Publikációk - Dr. Gát György

A legutóbbi 5 év publikciói (2016-2021):

1. Gát, György ; Lucskai, Gábor
On the negativity of the Walsh-Kaczmarz-Riesz logarithmic kernels
MATHEMATICA PANNONICA (2021)

2. Anas, Ahmad Mohammad Abu Joudeh ; Gát, György
Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters
UKRAINIAN MATHEMATICAL JOURNAL 73 : 3 pp. 291-307. , 17 p. (2021)

3. Gát, György ; Lucskai, Gábor
Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers
NOVI SAD JOURNAL OF MATHEMATICS Epub pp. 1-14. , 14 p. (2021)

4. Gát, G. ; Goginava, U.
Pointwise Strong Summability of Vilenkin–Fourier Series
MATHEMATICAL NOTES 108 : 3-4 pp. 499-510. , 12 p. (2020)


5. Gát, György ; Toledo, Rodolfo
Numerical solution of linear differential equations by Walsh polynomials approach
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA 57 : 2 pp. 217-254. , 38 p. (2020)

6. Gát, G. ; Goginava, U.
Convergence of a subsequence of triangular partial sums of double Walsh-Fourier series
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES 54 : 4 pp. 210-215. , 6 p. (2019)

7.  Gát, Gy ; Goginava, U
Maximal operators of Cesàro means with varying parameters of Walsh–Fourier series
ACTA MATHEMATICA HUNGARICA 159 : 2 pp. 653-668. , 16 p. (2019)

8. Gát, György ; Lucskai, Gábor
Estimation on the Walsh--Fejér and Walsh logarithmic kernels
PUBLICATIONES MATHEMATICAE DEBRECEN 95 : 3-4 pp. 415-435. , 18 p. (2019)

9. Gát, György
Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series
CONSTRUCTIVE APPROXIMATION 49 : 1 pp. 59-101. , 43 p. (2019)

10. G, Gát ; U, Goginava
Norm Convergence of Double Fejer Means on Unbounded Vilenkin Groups
ANALYSIS MATHEMATICA 45 : 1 pp. 39-62. , 24 p. (2019)

11. György, Gát
On the convergence of Fejér means of some subsequences of partial sums of Walsh-Fourier series
ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EOTVOS NOMINATAE SECTIO COMPUTATORICA 49 pp. 187-198. , 12 p. (2019)


12. Anas, Ahmad Abu Joudeh ; Gát, György
Convergence of Cesáro means with varying parameters of Walsh-Fourier series
MISKOLC MATHEMATICAL NOTES 19 : 1 pp. 303-317. , 15 p. (2018)

13. G, Gát ; U, Goginava
Almost everywhere convergence of subsequence of quadratic partial sums of two-dimensional Walsh–Fourier series
ANALYSIS MATHEMATICA 44 : 1 pp. 73-88. , 16 p. (2018)

14. Goginava, Ushangi ; Gát, György
Subsequences of triangular partial sums of double Fourier series on unbounded Vilenkin groups
FILOMAT 32 : 11 pp. 3769-3778. , 10 p. (2018)

15. György, Gát ; Ushangi, Goginava
Norm convergence of logarithmic means on unbounded Vilenkin groups
BANACH JOURNAL OF MATHEMATICAL ANALYSIS 12 : 2 pp. 422-438. , 17 p. (2018)

16. György, Gát
Almost everywhere convergence of Fejér means of two-dimensional triangular Walsh-Fourier series
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS 24 : 5 pp. 1249-1275. , 27 p. (2018)

17. G, Gát ; U, Goginava
Norm convergence of double Fourier series on unbounded Vilenkin groups
ACTA MATHEMATICA HUNGARICA 152 : 1 pp. 201-216. , 16 p. (2017)


18. György, Gát ; Ushangi, Goginava
Almost everywhere convergence of dyadic triangular-Fejér means of two-dimensional Walsh-Fourier series
MATHEMATICAL INEQUALITIES & APPLICATIONS 19 : 2 pp. 401-415. , 15 p. (2016)

19. György, Gát ; Grigori, Karagulyan
On Convergence Properties of Tensor Products of Some Operator Sequences
JOURNAL OF GEOMETRIC ANALYSIS 26 : 4 pp. 3066-3089. , 24 p. (2016)

20. György, Gát
Marcinkiewicz-like means of two dimensional Vilenkin--Fourier series
PUBLICATIONES MATHEMATICAE DEBRECEN 89 : 3 pp. 331-346. , 16 p. (2016)

21. György, Gát
Some recent results on convergence and divergence with respect to Walsh-Fourier series
ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS 32 : 2 pp. 215-223. , 9 p. (2016)
 

Legutóbbi frissítés: 2023. 07. 05. 13:56