Előadások - Dr. Hajdu Lajos

  1. „On a problem of Turán concerning irreducible polynomials”, 12th Czech and Slovak International Conference on Number Theory, Liptovsky Jan, 1995.
  2. „On a problem of Győry and Schinzel concerning polynomials”, Number Theory '96, Eger, 1996.
  3. „On some combinatorial diophantine equations”, Number Theory Conference, Zakopane, 1997
  4. „The resolution of some combinatorial diophantine equations”, 13th Czech and Slovak International Conference on Number Theory, Ostravice, 1997.
  5. „On the diophantine equation x(x+d)…(x+(k-1)d)=by2”, Number Theory '98, Graz, 1998
  6. „Lower bounds for the difference axn-bym”, Number Theory Day, Debrecen, 1998.
  7. „On the diophantine equation x(x+d)…(x+(k-1)d)=by2”, Number Theory Seminar, Austin, 1998.
  8. „On superelliptic equations”, Intercity Number Theory Seminar, Leiden, 1999
  9. „Lower bounds for the difference of almost perfect powers”, Workshop on Diophantine Approximations, Oberwolfach, 2000.
  10. „Polynomials dividing infinitely many quadrinomials or quintinomials II”, Number Theory 2000, Debrecen, 2000.
  11. „On the equation n(n+d)…(n+(k-1)d)=byl”, 15th Czech and Slovak International Conference on Number Theory, Ostravice, 2001.
  12. „On the equation f(x)+g(x)=byl”, Workshop on Effective Methods for Diophantine Equations, Debrecen, 2001.
  13. „Polynomials dividing infinitely many k-nomials”, Number Theory Seminar, Leiden, 2002
  14. „On the diophantine equation n(n+d)…(n+(k-1)d)=byl”, Workshop on Explicit Algebraic Number Theory, Leiden, 2002.
  15. „Polinomok összegének gyökeiről”, Számelméleti tudományos emlékülés Kiss Péter emlékére, Eger, 2002.
  16. „Almost perfect powers in products of consecutive terms from an arithmetic progression”, Workshop Diophantine Approximation, Leiden, 2003.
  17. „Powers from products of consecutive terms in arithmetic progression”, XXIIIrd Journées Arithmétiques, Graz, 2003.
  18. Workshop on Computational Number Theory, Debrecen, 2003
  19. „Majdnem teljes hatványok számtani sorozatban; Polinomokkal kapcsolatos additív és multiplikatív problémák; Szomszédsági szekvenciák; Diszkrét tomográfia”, a DE Matematikai Intézet Szemináriuma, Debrecen, 2004.
  20. „Szomszédsági szekvenciák metrikus és approximációs tulajdonságai”, KÉPAF’04 Conference, Miskolc-Tapolca, 2004.
  21. „Inhomogeneous powers in arithmetic progression”, Number Theory Seminar, Leoben, 2004
  22. „Teljes hatványok számtani sorozatokban”, Soproni Diofantikus Napok, Sopron, 2004
  23. „On the problems of Turán and Szegedy concerning irreducible polynomials”, Number Theory Seminar, Leiden, 2005.
  24. „Turán és Szegedy problémája irreducibilis polinomokról”, Nyíregyházi Kriptográfiai és Diofantikus Napok, Nyíregyháza, 2005.
  25. „Unique reconstruction of bounded sets in discrete tomography”, Discrete Tomography and its Applications, New York, 2005.
  26. „Polynomials dividing infinitely many k-nomials”, 17th Czech and Slovak International Conference on Number Theory, Malenovice, 2005.
  27. „Teljes hatványok számtani sorozatokban”, Berekfürdői Diofantikus és Kriptográfiai Napok, Berekfürdő, 2006.
  28. „On the Lattice Structure of Subsets of Octagonal Neighborhood Sequences in Zn” (poszter), 13th International Conference on Discrete Geometry for Computer Imagery, Szeged, 2006. Október 25-27.
  29. „Perfect powers in arithmetic progressions”, Solvability of Diophantine Equations, Leiden (Hollandia), 2007. május 14-16.
  30. „Perfect powers in arithmetic progressions”, XXVth Journées Arithmétiques, Edinburgh (Skócia), 2007. július 2-7.
  31. „Arithmetic progressions in linear combinations of S-units”, 18th Czech and Slovak International Conference on Number Theory, Smolenice (Szlovákia), 2007. augusztus 27-31.
  32. Egri Számelméleti Napok, Eger, 2007. október 5-6.
  33. „Perfect powers in arithmetic progression”, Mathematics Colloquium of TATA Institute of Fundamental Research, School of Mathematics, 2008. február 14.
  34. „Almost perfect powers in arithmetic progression”, Czech, Slovak and Polish Number Theory Conference, Ostravice (Csehország), 2008. június 10-14.
  35. „Neighborhood sequences and their applications”, Symposium Number Theory & Discrete Mathematics, Leiden, 2008. augusztus 27-28.
  36. „Teljes hatványok számtani sorozatban”, Soproni Diofantikus és Kriptográfiai Napok, 2008. október 10-12.
  37. „Perfect powers in arithmetic progression”, PALI65 Conference, Debrecen, 2008. október 21-24.
  38. „Perfect powers in arithmetic progression”, Winter School on the explicit solution of Diophantine equations, Debrecen, 2009. január 26-30.
  39. „Teljes hatványok számtan sorozatban”, Rényi Alfréd Matematikai Kutatóintézet, Számelmélet szeminárium, 2009. február 24.
  40. „Perfect powers in arithmetic progression”, Nihon University of Tokyo, Számelmélet szeminárium, 2009. május 22.
  41. „Perfect powers in arithmetic progression”, University of Niigata, Számelmélet szeminárium, 2009. május 26.
  42. „Perfect powers in arithmetic progression”, Sangyo University of Kyoto, Intézeti szeminárium, 2009. május 30.
  43. „Perfect powers in arithmetic progression”, XXVIth Journées Arithmétiques, St. Etienne, 2009. július 10.
  44. „Arithmetical properties of sets of linear combinations of S-units”, First conference on Algebra and Number Theory, Ixtapa (Mexikó), 2009. július 30.
  45. „Algebraic tomography and its applications”, Meeting on Discrete and Geometric Tomography, and Applications to Computer Algorithms, Milánó (Olaszország), 2010. április 22-23.
  46. „Inhomogeneous powers in arithmetic progressions”, Bukowina Tatrzanska (Lengyelország), Algebra, Logic and Number Theory Conference, 2010. június 21-24.
  47. „Mixed powers in arithmetic progression”, Wolfville, Acadia University (Kanada), CNTA XI Conference, 2010. július 11-16.
  48. „The importance of a special constant in bounding the solutions of S-unit equations”, Approximation diophantienne et transcendance, Marseille-Luminy, 2010. szeptember 6-10.
  49. „Prímlefedések és legnagyobb közös osztók: Pillai egy problémája illetve a Jacobsthal-függvény és alkalmazásai”, Rényi Alfréd Matematikai Kutatóintézet, Számelmélet szeminárium, 2010. szeptember 28.
  50. „Perfect powers in arithmetic progression”, Number Theory and its Applications, An International Conference Dedicated to Kálmán Győry, Attila Pethő, János Pintz, András Sárközy, Debrecen, 2010. október 4-8.
  51. „Mixed powers in arithmetic progression”, Number Theory Seminar of Zagreb University, 2011. január
  52. „On a conjecture of Pomerance and the Jacobsthal function”, Journées Arithmétiques, Vilnius, Litvánia, 2011 július
  53. „Representation problems with linear combinations of units” Turán 100 International Conference, Budapest, 2011 augusztus
  54. „A problem of Pillai and its generalizations”, 20th Czech and Slovak Conference On Number Theory, Stara Lesna, Slovakia, 2011 szeptember
  55. „New results in diophantine number theory”, Mini-conference series on TÁMOP research projects at the University of Debrecen, Debrecen, Hungary, 2011 november
  56. „Representation problems with linear combinations of units”, Number Theory Seminar, Graz, Austria, 2011 november
  57. „Bounds for the differences between discrete tomography solutions”, Meeting on Tomography and Applications, Politechnico di Milano - Dipartimento Matematica, Milánó, Olaszország, 2012 április
  58. „Representation problems with units”, Number Theory Seminar, Technical University of Prague, Czech Republic, 2012 november
  59. „A Hasse-type principle for exponential diophantine equations and its applications”, Erdős Centennial, Budapest, 2013 július 1-5.
  60. „On the size of sets whose elements have perfect power n-shifted products”, 21st Czech and Slovak International Conference on Number Theory, September 2 - 6, 2013, Ostravice, Czech Republic.
  61. „Algebra a képalkotásban”, KöMaL Ifjúsági Ankét, 2013. október 28-29., Budapest
  62. „Explicit solution of exponential diophantine equations using a Hasse-type principle”, Mini-Workshop on „Explicit Problems in Diophantine Analysis and Geometry” in frame of the ESI-Program „Heights in Diophantine geometry, group theory and additive combinatorics”, November 29-30, 2013.
  63. „On the diophantine equation 1 + 2^a + x^b = y^n”, Workshop „Unlikely Intersections”, 3-7 February 2014, Marseille-Luminy, France.
  64. „Representation problems with linear combinations of units”, Number Theory Seminar, 04 March 2014, Nihon University, Japan.
  65. „An exponential Hasse-type principle and its applications for exponential diophantine equations”, Diophantine Analysis and Related Fields 2014, D509, Institute of Mathematics, March 6-8, 2014, University of Tsukuba, Tsukuba, Japan.
  66. „Describing the gaps in the sequence of integral S-units”, Diophantine Approximation and Transcendence, CIRM, Luminy, 15-19 September 2014, Marseille-Luminy, France.
  67. „Finiteness results for F-Diophantine sets”, Workshop on Number Theory and Algebra on the occasion of 60th birthday of Ivica Gusić, 26-28 November, 2014, Zagreb, Croatia.
  68. „A Jacobsthal függvény és alkalmazásai”, 2014. december, Budapest, Rényi Alfréd Matematikai Kutatóintézet.
  69. „The Jacobsthal function and its applications”, Discussion Meeting on Analytic Number Theory in honour of Professors N. Saradha and J. Sengupta on their 60+ birthdays, Mumbai, India, January 5-9, 2015.
  70. „On the equation 1^k+...+x^k=y^n”, Kálmán Győry 75 Symposium, July 10 - 11, 2015, Debrecen, Hungary.
  71. „30 years of collaboration”, Joint Austrian-Hungarian Mathematical Conference, August 25 - 27, 2015, Győr, Magyarország.
  72. „Solving exponential Diophantine equations by congruences”, MIDK 22-24 January 2016, Pozsony, Szlovákia.
  73. „Power values of sums of products of consecutive integers”, Computational Aspects of Diophantine Equations, 15 - 19 February, 2016, Salzburg, Austria.
  74. „Some problems related to consecutive primes and residue systems”, NUIST International Workshop on Number Theory and Combinatorics, March 8 - 9, 2016, Nanking. China.
  75. „Perfect powers in a family of combinatorial polynomials”, Diophantine Analysis and Related Topics, March 10 - 13, 2016, Wuhan, China.
  76. „Some applications of an algebraic framework for discrete tomography”, Meeting on Tomography and Applications, Discrete Tomography and Image Reconstruction, 21 - 23 March, 2016, Milánó, Italy.
  77. „Consecutive primes forming a complete or a reduced residue system”, ELAZ 2016, September 5 - 9, 2016, Strobl am Wolfgangsee, Austria.
  78. „On polynomials dividing many k-nomials”, Schinzel 80 symposium, 2017. március 8., MTA, Budapest, Magyarország.
  79. „Correction of noise in discrete tomography”, Meeting on Tomography and Applications, Discrete Tomography and Image Reconstruction, Milan, Italy, 15 - 17 May, 2017
  80. „Egységegyenletek és alkalmazásaik”, Újabb eredmények a diofantikus számelméletben, Akadémiai Díj szeminárium, MTA, Budapest, 2017. május 23.
  81. „Finding well approximating lattices for a finite set of points”, Diophantine Approximation and Algebraic Curves, Banff International Research Station, Banff, Kanada, 2017. július 2-7.
  82. Tomográfia diszkréten, A Magyar Tudomány Ünnepe, Debreceni Akadémiai Bizottság Székháza, Debrecen, 2017. november 23.
  83. An algebraic framework for discrete tomography and its applications, Algebra Szeminárium, Bolyai Intézet, Szegedi Tudományegyetem, 2017. december 6.
  84. On the smallest number of terms of vanishing sums of units in number fields, Diophantine Approximation and Transcendence, Centre International de Rencontres Mathématiques, Marseille-Luminy, 2018. szeptember 10-14.
  85. „Multiplicative decompositions of polynomial sequences”, Transcendence and Diophantine Problems, In memory of Professor Naum Ilyitch Feldman (1918 - 1994), Moszkva, Oroszország, 2019. június 10-14.
  86. „Multiplicative decompositions of polynomial sequences”, Representation Theory XVI, Inter-University Centre, Dubrovnik, Horvátország, 2019. június 23-29.
  87. „Skolem's conjecture confirmed for a family of exponential Diophantine equations”, Friendly workshop on Diophantine equations and related problems, Uludag University, Bursa, Törökország, 2019. július 6-8.
  88. „The validity of Skolem's conjecture for a family of exponential equations”, New York Number Theory Seminar, Combinatorial and additive number theory, The City University of New York, New York, USA, 2020. június 1-5.
  89. „Powers in arithmetic progressions”, Modern Breakthroughs in Diophantine Problems, Banff International Research Station, Banff, Kanada, 2020. augusztus 31. – szeptember 4.
  90. „Skolem's conjecture and exponential Diophantine equations”, Diophantine Problems, Determinism and Randomness, Centre International de Rencontres Mathématiques, Marseille-Luminy, 2020. november 23-27.
  91. "On Skolem's conjecture", Austrian-Hungarian Diophantine Number Theory Researc Seminar, 2021. január 22.
  92. "Generating fog on digital images", HUMATSIN Center Day, 2021. január 28.
  93. „Exponential Diophantine equations and Skolem's conjecture”, Webinar of the Indian Statistical Institute, Delhi, India, 2021. március 3.
  94. "A Skolem sejtés és exponenciális diofantikus egyenletek", Rényi Alfréd Matematikai Kutatóintézet, 2021. március 23.
  95. „Perfect powers in arithmetic progressions”, One Belt One Road Conference Series on Number Theory and Combinatorics – I, Nanjing University of Information Science and Technology, Nanjing, Kína, 2021. április 20-21.
  96. „Multiplicative (in)decomposability of polynomial sequences”, New York Number Theory Seminar, Combinatorial and additive number theory, The City University of New York, New York, USA, 2021. május 24-28.
  97. „Indecomposability of sequences defined by polynomials and by narrow sets of primes”, 2022-04-22, Online Seminar of the Number Theory Research Group, Debrecen.
  98. „Indecomposability of sequences defined by narrow sets of primes”, 7 July 2022, NTC 2022 in the honour of K. Győry, J. Pintz, A. Sárközy
  99. „On the Liouville function on rational polynomial values”, 22 August 2022, ELAZ 2022, Poznan, Poland
  100. „The proof of Skolem's conjecture for certain three term equations”, 29 August 2022, Specialisation and Effectiveness in Number Theory, Banff, Canada
  101. „Polynomials with only rational roots”, Journées Arithmétiques, Nancy, 2023, július 3-7.
     
Legutóbbi frissítés: 2024. 10. 17. 11:14