to have algebraically dependent roots – an elementary proof, Acta Math. Acad. Paedag. Nyíregyh. Vol. 33, No. 1, pp. 1-13 (2017).
  35. Cs. Vincze, Algebraic dependency of roots of multivariate polynomials and its applications to linear functional equations, Period. Math. Hungar., March 2017, Volume 74 (1), pp. 112–117.
  36. Cs Vincze, On Asanov's Finsleroid-Finsler metrics as the solutions of a conformal rigidity problem, J. of Diff. Geom. and Its Appl., Vol. 53, August 2017, pp. 148-168.arXiv:1601.08177.
  37. Cs. Vincze: A short review on averaging processes in Finsler geometry, Acta Math. Acad. Paedag. Nyíregyh. 31 (2015), pp. 171-185. 
  38. Cs. Vincze: On Randers manifolds with semi-symmetric compatible linear connections, Indag. Math. - new series 26:(2) (2015), pp. 363-379. 
  39. Cs. Vincze, G. Kiss, A. Varga: Algebraic methods for the solution of linear functional equations, Acta Math. Hungar., June 2015, Volume 146 (1), pp. 128–141.
  40. Cs Vincze, A Varga: On the characteristic polynomials of linear functional equations, Period. Math. Hungar., December 2015, Volume 71 (2), pp. 250–260.
  41. Cs Vincze, A. Varga: Non-trivial solutions of linear functional equations: methods and examples, Opuscula Math. 35:(6) (2015), pp. 957-972. 
  42. Cs Vincze , Á Nagy, An algorithm for the reconstruction of hv-convex planar bodies by finitely many and noisy measurements of their coordinate X-rays, Fund. Inf. 141:(2-3) pp. 169-189. (2015).
  43. Cs. Vincze: Average methods and their applications in differential geometry I, J. of Geom. and Phys. 92: pp. 194-209. (2015).arXiv:1309.0827. Corrigendum.
  44. Cs. Vincze, Á. Nagy: Generalized conic functions of hv-convex planar sets: continuity  properties and relations to X-rays, Aequat. Math. 89:(4) pp. 1015-1030. (2015).arXiv:1303.4412.
  45. Cs. Vincze, Á. Nagy: Reconstruction of hv-convex sets by their coordinate X-ray functions, J. Math. Imaging and Vis., July 2014, Volume 49 (3), pp. 569–582.
  46. M. Barczy, Á. Nagy, Cs. Noszály, Cs. Vincze: A Robbins-Monro type algorithm for global minimizer of generalized conic functions, Optimization Vol. 64 (9), 2015, pp. 1999-2020. arXiv:1301.6112.
  47. Cs. Vincze, L Kozma, College geometry, 231 p., TÁMOP-4.1.2.A/1-11/1-2011-0098 "Digital course materials in English" (2014).
  48. Cs. Vincze, On generalized conics' theory and averaged Riemannian metrics in Finsler geometry, Tensor 74: (1), pp. 101-116 (2013).Manuscript.
  49. Cs. Vincze, On generalized Berwald manifolds with semi-symmetric compatible linear connections, Publ. Math. Debrecen 83: (4), pp. 741-755 (2013). 
  50. Cs. Vincze, Convex geometry, University of Debrecen, Hungary, Supplementary material MSc (2013),
  51. Á. Nagy, Cs. Vincze: Integer programming in geometric tomography, In: Mexican Conference on Discrete Mathematics and Computational Geometry: Jorge Urrutia's Fest, Oaxaca, Mexico, Nov.11-15, 2013, 5 pages.
  52. Cs. Vincze, Average processes in Finsler geometry, In: Society of Finsler Geometry (szerk.), Proc. of the 48-th Symposium on Finsler Geometry: 15 - 17 Sept. (2013), Sapporo, Japan, pp. 46-52.
  53. Cs. Vincze, Á. Nagy, On the theory of generalized conics with applications in geometric tomography, J . of Approx. Theory Vol. 164 (3), March 2012, pp. 371-390 (open arxive).
  54. Cs. Vincze, On generalized conics' theory and averaged Riemannian metrics in Finsler geometry, In: Society of Finsler Geometry (szerk.), Proc. of the 47-th Symposium on Finsler Geometry: 23-25 Nov. (2012), Kagoshima, Japan, pp. 62-70.
  55. Cs. Vincze, Á. Nagy, An introduction to the theory of generalized conics and their applications, J. of Geom. and Phys. 61:  (4), pp. 815-828 (2011).Corrigendum.
  56. Á. Nagy, Cs. Vincze, Examples and notes on generalized conics and their applications, Acta Math. Acad Paedag. Nyíregyh. 26:  (2), pp. 359-375 (2010).
  57. Cs. Vincze, Vinczéné A. Varga, On Daróczy's problem for additive functions, Publ. Math. Debrecen 75:  (1-2), pp. 299-310 (2009).
  58. Cs. Vincze, Vinczéné A. Varga, On a functional equation containing weighted arithmetic means, In: Inequalities and Applications: Conference on inequalities and applications '07, International Series of Numerical Mathematics; 157, edited by C. Bandle, A. Gilányi, L. Losonczi, Zs. Páles, M. Plum, Basel: Birkhauser Verlag, 2009. pp. 305-315.
  59. Cs Vincze, Finsler geometry and conformally equivalent metrics, habilitation thesis (2009).
  60. Cs. Vincze, Á. Nagy, Zs. Rábai, On a special class of generalized conics with infinitely many focal points, Teach. Math. Comp. Sci. 7:  (1)  (2009), pp. 87-99.
  61. Cs. Vincze, On Berwald and Wagner manifolds, Acta Math. Acad. Paedagog. Nyíregyh. 24:  (1), pp. 169-178 (2008).
  62. Cs. Vincze, Vinczéné A. Varga, On a lower and upper bound for the curvature of ellipses with more than two foci, Expo. Math., Vol. 26 (1), February 2008, pp. 55-77 (open arxive).
  63. Cs. Vincze, Trigonometria és koordinátageometria, Kossuth Egyetemi Kiadó, Debrecen (2008), in Hungarian.
  64. Cs. Vincze, On geometric vector fields of Minkowski spaces and their applications, J. of Diff. Geom. and Its Appl. Vol. 24 (1), January 2006, pp. 1-20 (open arxive).Corrigendum.
  65. Cs. Vincze, On an existence theorem of Wagner manifolds, Indag. Math. - new series Vol. 17 (1), 27 March 2006, pp. 129-145 (open arxive).
  66. Cs. Vincze, On a scale function for testing the conformality of a Finsler manifold to a Berwald manifold, J . of Geom. and Phys. 54:  (4), pp. 454-475 (2005).
  67. Cs. Vincze, A new proof of Szabó's theorem on the Riemann metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyíregyh. 21, pp. 199-204 (2005).
  68. Cs. Vincze, On the curvature of the indicatrix surface in three-dimensional Minkowski spaces, Period. Math. Hungar. 48:  (1-2), pp.  69-76 (2004).
  69. Cs. Vincze, Sz. Vattamány, On a new geometrical derivation of two-dimensional Finsler manifolds with constant main scalar, Period. Math. Hungar. 48:  (1-2), pp.  61-67 (2004).
  70. Cs. Vincze, On conformal equivalence of Berwald manifolds all of whose indicatrices have positive curvature, SUT Journal of Math. 39:  (1)  (2003), pp. 15-40 (free electronic journal).
  71. Cs. Vincze, Conservative semisprays on Finsler manifolds II, J. of Diff. Geom. and Its Appl. 17:  (2-3), pp.  485-489 (2002).
  72. Cs. Vincze, Conservative semisprays on Finsler manifolds, Publ. Math. Debrecen 61:  (3-4), pp.  555-577 (2002).
  73. Cs. Vincze, Sz. Vattamány, Two-dimensional Landsberg manifolds with vanishing Douglas tensor, Ann. Univ. Sci. Bp. R. Eötvös Nom. Sec. Math. 44, pp. 11-26 (2001).
  74. Cs. Vincze, On Wagner connections and Wagner manifolds, Acta Math. Hungar. 89:  (1-2), pp.  111-133 (2000).
  75. Cs. Vincze, On the existence of C-conformal changes of Riemann-Finsler metrics, Tsukuba J. of Math. 24:  (2) , pp. 419-426 (2000). Manuscript.
  76. Cs. Vincze, On conformal equivalence of Riemann-Finsler metrics and special Finsler manifolds, PhD thesis (2000).
  77. J. Szilasi, Cs. Vincze, A new look at Finsler connections and special Finsler manifolds, Acta Math. Acad. Paedagog. Nyíregyh. 16:  (2), pp. 33-63 (2000).
  78. Cs. Vincze, On C-conformal changes of Riemann-Finsler metrics, In: Slovák, Jan and Čadek, Martin (eds.): Proceedings of the 18th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1999. pp. 221-228. 
  79. Cs. Vincze, An intrinsic version of Hashiguchi-Ichijyo's theorems for Wagner manifolds, SUT Journal of math. 35:  (2) (1999), pp. 263-270 (free electronic journal).
  80. Cs. Vincze, J. Szilasi, On conformal equivalence of Riemann-Finsler metrics, Publ. Math. Debrecen 52:  (1-2), pp. 167-185 (1998).
Last update: 2023. 07. 04. 11:50