Cikkeim és kézirataim az arXiv-on
Publikációk
[1] E. Gselmann, On the modified entropy equation, Banach J. Math. Anal., 2 (2008), no. 1, 84–96. (arXiv)
[2] A. Abbas, E. Gselmann, Gy. Maksa, Z. Sun, General and continuous solutions of the entropy equation, American Institute of Physics, Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 1073 (November 6, 2008), 3–7.
[3] E. Gselmann, Stability type results concerning the fundamental equation of information of multiplicative type, Colloquium Math., 114 (2009), 33–40.
[4] E. Gselmann, Recent results on the parametric fundamental equation of information, Acta Math. Acad. Paedagog. Nyházi., 25 (2009),no. 1, 65–84. (arXiv)
[5] E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar., 124 (2009) no. 1–2, 179–188.
[6] E. Gselmann, Gy. Maksa, The Shannon field of non-negative information functions, Scientiae Mathematicae Japonicae, 69 (2009), no. 2, 241–248.
[7] E. Gselmann, Gy. Maksa, Stability of the parametric fundamental equation of information for nonpositive parameters, Aequationes Math. 78 (2009), 271–282.
[8] E. Gselmann, On the stability of the modified entropy equation, Results in Math. 58 (2010) 255-268.
[9] E. Gselmann, Stability of the entropy equation, Publ. Math. Debrecen, 77/1–2 (2010), 201–210. (arXiv)
[10] E. Gselmann, Á. Száz, A generalization of Gˇavruµˇa’s stability theorem, Sarajevo Journal of Mathematics, vol. 6. (18) (2010), 1–19.
[11] Z. Boros, E. Gselmann, Hyers–Ulam stability of derivations and linear functions, Aequationes Math., 80 (2010), 13–25. (arXiv)
[12] E. Gselmann, Gy. Maksa, A characterization of the relative entropies, Annales Univ. Sci. Budapest., Sect. Comp. 35 (2011) 151–162.
[13] E. Gselmann, Notes on the characterization of derivations, Acta Sci. Math. (Szeged), 78 no.1–2 (2012), 137–145. (arXiv)
[14] E. Gselmann, Entropy functions and functional equations, Math. Commun., 16 (2011), 347–357 (arXiv)
[15] W. Fechner, E. Gselmann, General and alien solutions of a functional equation and of a functional inequality, Publ. Math. Debrecen, 80/1–2 (2012) 143–154. (arXiv)
[16] E. Gselmann, Derivations and linear functions along rational functions, Monatshefte für Mathematik, 169 no. 3-4 (2013), 355-370. (arXiv)
[17] E. Gselmann, Gy. Maksa, Some functional equations related to the characterizations of information measures and their stability, Handbook in Functional Equations: Stability Theory, Springer Optimization and Its Applications, Vol. 96, edited by Th. M. Rassias, 199-243, Springer Verlag, 2014.
[18] E. Gselmann, On some classes of partial difference equations, Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013), 285-294. (arXiv)
[19] E. Gselmann, Stability properties in some classes of second order partial differential equations, Results in Mathematics vol. 65 ,no. 1-2 (2014), 95-103.
[20] E. Gselmann, Stability and information functions, Scholars' Press, Saarbrücken, 2013.
[21] E. Gselmann, Jordan triple mappings on positive definite matrices, Aequationes Mathematicae 89(2015), no. 3, 629-639.
[22] E. Gselmann, Approximate derivations of order $n$, Acta Mathematica Hungarica, vol. 144, no. 1, 217-226. (arXiv)
[23] E. Gselmann, A. Kelemen, Stability in the class of first order delay differential equations, Miskolc Mathematical Notes 17 (2016), no. 1, 281-291. (arXiv)
[24] E. Gselmann, On the discrete version of the wave equation, Aequationes Mathematicae, 89 (2015), no. 1 63-70.
[25] E. Gselmann, On approximate $n$-Jordan homomorphisms, Ann. Math. Sil. 28 (2014), 47-58. (arXiv)
[26] E. Gselmann, Zs. Páles, Additive solvability and linear independence of the solutions of a system of functional equations, Acta Sci. Math. Szeged 82 (2016), no. 1-2, 101-110. (arXiv)
[27] E. Gselmann, Additive functions and their actions on certain elementary functions, Math. Inequal. Appl. 18 (2015) no. 3, 1037-1045. (arXiv)
[28] E. Gselmann, G. Kiss and Cs. Vincze, On functional equations characterizing derivations: methods and examples, Result. Math. 73, No. 2, Paper No. 74, 27 p. (2018). (arXiv)
[29] E. Gselmann, Characterizations of derivations, Diss. Math. 539, 1-65 (2019). (arXiv)
[30] E. Gselmann, G. Kiss and Cs. Vincze, Characterization of field homomorphisms through Pexiderized functional equations, J. Difference Equ. Appl. 25 (12) (2019) 1645-1679 (arXiv)
[31] E. Gselmann, G. Kiss and Cs. Vincze, On a class of linear functional equations without range condition, Aequationes mathematicae 94 (2020) 473–509.
[32] E. Gselmann, G. Kiss, Remarks on the notion of homo-derivations, Annales Univ. Sci. Budapest., Sect. Comp. 51 (2020) 111–130.
[33] E. Gselmann, G. Horváth, The symmetry group of first order differential equations and the global rectification theorem. J. Lie Theory 31 (2021), no. 1, 237–247. (arXiv)
[34] E. Gselmann, L. Székelyhidi, Symmetric spectral synthesis, Aequationes mathematicae 95 (2021) 255–279.
[35] Z. Fechner, E. Gselmann and L. Székelyhidi, Moment functions on groups, Results Math. 76 (2021), no. 4, Paper No. 171, 16 pp. (arXiv)
[36] Z. Fechner, E. Gselmann and L. Székelyhidi, Moment functions and exponential monomials on commutative hypergroups, Aequat. Math. 95 (6) (2021), 1281–1290. (arXiv)
[37] Z. Fechner, E. Gselmann and L. Székelyhidi, Moment functions of higher rank on polynomial hypergroups, Adv. Oper. Theory 7, 41 (2022). (arXiv)
[38] Z. Fechner, E. Gselmann and L. Székelyhidi, Spectral synthesis via moment functions on hypergroups, Forum Math. 34(5), 1187–1197 (2022) (arXiv)
[39] E. Gselmann, Polynomial identities satisfied by generalized polynomials, Publ. Math. Debrecen 101/3-4, 421–450 (2022), (arXiv)
[40] Z. Fechner, E. Gselmann and L. Székelyhidi, Endomorphisms and derivations of the measure algebra of commutative hypergroups, Indagationes Mathematicae 34(6), 1329-1337 (2023), (arXiv)
[41] Z. Fechner, E. Gselmann and L. Székelyhidi, Generalized derivations and generalized exponential monomials on hypergroups, Opuscula Math. 43, no. 4 (2023), 493–505 (arXiv)
[42] E. Gselmann and M. Iqbal, Monomial functions, normal polynomials and polynomial equations, Aequat. Math. 97, 1059–1082 (2023). (arXiv)
[43] Z. Fechner, E. Gselmann and L. Székelyhidi, Moment functions of higher rank on some types of hypergroups, Semigroup Forum 107, 624–636 (2023)
[44] E. Gselmann and G. Kiss, Polynomial Equations for Additive Functions I: The Inner Parameter Case. Results Math 79, 63 (2024).
[45] E. Gselmann and G. Kiss, Polynomial equations for additive functions II., The mixed parameter case, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 112 (2024). (arXiv)
[46] W. Fechner, E. Gselmann, A characterization of differential operators in the ring of complex polynomials, Indagationes Mathematicae, 35 (6), 1294-1305 (2024), (arXiv)
Kéziratok
[1] W. Fechner, E. Gselmann and A. Światczak, Characterizations of second-order differential operators, 2023., (arXiv)
[2] W. Fechner, E. Gselmann and A. Światczak, Operator relations characterizing higher-order differential operators, 2023., (arXiv)
[3] E. Gselmann, M. Iqbal, Quadratic functions as solutions of polynomial equations, 2023. (arXiv)
[4] E. Gselmann, C. W. Doble, Y.-F. Hsu, On Iverson's law of similarity, 2024. (arXiv) (PsyArxiv)
[5] E. Gselmann, Wallach's ratio principle under affine representation, 2024. (PsyArxiv)
[6] E. Gselmann, M. Iqbal, A functional equation for monomial functions, 2024. (arXiv)
Disszertáció
E. Gselmann, Az információelmélet néhány függvényegyenletének stabilitása, Debreceni Egyetem, témavezető: Prof. Dr. Maksa Gyula, 2011.
Habilitáció
Habilitációs értekezés
Habilitációs értekezés tézisei
Habilitációs kérelem
Egyéb publikációk
[1] Éva Dékány, Donát Alpár, Erika Bálint, Szabolcs Béni, Dezső Csupor, Eszter Gselmann, Ágnes Kóspál, Ágnes Máté, Gergely Toldi, Péter Török, Katalin Solymosi, Fiatal kutatók nehézségei a COVID–19 járvány alatt (Difficulties of Young Researchers During the COVID-19 Pandemic), Magyar Tudomány 181 (12), 1688-1697,
[2] Erika Bálint, Dorottya Csuka, Viktória Venglovecz, Gitta Schlosser, Zsófia Lázár, Eszter Gselmann, Donát Alpár, Katalin Solymosi, Six reasons to launch a Young Academy, Nature 594 (7864), 599-601.
[3] Gselmann Eszter, Solymosi Katalin, A felsőoktatás diverzitásának növeléséhez alapvető szemléletváltásra van szükség, Magyar Tudomány 182 : 1451-1476. , 26 p. (2021), DOI: https://doi.org/10.1556%2F2065.182.2021.11.6
[4] Gselmann Eszter, Pongrácz András, Varga Nóra, Vincze Csaba, Mathesis necesse est (45 éves a Debreceni Akadémiai Bizottság Matematikai Munkabizottsága), Debreceni Egyetemi Kiadó, 128 pp., ISBN: 978 963 318 974 0
[5] Gselmann Eszter, Vincze Csaba, A matematika iránytűi: riport a DAB Matematikai Munkabizottsága 2021. évi ünnepi rendezvényéről a Magyar Tudomány Ünnepén, Debreceni Szemle, XXX. évf., 2022. I. negyedév, 94-98.
[6] Gselmann Eszter (szerk.), A STEM tanításának és tanulásának aktuális kérdései (Current Issues in Teaching and Learning STEM), Magyar Tudomány, 183(2022)11, 1375–1382.