- R. L. Lovas, Lie derivatives and Killing vector fields in Finsler geometry, Proceedings of Non-Euclidean Geometry in Modern Physics (2002) 35–50.
- R. L. Lovas, Affine and projective vector fields on spray manifolds, Periodica Mathematica Hungarica 48 (1–2) (2004) 165–179.
- R. L. Lovas, On the Killing vector fields of generalized metrics, SUT Journal of Mathematics 40 (2) (2004) 133–156.
- R. L. Lovas, Geometric vector fields of spray and metric structures, doktori (PhD) értekezés, Debreceni Egyetem (2005).
- R. L. Lovas, Infinitesimal isometries of generalized metrics, Вестник Нижегородского университета, Серия Математика 1 (3) (2005) 162–171.
- R. L. Lovas, J. Pék and J. Szilasi, Ehresmann connections, metrics and good metric derivatives, in: Finsler Geometry, Sapporo 2005: In memory of Makoto Matsumoto, Mathematical Society of Japan (2007) 263–308.
- Z. Daróczy, K. Lajkó, R. L. Lovas, Gy. Maksa and Zs. Páles, Functional equations involving means, Acta Mathematica Hungarica 116 (1-2) (2007) 79–87.
- R. L. Lovas, A note on Finsler–Minkowski norms, Houston Journal of Mathematics 33 (3) (2007) 701–707.
- J. Szilasi and R. L. Lovas, Some aspects of differential theories, in: Handbook of Global Analysis, Elsevier (2008) 1071–1116.
- R. L. Lovas and J. Szilasi, Homotheties of Finsler manifolds, SUT Journal of Mathematics 46 (1) (2010) 23–34.
- J. Szilasi, R. L. Lovas and D. Cs. Kertész, Several ways to a Berwald manifold and some steps beyond, Extracta Mathematicae 26 (1) (2011) 89–130.
- J. Szilasi, R. L. Lovas and D. Cs. Kertész, Connections, sprays and Finsler structures, World Scientific (2014).
- R. L. Lovas and I. Mező, Some observations on the Furstenberg topological space, Elemente der Mathematik 70 (2015) 103–116.
- D. Cs. Kertész and R. L. Lovas, A generalization and short proof of a theorem of Hano on affine vector fields, SUT Journal of Mathematics 53 (2) (2017) 83–87.
- M. Barczy and R. L. Lovas, Karhunen–Loève expansion for a generalization of Wiener bridge, Lithuanian Mathematical Journal 58 (4) (2018) 341–359.
- R. L. Lovas, Zs. Páles and A. Zakaria, Characterization of the equality of Cauchy means to quasiarithmetic means, Journal of Mathematical Analysis and Applications 484 (1) (2020) 123700.
- M. Bessenyei, D. Cs. Kertész and R. L. Lovas, A sandwich with segment convexity, Journal of Mathematical Analysis and Applications 500 (1) (2021) 125108.
Legutóbbi frissítés:
2023. 09. 05. 08:16